Notes from Problems (lass 2.
Let $X=\left(X_{1}, \ldots, X_{p}\right)^{\top} \sim N_{p}\left(\theta, I_{p}\right)$ when
$Q=\left(\theta_{1}, \ldots, \theta_{p}\right)^{\top}$ and I_{p} is the pep idutity matrix
and $p \geqslant 3$.
Than, the $X_{i s}$ an independent $N\left(\theta_{i}, 1\right)$ with

$$
f_{x}\left(x_{1}, \ldots, x_{p} \mid \theta\right)=\prod_{i=1}^{p} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\left(x_{i}-\theta_{i}\right)^{2}}{2}\right\}
$$

For a singh bosonvation $X=x$, he maximum likelihood estimate in x (ie. $x_{i}=Q_{i}$ for each :)which is unbiased.

Consitu estimation of θ using quadratic loss

$$
L(\theta, d)=(\theta-d)^{\top}(\theta-d)=\sum_{i=1}^{P}\left(\theta_{i}-d_{i}\right)^{2}
$$

for duasion $d=\left(d_{1}, \ldots, d_{p}\right)^{\top} \in \mathbb{R}^{p}$.
Th CLASSICAL RISK of $\delta^{\circ}(X)=X$ is

$$
R\left(\theta, \delta^{0}\right)=\mathbb{E}\left[L\left(\theta, \delta^{0}(X)\right) \mid \theta\right]
$$

This contd be a $\rho \quad P \quad X_{i s}$ treated as randan for fixed θ. function of θ.

$$
\begin{aligned}
& =\sum_{i=1}^{p} \mathbb{E}\left[\left(\theta_{i}-X_{i}\right)^{2} \mid \theta\right] \\
& =\sum_{i=1}^{p} \operatorname{Var}\left(X_{i} \mid \theta\right) \\
& =p .
\end{aligned}
$$

Consider the sAt of JAMES -STEIN ESTMATORS,

$$
\delta^{a}(X)=\left(1-\frac{a}{X^{\top} X}\right) X
$$

for $a \geq 0 .\left[a=0\right.$ giros $\left.\delta^{0}(X)=X\right]$. Note that it $X^{\top} X>0$ then $\delta^{a}(X)$ shrinks X towards 0 .

We now consider the dusiectrisle of $\delta^{"}(X)$ under quadratic loss. In order to to so we will reed to mate use of STEN'S LETMA

For $X \sim N\left(\theta, I_{p}\right)$ and $g(X)$ suitably behard rad valued function,

$$
\mathbb{E}\left(g(X)\left(X_{i}-\theta_{i}\right) \mid \theta\right)=\mathbb{E}\left[\left.\frac{\partial g(X)}{\partial X_{i}} \right\rvert\, \theta\right]
$$

In one-duriension but the extension is dew,

$$
\mathbb{E}\left(g(X)\left(X_{i}-\theta_{i}\right) \mid \theta\right)=\int_{-\infty}^{\infty} g(X) \frac{1}{\sqrt{2} \pi} \sqrt{\left.x_{i}-\theta_{i}\right) \exp \left\{-\frac{\left.\left(x_{i}-\right)_{i}\right)^{2}}{2}\right\}}
$$

oud so I can do this integral by parts

$$
\text { e,g. } u=g(x) \quad \partial u=\frac{\partial g(x)}{\partial x_{i}} \quad \quad \partial v=\frac{1}{\sqrt{2 \pi}}\left(x_{i}-\theta_{i}\right) \operatorname{mpp}\left\{-\frac{\left(x_{i}-\theta_{i}\right)^{2}}{2}\right\}
$$

Putting the parts together gives:

$$
\begin{aligned}
& {\left[-g(x) \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\left(x_{i}-\theta_{i}\right)^{2}}{2}\right\}\right]_{-\infty}^{\infty}} \\
& +\int_{-\infty}^{\infty} \frac{\partial g(x)}{\partial x_{i}} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\left(x_{i}-Q_{i}\right)^{2}}{2}\right\} d x_{i} \\
& =\mathbb{E}\left[\left.\frac{\partial g(x)}{\frac{\partial x_{i}}{\partial}} \right\rvert\, \theta\right] \text {. } \\
& R\left(\theta, \delta^{a}(X)\right)=\mathbb{E}\left[\left.\left(\theta-\left(1-\frac{a}{x^{\top} x}\right) X\right)^{\top}\left(\theta-\left(1-\frac{a}{x^{\top} x}\right) X\right)\right|^{\theta}\right] \\
& =\mathbb{E}\left[\left.\left((\theta-X)+\frac{a}{x^{\top} x} X\right)^{\top}\left((\theta-X)+\frac{a}{X^{\top} x} X\right) \right\rvert\, \theta\right] \\
& =\underbrace{\mathbb{E}\left[(\theta-X)^{\top}(\theta-X) \mid \theta\right]}_{=p \text { as } R\left(\theta, s^{0}(X)\right)}+a^{2} \mathbb{E}\left[\left.\frac{1}{X^{\top} X} \right\rvert\, \theta\right]
\end{aligned}
$$

$$
-2 a \mathbb{E}\left[\left.\frac{X^{\top}(X-\theta)}{X^{\top} X}\right|^{\theta}\right]
$$

wis Stein's Lemma with $g(X)=\frac{X_{i}}{X^{\top} X}$
Now, $\mathbb{E}\left[\left.\frac{X^{\top}(X-\theta)}{X^{\top} X} \right\rvert\, \theta\right]=\sum_{i=1}^{D} \mathbb{E}\left[\frac{X_{i}\left(X_{i}-Q_{i}\right) \mid Q}{X^{\top} X}\right]^{X^{\top} X}$

$$
\begin{aligned}
& =\sum_{i=1}^{p} \mathbb{E}\left[\left.\frac{\partial}{\partial x_{i}} \frac{x_{i}}{x^{\top} x} \right\rvert\, \theta\right] \\
& =\sum_{i=1}^{p} \mathbb{E}\left[\left.\frac{x^{\top} x-2 x_{i}^{2}}{\left(x^{\top} x\right)^{2}} \right\rvert\, \theta\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E}\left[\left.\frac{p x^{\top} x-2 \sum_{i=1}^{D} x_{i}^{2}}{\left(x^{\top} x\right)^{2}} \right\rvert\, \theta\right] \\
& =(p-2) \mathbb{E}\left[\left.\frac{1}{x^{\top} x} \right\rvert\, \theta\right] .
\end{aligned}
$$

Hence,
remember that $p \geq 3$

$$
\begin{gathered}
R\left(\theta, \delta^{a}(x)\right)=p+\left(a^{2}-2 a(p-2)\right) \mathbb{E}\left[\left.\frac{1}{X^{\top} x} \right\rvert\, \theta\right] \\
R\left(\theta, \delta^{0}(x)\right)
\end{gathered}
$$

Now, $X^{\top} X \geqslant 0$ and so $\mathbb{E}\left[\left.\frac{1}{X^{\top} X} \right\rvert\, Q\right] \geqslant 0$ Aten if

$$
\begin{array}{cc}
a^{2}-2 a(p-2)<0 \\
\text { ie. } 0<a<2(p-2) & \binom{\text { suit an a mists for }}{p \geqslant 3}
\end{array}
$$

we hare $R\left(\theta, J^{a}(X)\right)<R\left(\theta, J^{0}(X)\right)$ for all θ
Thin, $\delta^{\circ}(X)$ is INADMISSIBLE.
Note $\frac{d}{d a} R\left(Q, s^{a}(X)\right)=(2 a-2(p-2)) E\left[\left.\frac{1}{x^{\top} x} \right\rvert\, Q\right]$
$\Rightarrow a=p-2$ is the minimum
Note if $\theta=0$ then $X^{\top} X \sim \chi_{p}^{2}$ so that $\bar{E}\left[\left.\frac{1}{X^{\top} X} \right\rvert\, \theta\right]=\frac{1}{p-2}$
so then $R\left(\theta, \delta^{\circ}(X)\right)=p$ and $R\left(\theta, \delta^{p-2}(X)\right)=2$ and so $R\left(Q, \sigma^{p-2}(X)\right) \ll R\left(Q, J^{\circ}(X)\right)$ for p large.

Note: $\delta^{a}(X)=\left(1-\frac{a}{X^{\top} X}\right) X$ and so the it term is

$$
\left(1-\frac{a}{X^{\top} X}\right) X_{i} \text { amd so depends on ALL } X_{1}, \ldots, X_{p} \text {. }
$$

Thin phenemenom is known as STEIN'S PHENORTENOM and it can be shown to occur in marry situatuin wane comparing three or more populations.

Ocam became the loss function is dunking with Smuctaveous estimation of ALL parameter. A's an OW AVERAGE property. If you had a loss function that related to just on inatimidnad component then x_{i} would b_{c} fire.

Shrinkeyec: reduce variance at the expense of bias.
In Bayesian statistics, the prior and the likelihood an combined wither the posterior: me "pull" the likelihood towards the prior.
Posterior estimate often sees a clanisul estimate panted towards a corresponding prior.
[loss function in $L(\theta, d)=(\theta-d)^{\top}(\theta-d)$

$$
=\sum_{i=1}^{D}\left(\theta_{i}-d_{i}\right)^{2} \leftarrow t \cdot t_{0} h_{1} \text { sum of the }
$$

Aim to minimise loss: this loss functions do rs them on average across ah Q_{i}]
$\alpha \mu_{0}+(1-\alpha) x_{i} \quad$ Hos the variann st the posterior is smaller
Suppose I take $Q_{i} \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$ independent then

$$
Q_{i} \left\lvert\, x_{i}=N(\underbrace{\left(\frac{1}{\sigma_{0}^{2}}+\frac{1}{1}\right)^{-1}\left(\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{x_{i}}{1}\right)}_{\text {weighted avernyo of } \mu_{0} \text { and } x},\left(\frac{1}{\sigma_{0}^{2}}+\frac{1}{1}\right)^{1-1})\right.
$$

Under quadratic loss, th Bangs rah for thees prior is the posterior expectation $\mathbb{E}[\theta \mid X]$ and it $\sigma_{0}^{2} \rightarrow \infty \mathbb{E}[\theta \mid X] \rightarrow X$.

Inmulunssible $S^{0}(X)$ mam I cant fond a proper prior for which $\delta^{0}(X)$ is Ae Bayes mule [Af the postrior division]. Hen it is essentially, the Bumper rale of an improper uniform

Normal molut: mile x, variomu $\sigma^{2}\left[\bar{x}, \sigma^{2} / n\right]$

