Statistical Inference Lecture Four https://people.bath.ac.uk/masss/APTS/2021-22/LectureFour.pdf

Simon Shaw

University of Bath

APTS, 13-17 December 2021

E 6 4 E 6

1/21

Overview of Lecture Four

Last time, Bayesian statistical decision problem, $[\Theta, \mathcal{D}, \pi(\theta), L(\theta, d)]$.

- The risk of decision $d \in \mathcal{D}$ under the distribution $\pi(\theta)$ is $\rho(\pi(\theta), d) = \int_{\theta} L(\theta, d) \pi(\theta) d\theta$.
- A decision $d^* \in \mathcal{D}$ for which $\rho(\pi, d^*) = \rho^*(\pi)$ is a Bayes rule.
- The Bayes rule for the posterior decision respects the SLP.

Today, we'll look at decision theory from a classical perspective.

• The classical risk for the model $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$ is

$$R(\theta, \delta) = \int_X L(\theta, \delta(x)) f_X(x \mid \theta) dx.$$

- A decision rule δ_0 is admissible if there is no decision rule δ_1 which dominates it.
- Wald's Complete Class Theorem, CCT: a decision rule is admissible if and only if it is a Bayes rule for some prior distribution.
- Admissible decision rules respect the SLP.
- Loss functions for point estimation, set estimation and hypothesis testing.

Simon Shaw (University of Bath)

• We now show that admissible rules can be related to a Bayes rule δ^* for a prior distribution $\pi(\theta)$.

Theorem

If a prior distribution $\pi(\theta)$ is strictly positive for all Θ with finite Bayes risk and the classical risk, $R(\theta, \delta)$, is a continuous function of θ for all δ , then the Bayes rule δ^* is admissible.

Proof (Robert, 2007)

Letting $f(\theta, x) = f_X(x \mid \theta) \pi(\theta)$ we have

$$\mathbb{E}\{L(\theta,\delta(X))\} = \int_{X} \int_{\theta} L(\theta,\delta(x))f(\theta,x) d\theta dx$$

=
$$\int_{\theta} \left\{ \int_{X} L(\theta,\delta(x))f_{X}(x \mid \theta) dx \right\} \pi(\theta) d\theta$$

=
$$\int_{\theta} R(\theta,\delta)\pi(\theta) d\theta$$

Proof continued

- Suppose that the Bayes rule δ^* is inadmissible and dominated by δ_1 .
- Thus, in an open set C of θ , $R(\theta, \delta_1) < R(\theta, \delta^*)$ with $R(\theta, \delta_1) \le R(\theta, \delta^*)$ elsewhere.
- Consequently, E{L(θ, δ₁(X))} < E{L(θ, δ*(X))} which is a contradiction to δ* being the Bayes rule.
- The relationship between a Bayes rule with prior $\pi(\theta)$ and an admissible decision rule is even stronger.
- The following result was derived by Abraham Wald (1902-1950)

Wald's Complete Class Theorem, CCT

In the case where the parameter space Θ and sample space \mathcal{X} are finite, a decision rule δ is admissible if and only if it is a Bayes rule for some prior distribution $\pi(\theta)$ with strictly positive values.

(日)

- An illuminating blackboard proof of this result can be found in Cox and Hinkley (1974, Section 11.6).
- There are generalisations of this theorem to non-finite decision sets, parameter spaces, and sample spaces but the results are highly technical.
- We'll proceed assuming the more general result, which is that a decision rule is admissible if and only if it is a Bayes rule for some prior distribution $\pi(\theta)$, which holds for practical purposes.

So what does the CCT say?

- Admissible decision rules respect the SLP. This follows from the fact that admissible rules are Bayes rules which respect the SLP. This provides support for using admissible decision rules.
- **2** If you select a Bayes rule according to some positive prior distribution $\pi(\theta)$ then you cannot ever choose an inadmissible decision rule.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Point estimation

- We now look at possible choices of loss functions for different types of inference.
- For point estimation the decision space is D = Θ, and the loss function L(θ, d) represents the (negative) consequence of choosing d as a point estimate of θ.
- It will not be often that an obvious loss function L : ⊖ × ⊖ → ℝ presents itself. There is a need for a generic loss function which is acceptable over a wide range of applications.

Suppose that Θ is a convex subset of \mathbb{R}^{p} . A natural choice is a convex loss function,

$$L(\theta,d) = h(d-\theta)$$

where $h : \mathbb{R}^p \to \mathbb{R}$ is a smooth non-negative convex function with h(0) = 0.

- This type of loss function asserts that small errors are much more tolerable than large ones.
- One possible further restriction is that *h* is an even function, $h(d - \theta) = h(\theta - d)$.
- In this case, $L(\theta, \theta + \epsilon) = L(\theta, \theta \epsilon)$ so that under-estimation incurs the same loss as over-estimation.
- We saw previously, that for quadratic loss $\Theta \subset \mathbb{R}$, $L(\theta, d) = (\theta d)^2$, the Bayes rule was the expectation of $\pi(\theta)$. As we will see, this attractive feature can be extended to more dimensions.
- There are many situations where this is not appropriate and the loss function should be asymmetric and a generic loss function should be replaced by a more specific one.

(人間) トイヨト イヨト ニヨ

The bilinear loss function for $\Theta \subset \mathbb{R}$ is, for $\alpha, \beta > 0$,

$$L(heta, d) = \left\{ egin{array}{cc} lpha(heta-d) & ext{if } d \leq heta, \ eta(d- heta) & ext{if } d \geq heta. \end{array}
ight.$$

- The Bayes rule is a $\frac{\alpha}{\alpha+\beta}$ -fractile of $\pi(\theta)$.
- If $\alpha = \beta = 1$ then $L(\theta, d) = |\theta d|$, the absolute loss which gives a Bayes rule of the median of $\pi(\theta)$.
- $|\theta d|$ is smaller that $(\theta d)^2$ for $|\theta d| > 1$ and so absolute loss is smaller than quadratic loss for large deviations. Thus, it takes less account of the tails of $\pi(\theta)$ leading to the choice of the median.
- If $\alpha > \beta$, so $\frac{\alpha}{\alpha+\beta} > 0.5$, then under-estimation is penalised more than over-estimation and so that Bayes rule is more likely to be an over-estimate.

(人間) トイヨト イヨト ニヨ

Example

If $\Theta \in \mathbb{R}^{p}$, the Bayes rule δ^{*} associated with the distribution $\pi(\theta)$ and the quadratic loss

$$L(\theta, d) = (d - \theta)^T Q (d - \theta)$$

is the expectation $\mathbb{E}_{(\pi)}(\theta)$ for every positive-definite symmetric $p \times p$ matrix Q.

Example (Robert, 2007), $Q = \Sigma^{-1}$

Suppose $X \sim N_p(\theta, \Sigma)$ where the known variance matrix Σ is diagonal with elements σ_i^2 for each *i*. Then $\mathcal{D} = \mathbb{R}^p$. A possible loss function is

$$L(\theta, d) = \sum_{i=1}^{p} \left(\frac{d_i - \theta_i}{\sigma_i}\right)^2$$

so that the total loss is the sum of the squared component-wise errors.

- As the Bayes rule for $L(\theta, d) = (d \theta)^T Q (d \theta)$ does not depend upon Q, it is the same for an uncountably large class of loss functions.
- If we apply the Complete Class Theorem to this result we see that for quadratic loss, a point estimator for θ is admissible if and only if it is the conditional expectation with respect to some positive prior distribution $\pi(\theta)$.
- The value, and interpretability, of the quadratic loss can be further observed by noting that, from a Taylor series expansion, an even, differentiable and strictly convex loss function can be approximated by a quadratic loss function.

<日

<</p>

Stein's Example

- Let $X = (X_1, \ldots, X_p)^T$, $\theta = (\theta_1, \ldots, \theta_p)^T$ for $p \ge 3$.
- Suppose that $X \mid \theta \sim N_p(\theta, I_p)$ where I_p is the $p \times p$ identity matrix.
- Thus, given θ , the X_i s are independent $N(\theta_i, 1)$.
- For a single observation X = x the maximum likelihood estimate is $\delta^0(x) = x = (x_1, \dots, x_p)^T$. This is unbiased.
- For quadratic loss $L(\theta, d) = (\theta d)^T (\theta d)$ the classical risk of δ^0 is

$$R(\theta, \delta^{0}) = \mathbb{E}[L(\theta, \delta^{0}(X)) | \theta]$$

$$= \sum_{i=1}^{p} \mathbb{E}[(\theta_{i} - X_{i})^{2} | \theta]$$

$$= \sum_{i=1}^{p} Var(X_{i} | \theta) = p$$

• We'll show that δ^0 is inadmissible.

11/21

• Consider the set of James-Stein estimators

$$\delta^{a}(X) = \left(1 - \frac{a}{X^{T}X}\right) X$$

for $a \ge 0$ (a = 0 gives $\delta^0(X) = X$) which, for a > 0, are biased.

• For quadratic loss the classical risk of δ^a is

$$\begin{aligned} R(\theta, \delta^{a}) &= \mathbb{E}[(\theta - \delta^{a}(X))^{T}(\theta - \delta^{a}(X)) | \theta] \\ &= \mathbb{E}\left[\left((\theta - X) + \frac{aX}{X^{T}X}\right)^{T}\left((\theta - X) + \frac{aX}{X^{T}X}\right) | \theta\right] \\ &= \mathbb{E}[(\theta - X)^{T}(\theta - X) | \theta] + a^{2}\mathbb{E}\left[\frac{1}{X^{T}X} | \theta\right] \\ &- 2a\mathbb{E}\left[\frac{X^{T}(X - \theta)}{X^{T}X} | \theta\right] \\ &= R(\theta, \delta^{0}) + a^{2}\mathbb{E}\left[\frac{1}{X^{T}X} | \theta\right] - 2a\sum_{i=1}^{p}\mathbb{E}\left[\frac{X_{i}(X_{i} - \theta_{i})}{X^{T}X} | \theta\right] \end{aligned}$$

A B A A B A

 Stein's Lemma states that for X | θ ~ N_p(θ, I_p) and g(X) a suitably behaved real valued function

$$\mathbb{E}(\mathbf{g}(\mathbf{X})(\mathbf{X}_i - \mathbf{ heta}_i) \,|\, \mathbf{ heta}) = \mathbb{E}\left[\left. rac{\partial \mathbf{g}(\mathbf{X})}{\partial \mathbf{X}_i} \,\right| \, \mathbf{ heta}
ight].$$

• Using this result we can show that

$$\sum_{i=1}^{p} \mathbb{E}\left[\frac{X_{i}}{X^{T}X}(X_{i}-\theta_{i}) \mid \theta\right] = (p-2)\mathbb{E}\left[\frac{1}{X^{T}X} \mid \theta\right]$$

so that

$$R(\theta, \delta^a) = R(\theta, \delta^0) + (a^2 - 2a(p-2))\mathbb{E}\left[\frac{1}{X^T X} \middle| \theta\right].$$

- Now, $X^T X \ge 0$ so that $\mathbb{E}[1/X^T X | \theta] \ge 0$ (actually positive) and thus if $a^2 2a(p-2) < 0$ then $R(\theta, \delta^a) < R(\theta, \delta^0)$.
- Hence, if 0 < a < 2(p-2) (exists as $p \ge 3$) then δ^0 is inadmissible.

- Note that a = p 2 minimises $R(\theta, \delta^a)$
- The *i*th term of $\delta^a(X) = (1 \frac{a}{X^T X}) X$ is $(1 \frac{a}{X^T X}) X_i$ and so depends on all X_1, \dots, X_p even though the X_i s are independent.
- This outcome, often called Stein's Paradox, can be shown to occur in many situations when comparing three or more populations.
- It occurs because the loss function is dealing with simultaneous estimation of all parameters and so is an on average property.
- Note that δ^a shrinks some of the estimates towards 0 and this idea using shrinkage to reduce variance (at the expense of introducing bias) - is widely used in statistics.
- The inadmissible δ^0 means that I can't find a proper prior for which δ^0 is the Bayes rule (in this case, it's essentially the Bayes rule of an improper uniform).

APTS, 13-17 December 2021

Set estimation

- For set estimation the decision space is a set of subsets of ⊖ so that each d ⊂ ⊖.
- There are two contradictory requirements for set estimators of Θ.
 - We want the sets to be small.
 - 2 We also want them to contain θ .
- A simple way to represent these two requirements is to consider the loss function

 $L(\theta, d) = |d| + \kappa (1 - \mathbb{1}_{\theta \in d})$

for some $\kappa > 0$ where |d| is the volume of d.

• The value of κ controls the trade-off between the two requirements.

- If $\kappa \downarrow 0$ then minimising the expected loss will always produce the empty set.
- If $\kappa \uparrow \infty$ then minimising the expected loss will always produce Θ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• For loss functions of the form $L(\theta, d) = |d| + \kappa(1 - \mathbb{1}_{\theta \in d})$ we'll show there is a simple necessary condition for a rule to be a Bayes rule.

Definition (Level set)

A set $d \subset \Theta$ is a level set of the posterior distribution exactly when $d = \{\theta : \pi(\theta | x) \ge k\}$ for some k.

Theorem (Level set property, LSP)

If δ^* is a Bayes rule for $L(\theta, d) = |d| + \kappa (1 - \mathbb{1}_{\theta \in d})$ then it is a level set of the posterior distribution.

Proof

Note that

$$\begin{split} \mathbb{E}\{L(\theta,d)\,|\,X\} &= |d| + \kappa (1 - \mathbb{E}(\mathbb{1}_{\theta \in d}\,|\,X)) \\ &= |d| + \kappa \mathbb{P}(\theta \notin d\,|\,X). \end{split}$$

Proof continued

- For fixed x, we show that if d is not a level set of the posterior distribution then there is a $d' \neq d$ which has a smaller expected loss so that $\delta^*(x) \neq d$.
- Suppose that d is not a level set of $\pi(\theta | x)$. Then there is a $\theta \in d$ and $\theta' \notin d$ for which $\pi(\theta' | x) > \pi(\theta | x)$.
- Let $d' = d \cup d\theta' \setminus d\theta$ where $d\theta$ is the tiny region of Θ around θ and $d\theta'$ is the tiny region of Θ around θ' for which $|d\theta| = |d\theta'|$.
- Then |d'| = |d| but

 $\mathbb{P}(\theta \notin d' \mid X) < \mathbb{P}(\theta \notin d \mid X)$

Thus, $\mathbb{E}\{L(\theta, d') \mid X\} < \mathbb{E}\{L(\theta, d) \mid X\}$ showing that $\delta^*(x) \neq d$.

- 3

17 / 21

- The Level Set Property Theorem states that δ having the level set property is necessary for δ to be a Bayes rule for loss functions of the form $L(\theta, d) = |d| + \kappa (1 \mathbb{1}_{\theta \in d})$.
- The Complete Class Theorem states that being a Bayes rule is a necessary condition for δ to be admissible.
- Being a level set of a posterior distribution for some prior distribution $\pi(\theta)$ is a necessary condition for being admissible for loss functions of this form.
- Bayesian HPD regions satisfy the necessary condition for being a set estimator.
- Classical set estimators achieve a similar outcome if they are level sets of the likelihood function, because the posterior is proportional to the likelihood under a uniform prior distribution.¹

Simon Shaw (University of Bath)

¹In the case where Θ is unbounded, this prior distribution may have to be truncated to be proper.

Hypothesis tests

• For hypothesis tests, the decision space is a partition of Θ , denoted

 $\mathcal{H} := \{H_0, H_1, \ldots, H_d\}.$

- Each element of \mathcal{H} is termed a hypothesis.
- The loss function L(θ, H_i) represents the (negative) consequences of choosing element H_i, when the true value of the parameter is θ.
- It would be usual for the loss function to satisfy

$$\theta \in H_i \implies L(\theta, H_i) = \min_j L(\theta, H_j)$$

on the grounds that an incorrect choice of element should never incur a smaller loss than the correct choice.

< 回 > < 回 > < 回 >

• Consider the test of $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ where $\Theta_1 = \Theta \setminus \Theta_0$. Let $\mathcal{D} = \{d_0, d_1\}$ where d_i corresponds to accepting H_i . A generic loss function is the 0-1 ('zero-one') loss function

$$L(\theta, d_i) = \begin{cases} 0 & \text{if } \theta \in \Theta_i, \\ 1 & \text{if } \theta \notin \Theta_i. \end{cases}$$

• The classical risk is the probability of making a wrong decision,

$$egin{array}{rcl} {\cal R}(heta,\delta) &=& \left\{ egin{array}{ll} {\mathbb P}(\delta(X)=d_1\,|\, heta) & {
m if}\,\, heta\in\Theta_0, \ {\mathbb P}(\delta(X)=d_0\,|\, heta) & {
m if}\,\, heta\in\Theta_1, \end{array}
ight.$$

which correspond to the familiar Type I and Type II errors.

- The Bayes rule is to choose H₀ if P_π(θ ∈ Θ₀) > P_π(θ ∈ Θ₁) and H₁ otherwise, where P_π(·) is the probability when θ ~ π(θ).
- Hence, if $\pi(\theta) = f(\theta | x)$, the Bayes rule is to choose the hypothesis with the largest posterior probability.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

• This approach can be naturally extended to multiple hypotheses $\mathcal{H} = \{H_0, H_1, \dots, H_d\}$ which partition Θ by taking

 $L(\theta, H_i) = 1 - \mathbb{1}_{\{\theta \in H_i\}}.$

i.e., zero if $\theta \in H_i$, and one if it is not.

- For the posterior decision, the Bayes rule is to select the hypothesis with the largest posterior probability.
- However, this loss function is hard to defend as being realistic.
- If we choose H_i and it turns out that $\theta \notin H_i$ then the inference is wrong and the loss is the same irrespective of where θ lies.
- An alternative approach is to co-opt the theory of set estimators.
- The statistician can use her set estimator δ to make at least some distinctions between the members of H:
 - Accept H_i exactly when $\delta(x) \subset H_i$,
 - Reject H_i exactly when $\delta(x) \cap H_i = \emptyset$,
 - Undecided about H_i otherwise.

21 / 21