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Lecture 2 — Monte Carlo Methods

Monte Carlo methods
History

Convergence analysis

o

o

o

@ Variance reduction techniques

@ Example: Predator-prey dynamical system
o

Multilevel Monte Carlo methods
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Monte Carlo Methods

The Buffon Needle Problem

@ In 1777, George Louis Leclerc, Comte de
Buffon (1707-1788), French naturalist and
mathematician, posed the following problem:

Let a needle of length ¢ be thrown
at random onto a horizontal plane
ruled with parallel straight lines
spaced by a distance d > ¢ from
each other. What is the probability
p that the needle will intersect one
of these lines?
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Monte Carlo Methods

The Buffon Needle Problem

@ In 1777, George Louis Leclerc, Comte de
Buffon (1707-1788), French naturalist and
mathematician, posed the following problem:

Let a needle of length ¢ be thrown
at random onto a horizontal plane
ruled with parallel straight lines
spaced by a distance d > ¢ from
each other. What is the probability
p that the needle will intersect one
of these lines?

@ Answer: p = % (simple geometric arguments)

@ Laplace later used similar randomised experiment to approximate 7.

@ The term “Monte Carlo method” was coined by Ulam, von

Neumann, Metropolis in the Manhattan project (Los Alamos, 1946).
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Monte Carlo Methods

The Buffon Needle Problem

THE ROYAL
SOCIETY

Ants estimate area using Buffon's needle

Eamonn B. Mallon” and Nigel R. Franks
Centre for Mathematical Biolagy, and Department of Biology and Biochemistry, University of Bath, Bath BA2 TAY, UK

We show for the first time, to our knowledge, that ants can measure the size of potential nest sites. Nest
size assessment is by individual scouts. Such scouts always make more than one visit to a potential nest
hefore initiating an emigration of their nest mates and they deploy individual-specific trails within the
potential new nest on their first visit. We test three alternative hypotheses for the way in which scouts
might measure nests. Experiments indicated that individual scouts use the intersection frequency between
their own paths to assess nest areas. These results are consistent with ants using a ‘Buffon’s needle algo-
rithm' to assess nest areas.

Keywords: ants; colony emigration; individual-specific pheromones; Leptothorax; nest sites;
rules of thumb

Proceedings of the Royal Society of London, 2000
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Monte Carlo Methods

Monte Carlo Simulation for the Buffon Needle Problem

@ Let {Hk}ken denote a sequence of i.i.d. binomial random variables
s.t.
1 if k-th needle intersects a line,
Hi(w) = {

0 otherwise.

@ Their common distribution is that of a Bernoulli trial with success
probability p = 2¢/md. In particular: E[Hi] =p Vk.

@ Sy = Hy + -+ Hp is the total number of hits after N throws.
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@ Sy = Hy + -+ Hp is the total number of hits after N throws.
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WN — p  almost surely (a.s.)
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Monte Carlo Methods

Monte Carlo Simulation for the Buffon Needle Problem

@ Let {Hk}ken denote a sequence of i.i.d. binomial random variables
s.t.
1 if k-th needle intersects a line,
Hi(w) = {

0 otherwise.

@ Their common distribution is that of a Bernoulli trial with success
probability p = 2¢/md. In particular: E[Hi] =p Vk.

@ Sy = Hy + -+ Hp is the total number of hits after N throws.

@ Strong Law of Large Numbers:

S
WN — p  almost surely (a.s.)

@ Compute realizations of Hy by sampling X, ~ U[0, d/2] (distance of
needle center to closest line) and ©4 ~ U[0, 7/2] (acute angle of

needle with lines) using a random number generator.
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Monte Carlo Methods

Monte Carlo Simulation for the Buffon Needle Problem

— P
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Monte Carlo Methods

Monte Carlo Simulation for the Buffon Needle Problem

o Setting d =2, ¢ =1 gives p = 1. We should get N/Sy Nose o
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Monte Carlo Methods

Monte Carlo Simulation for the Buffon Needle Problem

o Setting d =2, ¢ =1 gives p = 1. We should get N/Sy Nose o
@ A Matlab experiment yields

N Sy N/Sy rel Error

10 3 3.333 6.10e-2
100 32 3125 5.28e-3
1000 330 3.030 3.54e-2
10000 3188 3.137 1.54e-3
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Monte Carlo Methods

Monte Carlo Simulation for the Buffon Needle Problem

o Setting d =2, ¢ =1 gives p = 1. We should get N/Sy Nose o
@ A Matlab experiment yields

N Sy N/Sy rel Error

10 3 3.333 6.10e-2
100 32 3125 5.28e-3
1000 330 3.030 3.54e-2
10000 3188 3.137 1.54e-3

@ Mario Lazzarini (1901) built machine that carries out repetitions of
this random experiment. His needle was 2.5cm long and the lines
3.0cm apart. He claims to have observed 1808 intersections for 3408

throws, i.e
T2 g ﬂ = 3.141592920353983.. ..

3 1808

A relative error of 8.5-1078 |
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Monte Carlo Methods

Monte Carlo Simulation for the Buffon Needle Problem

o Setting d =2, ¢ =1 gives p = 1. We should get N/Sy Nose o
@ A Matlab experiment yields

N Sy N/Sy rel Error

10 3 3.333 6.10e-2
100 32 3125 5.28e-3
1000 330 3.030 3.54e-2
10000 3188 3.137 1.54e-3

@ Mario Lazzarini (1901) built machine that carries out repetitions of
this random experiment. His needle was 2.5cm long and the lines
3.0cm apart. He claims to have observed 1808 intersections for 3408

throws, i.e
' 2.5 3408
~2-— - —— = 3.14159292
T 3 1808 3.141592920353983
A relative error of 8.5-1078 I s this too good to be true?
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Monte Carlo Methods

Basic Monte Carlo simulation — Convergence results

@ Given a sequence {Xj} of i.i.d. copies of a given random variable X,
basic MC simulation uses the estimator

E[X] = N

>N — Xy 4t X
R Sn 1+ + Xy

@ By the Strong Law of Large Numbers, SWN — E[X] as.
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Monte Carlo Methods

Basic Monte Carlo simulation — Convergence results

@ Given a sequence {Xj} of i.i.d. copies of a given random variable X,
basic MC simulation uses the estimator

E[X] ~ 2V

= Xyt X
N Sn 1+ + Xy

@ By the Strong Law of Large Numbers, SWN — E[X] as.

N
@ Also, for any measurable function f, Z (Xk) — E[f(X)] a:s.
k:
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Monte Carlo Methods

Basic Monte Carlo simulation — Convergence results

@ Given a sequence {Xj} of i.i.d. copies of a given random variable X,
basic MC simulation uses the estimator

E[X] ~ 2V

= Xyt X
N Sn 1+ + Xy

@ By the Strong Law of Large Numbers, SWN — E[X] as.
N

@ Also, for any measurable function f, Z (Xk) = E[f(X)] as.
k:

@ If E[X] = p and Var[X] = 02, then (via the Central Limit Theorem)
Sn —
\/_a

i.e. the estimate is unbiased, the standard error is N~/ and the
distribution of the normalised RV Sy becomes Gaussian as N — oo.

E[Sy] = Nu, Var[Sy] = No® and Sj = £ N(0,1),
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Monte Carlo Methods

Various Convergence Statements

@ Since
ﬂ_ 2
N

we have mean square convergence of Sy/N to p.

2
:VarS—N:U——>0,

E
N N
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Monte Carlo Methods

Various Convergence Statements
Sy o2
=Var— = — =0,

@ Since
5_N B 2
N N N

we have mean square convergence of Sy/N to p.

E

@ Also Chebyshev’s Inequality implies, for any € > 0,

Sn —1/2+4€ a°
- < —
P{ N M‘ >N - N2’

i.e. the probability of the error being larger than N~1/2+¢ converges
to zero for any € > 0, as N — oc.
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Monte Carlo Methods

Various Convergence Statements
S o2
=Var N _° 0,

@ Since
5_N B 2
N N N

we have mean square convergence of Sy/N to p.

E

@ Also Chebyshev’s Inequality implies, for any € > 0,

Sn —1/2+4€ a°
- < —
P{ N M‘ >N - N2’

i.e. the probability of the error being larger than N~1/2+¢ converges
to zero for any € > 0, as N — oc.

Q@ Ifp:=E [|X — p|3] < 00, then the Berry-Esseen Inequality gives
" p
P{Sy < x} — d(x)| < ,
‘ { N = } ( )’ = 20’3\/N

where ® denotes cumulative density function (CDF) of N(0, 1).
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Monte Carlo Methods

Exercise 1

Exercise 1

(a) Using the Berry-Esseen bound derive a confidence interval for the

estimate Sy /N and (upper and lower) bounds on the probability that
w falls into this confidence interval.

(b) In the Buffon needle problem, we have

E [Hi] = p, Var[H] = p(1—p), E [|Hk — pI*] = p(1—p)(1-2p+2p°).

Calculate the confidence interval for this problem in the case
N = 3408, £ = 2.5, d = 3, and thus check how likely it is that

Lazzarini's machine would produce 1808 intersections and a relative
accuracy of 7 of 8.5-1078.
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Monte Carlo Methods

Quasi-Monte Carlo methods

In quasi-Monte Carlo methods, the samples are not chosen randomly, but
special (deterministic) number sequences, known as low-discrepancy
sequences, are used instead. Discrepancy is a measure of equidistribution
of a number sequence.
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Monte Carlo Methods

Quasi-Monte Carlo methods

In quasi-Monte Carlo methods, the samples are not chosen randomly, but
special (deterministic) number sequences, known as low-discrepancy
sequences, are used instead. Discrepancy is a measure of equidistribution
of a number sequence.

Example: The van der Corput sequence is such a Iow—discrepancy
sequence for the unit interval. For base 3, it is given by x, = 3,, where j
increases monotonically and, for each j, k runs through all nonnegative
integers such that k/3/ is an irreducible fraction < 1. The ordering in k is
obtained by representing k in base 3 and reversing the digits. The first 11

numbers are ol — (0, 121472581 10}
M=l 1737379799797 97 9’ 277 27
0.1
-0 o2 04 06 08 1
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Monte Carlo Methods

Quasi-Monte Carlo methods

@ Replacing i.i.d. random numbers sampled from U[0, 1] in a standard
Monte Carlo approximation of E [f(X)] for some f € C>°(0,1) and
X ~ U[0,1], by the van der Corput sequence of length N, yields a
quasi-Monte Carlo method.
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Quasi-Monte Carlo methods

@ Replacing i.i.d. random numbers sampled from U[0, 1] in a standard
Monte Carlo approximation of E [f(X)] for some f € C>°(0,1) and
X ~ U[0,1], by the van der Corput sequence of length N, yields a
quasi-Monte Carlo method.

@ The convergence rate is improved from 0(N~1/2) to O(N~2).
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Monte Carlo Methods

Quasi-Monte Carlo methods

@ Replacing i.i.d. random numbers sampled from U[0, 1] in a standard
Monte Carlo approximation of E [f(X)] for some f € C>°(0,1) and
X ~ UJ[0,1], by the van der Corput sequence of length N, yields a
quasi-Monte Carlo method.

@ The convergence rate is improved from 0(N~1/2) to O(N~2).

@ Although this improvement is impressive, the method does not
generalise easily and the rate of convergence depends on the
problem.
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Monte Carlo Methods

Quasi-Monte Carlo methods

@ Replacing i.i.d. random numbers sampled from U[0, 1] in a standard
Monte Carlo approximation of E [f(X)] for some f € C>°(0,1) and
X ~ UJ[0,1], by the van der Corput sequence of length N, yields a
quasi-Monte Carlo method.

@ The convergence rate is improved from 0(N~1/2) to O(N~2).

@ Although this improvement is impressive, the method does not
generalise easily and the rate of convergence depends on the
problem.

@ In particular, the rate of convergence for a quasi-Monte Carlo
method generally does depend on the dimension.
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Monte Carlo Methods

Quasi-Monte Carlo methods

@ Replacing i.i.d. random numbers sampled from U[0, 1] in a standard
Monte Carlo approximation of E [f(X)] for some f € C>°(0,1) and
X ~ UJ[0,1], by the van der Corput sequence of length N, yields a
quasi-Monte Carlo method.

@ The convergence rate is improved from 0(N~1/2) to O(N~2).

@ Although this improvement is impressive, the method does not
generalise easily and the rate of convergence depends on the
problem.

@ In particular, the rate of convergence for a quasi-Monte Carlo
method generally does depend on the dimension.

Week 3: Dimension-independent QMC results for “fruit-fly”
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Monte Carlo Methods

Variance reduction

The constant in the MC convergence rates is the variance o2 of the RV
from which MC samples are being drawn. By designing an equivalent MC
approximation with lower variance, we can expect faster convergence.
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Variance reduction

The constant in the MC convergence rates is the variance o2 of the RV
from which MC samples are being drawn. By designing an equivalent MC
approximation with lower variance, we can expect faster convergence.

@ To approximate E [X] by standard MC, we draw independent samples
{Xk}N_, of X and compute the sample average Sy/N.
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Variance reduction

The constant in the MC convergence rates is the variance o2 of the RV
from which MC samples are being drawn. By designing an equivalent MC
approximation with lower variance, we can expect faster convergence.

@ To approximate E [X] by standard MC, we draw independent samples
{Xk}N_, of X and compute the sample average Sy/N.

@ Now assume a second set of samples { Xy}, of X is given with
sample average Sy /N.
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Monte Carlo Methods

Variance reduction

The constant in the MC convergence rates is the variance o2 of the RV
from which MC samples are being drawn. By designing an equivalent MC
approximation with lower variance, we can expect faster convergence.

@ To approximate E [X] by standard MC, we draw independent samples
{Xk}N_, of X and compute the sample average Sy/N.

@ Now assume a second set of samples { Xy}, of X is given with
sample average Sy /N.

@ Since both sample averages converge to E[X], so does
3(Sw/N + Sn/N).

@ When X, and X are negatively correlated they are called antithetic
samples, and the approximation ﬁ(SN + Sp) is a more reliable
approximation of E [X] than ﬁSgN.
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Monte Carlo Methods

Variance reduction

Let the two sequences of RVis {X} and {X\} be identically distributed
with

Cov(X;, Xk) = Cov(X;, Xx) =0  forj # k.
Then the sample averages Sy/N and Sy /N satisfy

SN+§N . 52N Sn SN SN

2N

Var
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Monte Carlo Methods

Variance reduction

Let the two sequences of RVis {X} and {X\} be identically distributed
with

Cov(X;, Xk) = Cov(X;, Xx) =0  forj # k.
Then the sample averages Sy/N and Sy /N satisfy

S Sn S Sn

@ Worst case: Variance of average of N samples and N antithetic
samples no better than variance of N independent samples.

Sy + 3/\/
2N

Var
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Monte Carlo Methods

Variance reduction

Theorem

Let the two sequences of RVis {X} and {X\} be identically distributed
with .
Cov(Xj, Xk) = Cov(X;, Xk) =0  for j # k.

Then the sample averages Sy /N and Sn /N satisfy
Son Sn S Sn
= LAt L i
Var {2N]+ Cov <N,N)_Var[N]

@ Worst case: Variance of average of N samples and N antithetic
samples no better than variance of N independent samples.

SN+§N

V
ar N

@ Best case: negatively correlated Sy/N and Sy/N, therefore
variance of N samples and N antithetic samples less than variance of
2N indepependent samples.
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Example: Predator-prey dynamical system

Explicit Euler discretisation

Consider the popular model of the dynamics of two interacting populations

. ill u1(1 — U2)
u=|. | = u(0) = ug.
[“2} [Uz(m -1’ ©
Assume the vector of initial conditions ug is uncertain and that it is

modeled as a (uniform) random vector ug ~ U(I'), where I denotes the

square
a M=o+ [—e €]
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Example: Predator-prey dynamical system

Explicit Euler discretisation

Consider the popular model of the dynamics of two interacting populations

. ill u1(1 — U2)
u=|. | = u(0) = ug.
[UJ [Uz(m -1’ ©
Assume the vector of initial conditions ug is uncertain and that it is

modeled as a (uniform) random vector ug ~ U(I'), where I denotes the
square

M=o+ [—e €]
@ Goal: estimate E[u1(T)] at time T > 0.

@ Denote by uy = upy(w) the explicit Euler approximation after M
time steps of length At = [ starting with initial data up = ug(w).

@ Define the Qol @ = ¢(u(T)) = u1(T) for u = [uy, uo]" and estimate
E [Qum] using the MC method just described, where Qun = ¢(up).

@ Expect better approximations for N large and At small.
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Example: Predator-prey dynamical system

Monte Carlo Estimator

@ Denote the Monte Carlo estimator for E [Qu] by

~

N
A 1 (k)
Qv = Qun = N ; Qum

i.e the average over N samples {Q,(\;)}’kvzl of Qu.
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Example: Predator-prey dynamical system

Monte Carlo Estimator

@ Denote the Monte Carlo estimator for E [Qu] by
Ous — O 15~ o)
Qv = Quun = N ; )y

i.e the average over N samples {Q,(\;)}’kvzl of Qu.
@ Error with N samples and M = T /At time steps:
enm = [E[Q] — Qul < [E[Q] — E[Qu] [+ |E[Qu] — Qu]

-~

discretisation error Monte Carlo error
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Example: Predator-prey dynamical system

Monte Carlo Estimator

@ Denote the Monte Carlo estimator for E [Qu] by
Ous — O 15~ o)
Qv = Quun = N ; )y

i.e the average over N samples {Q,(\;)}val of Qum.
@ Error with N samples and M = T /At time steps:
enm = [E[Q] — Qul < [E[Q] — E[Qu] [+ |E[Qu] — Qu

-~

discretisation error Monte Carlo error

Exercise 2
Show that the mean square error can be expanded (with equality!)

E [(E[Q] - 5m)2} — (E[Q—Qm])* + w

Hint: Note that E[Q)] is constant and only Qu is actually random.
R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16
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Example: Predator-prey dynamical system

Discretisation Error — Bias

@ Explicit Euler discretisation error (with some constant K > 0):

[u(T) = upll < KM

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 18 / 43



Example: Predator-prey dynamical system

Discretisation Error — Bias

@ Explicit Euler discretisation error (with some constant K > 0):
[u(T) —umll < KM~
@ ¢ Lipschitz-continuous with constant L = 1:

|6(u(T)) — d(upy)| < KLM™L,
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Example: Predator-prey dynamical system

Discretisation Error — Bias

@ Explicit Euler discretisation error (with some constant K > 0):
[u(T) —umll < KM~
@ ¢ Lipschitz-continuous with constant L = 1:
|6(u(T)) — ¢(um)| < KLM™.

@ Therefore

[E[Q] - E[Qum]| = [E[Q — Qu]| < KLM™.
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Example: Predator-prey dynamical system

Balancing discretisation and MC error

@ For the MC error, from Exercise 1 with Var[Qu] = 03, we get
1.960

VN

P (|E [Qum] - aM,N‘ < ) > 0.95 + O(N~1/?)
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Example: Predator-prey dynamical system

Balancing discretisation and MC error

@ For the MC error, from Exercise 1 with Var[Qu] = 03, we get
1.960

VN

@ Combined with discretisation error (using triangle inequality):

KL 1960'M —1/2
P < = TOM . O(N~Y?),
(eN,M_ M+ TN )>095+ ( )

P (|E [Qum] - aM,N‘ < ) > 0.95 + O(N~1/?)
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Example: Predator-prey dynamical system

Balancing discretisation and MC error

@ For the MC error, from Exercise 1 with Var[Qu] = 03, we get
1.960
VN

@ Combined with discretisation error (using triangle inequality):

KL 1.96
P (eN,M <+ ﬂ) > 0.95 + O(N~/?).

P (|E [Qum] - aM,N‘ < ) > 0.95 + O(N~1/?)

M VN
@ Balance discretization and MC errors:
ﬂ N TOL and 1960y TOL
M~ 2 N
leads to
2KL 1602
M ~ ~ M andso Cost — Oo(TOL™3)

TOL’ ~T0L2
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Example: Predator-prey dynamical system

Sample trajectories

Population dynamics problem integrated over [0, T = 6] with
tp = [0.5,2]" and € = 0.2. Unperturbed trajectory (black) along with 15
perturbed trajectories. For the unperturbed trajectory u;(T) = 1.3942.
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Example: Predator-prey dynamical system

Antithetic sampling

We may introduce antithetic sampling to this problem by noting that, if
ug ~ U(I), then the same holds for the random vector

tip := 2up — up.

Thus, the trajectories generated by the random initial data Gig have the
same distribution as those generated by ug.
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Example: Predator-prey dynamical system

Antithetic sampling

We may introduce antithetic sampling to this problem by noting that, if
ug ~ U(I), then the same holds for the random vector

tip := 2up — up.
Thus, the trajectories generated by the random initial data Gig have the
same distribution as those generated by ug.

o Let Qu = ¢(up) be the basic samples and @y = é(iip) the
antithetic counterparts. Note that all pairs of samples are
independent except each sample and its antithetic counterpart.
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Example: Predator-prey dynamical system

Antithetic sampling

We may introduce antithetic sampling to this problem by noting that, if
ug ~ U(I), then the same holds for the random vector

tip := 2up — up.

Thus, the trajectories generated by the random initial data Gig have the
same distribution as those generated by ug.

o Let Qu = ¢(up) be the basic samples and @y = é(iip) the
antithetic counterparts. Note that all pairs of samples are
independent except each sample and its antithetic counterpart.

@ Then use (QM N+ QM ) instead of QM on (same cost).

@ To estimate Var[QM] and Cov(Qu, QM) we use sample variance and
covarlance (resp.), i.e

s 300~ Gt and 7 (0 - Qu @~ B
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Example: Predator-prey dynamical system

Numerical Experiment — Comparing standard and antithetic sampling

Uylteng)
PO
© ©
Uyllong)
PO
© ©

147 1.47
48 o5 1 15 2 25 8 85 4 % 05 1 15 2 25 8 35 4
N x10° N x 10"

MC estimation of E [ui(T)] using standard MC with N samples (left) vs.
MC with antithetic sampling using N /2 samples of the initial data (right),
showing the estimate along with 95% confidence intervals.
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Example: Predator-prey dynamical system

Exercise 3

Exercise 3

(a) Find an estimate for Var [%(@MN + (N?M’N)] based on the sample
variances and covariances of {Q,(\f,()} and {@,(\f,()} defined above.

(b) Implement the Monte Carlo method for the predator-prey system with
tp = [0.5,2]", e = 0.2, T = 6, using explicit Euler discretisation, i.e.

u="f(u) and u(0) =uy — uj41 =u;+ Atf(u)).
Study the discretisation and MC errors and compute confidence
intervals.

(c) Implement also the antithetic estimator and compare the variance of
the two estimators. How much is the variance reduced? Does this
reduction depend on the selected tolerance TOL.

4
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Multilevel Monte Carlo Methods

History
@ The multilevel Monte Carlo method is a powerful new variance
reduction technique.
@ First ideas for high-dimensional quadrature by Heinrich, 2000.

@ Independently discovered and popularised by Giles, 2007 in the
context of stochastic DEs in mathematical finance.
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Multilevel Monte Carlo Methods

History
@ The multilevel Monte Carlo method is a powerful new variance
reduction technique.
@ First ideas for high-dimensional quadrature by Heinrich, 2000.

@ Independently discovered and popularised by Giles, 2007 in the
context of stochastic DEs in mathematical finance.
@ First papers in the context of UQ:

o Cliffe, Giles, RS, Teckentrup, 2011
e Barth, Schwab, Zollinger, 2011
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Multilevel Monte Carlo Methods

History
@ The multilevel Monte Carlo method is a powerful new variance
reduction technique.
@ First ideas for high-dimensional quadrature by Heinrich, 2000.

@ Independently discovered and popularised by Giles, 2007 in the
context of stochastic DEs in mathematical finance.
@ First papers in the context of UQ:
o Cliffe, Giles, RS, Teckentrup, 2011
e Barth, Schwab, Zollinger, 2011

@ Stochastic simulation of discrete state systems (biology, chemistry)
by Anderson, Higham, 2012 | Possible talk by Kit Yates|
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Multilevel Monte Carlo Methods

Mean-square error — Standard MC

@ To estimate the expectation E[Q] of a quantity of interest Q,
assume only approximations Qp =~ @ are computable, where M € N
denotes a discretization parameter (#time steps, #grid points, ...) and

Jim E[Qu] = E[Q].
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Multilevel Monte Carlo Methods

Mean-square error — Standard MC

@ To estimate the expectation E[Q] of a quantity of interest Q,
assume only approximations Qp =~ @ are computable, where M € N
denotes a discretization parameter (#time steps, #grid points, ...) and

Jim E[Qu] = E[Q].

@ More precisely, we assume the error in mean to converge at a rate
—aq, i.e.,
[E[Qm — Q]| S M™%, as M — oo, a > 0.

(in the predator-prey case aw = 1)

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 25 /43



Multilevel Monte Carlo Methods

Mean-square error — Standard MC

@ To estimate the expectation E[Q] of a quantity of interest Q,
assume only approximations Qp =~ @ are computable, where M € N
denotes a discretization parameter (#time steps, #grid points, ...) and

lim E[Qu] =E[Q].
M— o0
@ More precisely, we assume the error in mean to converge at a rate
—aq, i.e.,
[E[Qm — Q]| S M™%, as M — oo, a>0.
(in the predator-prey case aw = 1)

@ From Exercise 2 we know that the mean square error (MSE) is

e | (Quw - @)’ = Y12+ (elow - a1)”
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Multilevel Monte Carlo Methods

Cost scaling — Standard MC

@ Denote by ‘K(Q,(VI,()) cost associated with computing one sample Q,(;)
(e.g. in terms of the number of floating-point operations required)
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Multilevel Monte Carlo Methods

Cost scaling — Standard MC

@ Denote by CK(Q,(VI,()) cost associated with computing one sample Q,(;)
(e.g. in terms of the number of floating-point operations required)

@ Cost typcially grows linearly or with some power v > 1 with M. We
assume (k)
¢(Qy) S M, =1

so that %(@MJ\/) < NM?Y (in the predator-prey case v = 1).
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Multilevel Monte Carlo Methods

Cost scaling — Standard MC

@ Denote by ‘K(Q,(VI,()) cost associated with computing one sample Q,(;)
(e.g. in terms of the number of floating-point operations required)

@ Cost typcially grows linearly or with some power v > 1 with M. We
assume (k)
¢(Qy) S M, =1
so that %(@MJ\/) < NM?Y (in the predator-prey case v = 1).

@ To balance the two MSE components, assume each ist bounded by

%“2, resulting in a total bound of TOL? for the MSE.
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Multilevel Monte Carlo Methods

Cost scaling — Standard MC

@ Denote by ‘K(Q,(VI,()) cost associated with computing one sample Q,(;)
(e.g. in terms of the number of floating-point operations required)

@ Cost typcially grows linearly or with some power v > 1 with M. We
assume (k)
¢(Qy) S M, =1
so that %(@MJ\/) < NM?Y (in the predator-prey case v = 1).

e To lgalance the two MSE components, assume each ist bounded by
%, resulting in a total bound of TOL? for the MSE.

@ This yields (since Qu — Q, we have Var[Qu] ~ Var[Q] = constant)
N > 2Var[Qu]TOL2 and M > TOL Ve,
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Multilevel Monte Carlo Methods

Cost scaling — Standard MC

@ Denote by ‘K(Q,(VI,()) cost associated with computing one sample Q,(;)

(e.g. in terms of the number of floating-point operations required)
@ Cost typcially grows linearly or with some power v > 1 with M. We
assume (k)
¢(Qy’) < M, ~y=1
so that %(@MJ\/) < NM?Y (in the predator-prey case v = 1).

@ To balance the two MSE components, assume each ist bounded by

%“2, resulting in a total bound of TOL? for the MSE.

@ This yields (since Qu — Q, we have Var[Qu] ~ Var[Q] = constant)
N > 2Var[Qu]TOL2 and M > TOL Ve,

@ So the total cost of achieving a MSE < TOL? using a standard MC

estimator is ~ 2l
%)(QM’/\/) S TOL -~ /e
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Multilevel Monte Carlo Methods

Multilevel estimator

@ Key idea: use realisations of Qs on a hierarchy of different levels,
i.e., for different values My, ..., M, of the discretization parameter,

and decompose

L L
E[Qm] = E[Qu] + D _E[Qm, — Qu,,] = Y E[Vi,
¢=0

/=1
where My € N, My =sMy_q, for £ =1,...,L, and s € N\ {1}.
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Multilevel Monte Carlo Methods

Multilevel estimator

@ Key idea: use realisations of Qs on a hierarchy of different levels,
i.e., for different values My, ..., M, of the discretization parameter,
and decompose

L L
E[Qm] = E[Qu] + D _E[Qm, — Qu,,] = Y E[Vi,
¢=0

/=1
where My € N, My =sMy_q, for £ =1,...,L, and s € N\ {1}.

@ Given (unbiased) estimators {%}LO for E[Y/], we refer to

L
ML ~
QL = Z Yﬁ
=0
as a multilevel estimator for @ (today use standard MC on all levels).

@ All expectations E[Y;] sampled indep. = Var QYL = "L Var ¥,
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Multilevel Monte Carlo Methods

Multilevel Monte Carlo estimator

o If each \A/g is itself a standard Monte Carlo estimator, i.e.,

Yo = ?O,Ng = No Z Q(k)

and

Y= Yon, = NZ(Q M“), (=1,....1,

one obtains a multilevel Monte Carlo estimator.

@ The associated MSE then has the standard decomposition

2 Var Y,
{(QLW} E[Ol)}z W TE[Qu - QP
£=0

into sample variance and bias (shown as for standard MC in Exerc. 2).
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Multilevel Monte Carlo Methods

MLMC variance reduction

@ Choose discretisation parameters and numbers of samples again
to balance the terms in the MSE.

@ The bias term is the same as for the standard MC estimator,
leading again to a choice of M, = M > TOL™V/.
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Multilevel Monte Carlo Methods

MLMC variance reduction

@ Choose discretisation parameters and numbers of samples again
to balance the terms in the MSE.

@ The bias term is the same as for the standard MC estimator,
leading again to a choice of M, = M > TOL™V/.

e But why do we get variance reduction — or rather lower cost for
the same variance?
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Multilevel Monte Carlo Methods

MLMC variance reduction

@ Choose discretisation parameters and numbers of samples again
to balance the terms in the MSE.

@ The bias term is the same as for the standard MC estimator,
leading again to a choice of M, = M > TOL™V/.

e But why do we get variance reduction — or rather lower cost for
the same variance? Two reasons:

@ As we coarsen the problem, the cost per sample decays rapidly
from level to level, with &(s7)

@ Since Qu — Q, then Var[Y;] = Var[Qn, — Qum,_,] — 0 as
¢ — oo, allowing for smaller and smaller sample sizes N, on finer
and finer levels.
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Multilevel Monte Carlo Methods

Optimal sample sizes

@ The cost of the MLMC estimator is

L
CQMy) =D Nt G =2V,
=0

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 30/ 43



Multilevel Monte Carlo Methods

Optimal sample sizes

@ The cost of the MLMC estimator is
L
C(Qfuy) =DMt Gi= (V).
/=

@ Treating the N, as continuous variables, we can now minimise the
cost of the MLMC estimator for a fixed variance

ZVar Y, TOL?
2
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Multilevel Monte Carlo Methods

Optimal sample sizes

@ The cost of the MLMC estimator is
L
C(Qfuy) =DMt Gi= (V).
/=

@ Treating the N, as continuous variables, we can now minimise the
cost of the MLMC estimator for a fixed variance

ZVar Y, TOL?
2

@ The solution to this constrained minimisation problem is

Ng >~ 4/ Var[Yg]/%

with implied constant chosen such that the total variance is
(which leads to the constant ﬁ; > eVE VarYy)

TOL
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Multilevel Monte Carlo Methods

MLMC cost

@ This results in a total cost on level £ proportional to v/%; Var Y; and
therefore
%(QL {’Ve} - TOL2 (Z v %Var YZ)

For comparison, the cost for standard MC is %(QML,N) = ﬁ;‘ﬁ Var[Qu, ]

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 31/43



Multilevel Monte Carlo Methods

MLMC cost

@ This results in a total cost on level £ proportional to v/%; Var Y; and
therefore
%(QL {Ne} - TOL2 (Z v %Var YZ)

For comparison, the cost for standard MC is %(QML,N) = ﬁ;‘ﬁ Var[Qu, ]

@ If Var Y} decays faster than %; increases, the cost on level £ =0
dominates. Since Var[Qp,] ~ Var[Qy, ], the cost ratio of MLMC to
MC estimation is then approximately

60)C. ~s b
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Multilevel Monte Carlo Methods

MLMC cost

@ This results in a total cost on level £ proportional to v/%; Var Y; and
therefore
%(QL {Ne} - TOL2 (Z v %Var YZ)

For comparison, the cost for standard MC is %(QML,N) = ﬁ;‘ﬁ Var[Qu, ]

@ If Var Y} decays faster than %; increases, the cost on level £ =0
dominates. Since Var[Qp,] ~ Var[Qy, ], the cost ratio of MLMC to
MC estimation is then approximately

G0/ ~ s

@ If 6, increases faster than Var Y, decays, then the cost on level
¢ = L dominates, and then the cost ratio is approximately
Var[Y]/ Var[Qu,] =~ TOL?
(provided E [(Q — Q.)*] = (E[Q — Q.])?, which is problem dependent).
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Multilevel Monte Carlo Methods

General Complexity Theorem

Let TOL < exp(—1) and assume there are constants o, 3,7 > 0 such that
a > min{B,v} and, forall ¢ =0,...,L,

(M1) [E[Qm] —E[Q]] S M,
(M2) Var[Y,] < N;7*m, 7,
(M3) (V) S NeM;.

2
Then there are L and {Ny}5_, s.t. E [(QL vy —E [Q]) ] < TOL? and

TOL™2, if B> 7,
Al L{NZ}) << TOL?|log TOL]?, if B =+,
TOL=2-(=A) e, if B <.

4
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Multilevel Monte Carlo Methods

Exercise 4

Exercise 4

(a) Solve the constrained minimisation problem on Slide 30 to find the
otimal numbers of samples on each level. (Hint: Use a Lagrange
multiplier approach to include the constraint and then consider the
first-order optimality constraints to find the minimum.)

(b) Proof the complexity theorem.
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Multilevel Monte Carlo Methods

Adaptive MLMC Algorithm

@ The following MLMC algorithm computes the optimal values of L
and N, adaptively using (unbiased) sample averages (Y;) and sample
variances (s7) of Y.

@ The sample variances can be used directly in the MC error estimates.
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Multilevel Monte Carlo Methods

Adaptive MLMC Algorithm

@ The following MLMC algorithm computes the optimal values of L
and N, adaptively using (unbiased) sample averages (Y;) and sample
variances (s7) of Y.

@ The sample variances can be used directly in the MC error estimates.

@ To bound the bias error, we assume there exists an M* > 0 such that
the error decay in |[E[Qum — Q]| is monotonic for M > M* and
satisfies |[E[Qu — Q]| =~ M~2.
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Multilevel Monte Carlo Methods

Adaptive MLMC Algorithm

@ The following MLMC algorithm computes the optimal values of L
and N, adaptively using (unbiased) sample averages (Y;) and sample
variances (s7) of Y.

@ The sample variances can be used directly in the MC error estimates.

@ To bound the bias error, we assume there exists an M* > 0 such that
the error decay in |[E[Qum — Q]| is monotonic for M > M* and
satisfies |[E[Qu — Q]| =~ M~2.

@ This ensures (via the inverse triangle inequality) that

E[Qum, — Q]| < Y,

s —1
and gives a computable error estimator on level L to determine
whether h; is sufficiently small or whether L needs to be increased.
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Multilevel Monte Carlo Methods
Adaptive MLMC Algorithm

Adaptive MLMC Algorithm

1. Set TOL, L=1 and Ny = Ny = Nrpjz -
2. For all levels £=0,...,L do

a. Compute new samples Ye(k) until there are Nj.

b. Compute Y; and s%, and estimate %).
3. Update estimates for N, using formula on Slide 30 and
if Y, > “ZLT0OL, increase L — L+ 1 and set N, = Nipie.

V2
4. If there is no change
Go to 5.
Else
Return to 2.
5. Set QII_\fI{LNe} = Zé:o Ye.

v

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 35 /43



Multilevel Monte Carlo Methods

Exercise 5

Exercise 5

(a) Implement the multilevel MC method for the predator-prey problem.
Choose My not too small to avoid stability problems with the explicit
Euler method. Compare the cost to achieve a certain tolerance TOL
for the mean square error (in terms of floating point operations)
against your other two implementations (standard MC and antithetic
MC estimator). How big is the computational gain?

(b) Recall that a = =1 in that case. Verify this with your code.
Compute Var[Y;] and Var[Qu,] for a range of values of ¢ and My.
What is the numerically observed rate 57 Prove this theoretically.

(c) Can you think of any further enhancements of your code?
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Exercise 6

(2)

Think of a UQ question in your field of research and try to formulate
a simple model problem that encapsulates the essential question.
What type of uncertainty is it? How could you model it within your
problem? Can you formulate a Monte Carlo simulation to estimate
the uncertainties in a derived quantity of interest from your model?
Are any of the variance reduction techniques we discussed applicable?
Is there a natural model hierarchy that could be exploited in a
multilevel algorithm?

Implement a simple Monte Carlo code to quantify the uncertainties. If
your problem has natural model hierarchies and allows to couple them,
try to estimate Var[Y;] and Var[@Me] in the same way as above.
Hence, check whether multilevel Monte Carlo would be benéeficial.

Implement a multilevel MC method for your problem. Do you achieve
the gains that were predicted in (b)?

.

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 37 /43



Recall: Case Study in Radioactive Waste Disposal

PDE Model Problem (“Fruit Fly")

Darcy’s Law: ¢ + kVp = f
— — |uncertain p, ¢

Incompressibility: V- = 0

Typical simplified model for k:

@ logk(x,w) = Iisotropic, scalar Gaussian e.g. with

exp. covariance (v = 1): R(x,y) := 0% exp (—”X;Ay”)

J
@ Recall: log k(x,w) ~ > iy \/Id;(x) Yi(w)
Karhunen-Loéve expansion with Yj(w) i.i.d. N(0,1)

o FE discretisation: A(w)P(w) = b(w)

@ Qol Q(w), e.g., particle travel time from repository to boundary
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Recall: Case Study in Radioactive Waste Disposal

Numerical Experiment with standard Monte Carlo

= (0,1)2, unconditioned KL expansion, @ = || — k@)q I (py
using mixed FEs and the AMG solver amglr5 [Ruge, Stiiben, 1992]
o Num. observed FE-error: =~ &/(h~*) = 6(M,*®) = o ~3/8
@ Num. observed cost/sample: ~ O(h~9) =~ O(M,) = v~ 1
e Total cost to get RMSE ¢(TOL): ~ ¢(TOL */?)

to get error reduction by a factor 2 — cost grows by a factor 25!

Casel: 62=1,A=03,vr=05 Case 2: 02=3,A=0.1,vr=05

TOL | At Ny, Cost TOL | A1 Ny, Cost
0.01 129 1.4 x10* 2lmin 0.01 | 513 8.5x10® 4h
0.002 | 1025 3.5 x10° 30 days 0.002 | Prohibitively large!!

(actual numbers & CPU times on a cluster of 2GHz Intel T7300 processors)
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Multilevel MC for Radioactive Waste Disposal Problem

Numerical Experiment with standard Monte Carlo

@ Assuming optimal AMG solver (i.e. v~ 1) and 5 ~ 2. Then for
a =~ 3/4d~! (as in the example above) the cost in RY is

MC MLMC per sample

O 1083 o(?) o=
ﬁ(€_14/3) ﬁ(8_8/3) ﬁ>(€f8/3)
7 G N7 G O(e™%)

W N = | Q
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Multilevel MC for Radioactive Waste Disposal Problem

Numerical Experiment with standard Monte Carlo

@ Assuming optimal AMG solver (i.e. v~ 1) and 5 ~ 2. Then for
a =~ 3/4d~! (as in the example above) the cost in RY is

MC MLMC per sample

O 1083 o(?) o=
ﬁ(€_14/3) ﬁ(8_8/3) ﬁ>(€f8/3)
7 G N7 G O(e™%)

W N = | Q
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Multilevel MC for Radioactive Waste Disposal Problem

Numerical Experiment with standard Monte Carlo

@ Assuming optimal AMG solver (i.e. v~ 1) and 5 ~ 2. Then for
a =~ 3/4d~! (as in the example above) the cost in RY is

MC MLMC per sample

O 1083 o(?) o=
ﬁ(€_14/3) ﬁ(8_8/3) ﬁ>(€78/3)
7 G N7 G O(e™%)

W N = | Q

Optimality (for v > 8 = 2a)
MLMC cost is asymptotically the same as one deterministic solve to
accuracy € for d > 1, i.e. @(e=7/*) 11 (only true for rough problems!)
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Multilevel MC for Radioactive Waste Disposal Problem

Numerical Experiment with standard Monte Carlo

@ Assuming optimal AMG solver (i.e. v~ 1) and 5 ~ 2. Then for
a =~ 3/4d~! (as in the example above) the cost in RY is

MC MLMC per sample

O 1083 o(?) o=
ﬁ(€_14/3) ﬁ(8_8/3) ﬁ>(€78/3)
7 G N7 G O(e™%)

W N = | Q

Optimality (for v > 8 = 2a)
MLMC cost is asymptotically the same as one deterministic solve to
accuracy € for d > 1, i.e. @(e=7/*) 11 (only true for rough problems!)

Can we achieve such huge gains in practice?
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Multilevel MC for Radioactive Waste Disposal Problem

Numerical Experiments: D = (0,1)* Q = ||p||1,(p); standard FEs

10°
—& — =005 —#— Std MC
1 N —— — 4 — MLMC
i —& — =001
2
N —# — =0.005 10
+ —B — =0.002 &
5 (5]
= 1ot \h\\ 1 3
=" T
\\K . 1 k
kS ~ = 10
\ \0\\*\ -
AN e B
10 *. . E.
\bq_\ S \‘\* \E] _"‘_‘-*-q_\__\_\_*;_'_,*——l——i?
% i =
u] 1 2 3 4 8 10
level | scaled accuracy £
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Multilevel MC for Radioactive Waste Disposal Problem

Numerical Experiments: D = (0,1)* Q = ||p||1,(p); standard FEs

3
o
,% wt
N N L
5 .~ ~
= ~ ~
= \\ \\ ~ ~
o ~ o e S
3 ‘o, k. % o)
h=] ~ ~ et ~
- ~ ~ ~ ~
= ~ ~ ~ ~
@ ~ ~ ~ ~
T . ~ S ~
m 107 | —@ —Standard MC S ~ o \\O
. —# =2 level MC a ¥
z —+ =3 level MC
@ —& -4 |evel MC
10’ 0 10’ 0* o’

CPU-time (seconds)
hy =1/256 (solid line is FE-error)

Matlab implementation on 3GHz Intel Core 2 Duo E8400 processor,
3.2GByte RAM, with sparse direct solver, i.e. v~ 1.2
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Multilevel MC for Radioactive Waste Disposal Problem

Verifying Assumptions in MLMC Complexity Theorem: v =1/2, 62 =1, A =0.3

1)(p) — ¥
B[N (p) — 4N (pn)] | Y [g(2)(ph) _ g(2)(p2h)]
where 91 (p) == L, (V) — b, (W, V) where ) (p <‘D*| Jp- p( )
given V(x) = x (outflow on right). (i.e. 2nd moment of p over small patch)

— «a=1 and =2

Can be proved rigorously for lognormal case! (some details in next weeks) J

R. Scheichl (Bath) Computational Methods in UQ TCC Course, WS 2015/16 42 / 43



... please read up on some classical concepts of numerical analysis:

o Polynomial interpolation
o Gauss quadrature

@ Finite element methods for numerical solution of PDEs

(partial differential equations)

| will only give a very short primer on each of them.
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