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It follows from the Berry-Esseen Inequality that
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As an example, choosing = = 1.96 we get ¢(z) = 0.95 and so
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In the Buffon needle problem, we have

p=mp, o> =p(l—p), p=p(l—p)(l—2p+2p°).

and in Lazzarini’s experiment N = 3408 and p = % = % Therefore, from (?7) (neglecting

the correction 03% for finite '), we get an (asymptotic) 95% confidence interval for p of

1808  1.960 1808  1.96¢
3408 /3408’ 3408 3408

or equivalently, multiplying by the number of throws, the (asymptotic) 95% confidence interval
for the number of intersections Ss408 in 3408 throws is [1751, 1865]. Strictly speaking, since
= \/ﬁ = 0.0172, the probability that S3408 is in that interval is bigger than 93.3% and smaller
than 96.7%.

Also, using the exact value for p = 5 ~, we see from (?7) that the probability that

= [0.51376,0.54727)
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is less than 2 = /2275|3758 —p| = 5.27-107°% is less than 4, + m =42-107° +

0.01722564 = 0.01723. So the probability that Lazzarini’s machine would produce exactly
1808 intersections in 3408 throws is less than 1.7%.



2. Recalling from Slide 9 in Lecture 2 that E [@M} — E[Qn] = 0 we get

E[(E[Q]-Qu)’| =E [(E Q] ~ E[Qu]+ E[Qu] - @M)Q]
=E[Q-Qum]

= E[(E[Q —Qu))*+ (E {Q\M} - @M)Q +2E[Q — Qu] (E [@M} - Q\M)}

Using linearity of the expected value and the fact that most of the terms under the expected value
are not actually random, we can simplify this to

E[(E[Q)- @w)*] = (E[Q - Qu)* + VariQu] + 2E1Q - Qu] (E[Qn] —E[Qn] )
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3. (a) Expanding the definition of the variance we get

1~ = 1~ = 1 2
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= % (Var [@M,N] + Var [éM,N} +2Cov (@M,J\u 5M,N))

Using the definition of the sample variances and sample covariances of {Qg\]})} and {@5\]})} from
lectures and expanding we get
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Hence, we can estimate
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Within the iteration over the samples in the code we only have to keep track of the sums
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(b) See my model code.
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See my model code. In my model code the variance is reduced by almost a factor 5, but this
reduction does not get bigger for smaller tolerances TOL.

Let us define the following cost functional (including the constraint on the variance via a
Lagrange multiplier):

Var[Y/] TOL
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The first order optimality conditions are to set to zero all the first-order partial derivatives of
L with respect to its arguments. This leads to
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Equations (?7) imply
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as claimed in the notes. To find the constant v\ (i.e. the square root of the Lagrange
multiplier), we substitute into (?7) and get

L Co TOL2 D
Z;Var[Yg] VarT] ~ 2 = VA= > " V/CeVarlyy.

See either the paper https://people.maths.ox.ac.uk/gilesm/files/0PRE_2008.pdf or my
paper http://www.maths.bath.ac.uk/~masrs/cgst_mlmc_cvs2010.pdf for proofs of this
theorem that essentially use the argument in (a).

See my model code.

I did not implement the fully adaptive algorithm in the lecture notes. Instead I pass Ny, the
number of samples on the coarsest level, as an argument and then derive N, from (??). By
taking the ratio N;/Ny we do not need to know (or estimate) the constant v/A. Instead, with
the choice s = 2, we get

Var[Y/]Co 2 . . 4/ [Var[Y(]

Ny = Noy | om0 _ 2 ypo-t/2, [ 204

¢ 0 Var[Yp]C, 3 0 Var[Yp]

where I have used that M, = 2¢Mj and C (Qék)) = 8M,, since in each step of the Euler method
my code carries out 8 floating point operations. This implies that C (Yz(k)) =8(My+ My_y) =
12My, for £ > 0. The total number of floating point operations is

L

(QL {Nz}) = 8MoNy + 12 ZMZNZ.
=1

Here is a plot of cost against tolerance with the 3 codes (standard MC, anithetic MC, MLMC):
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As predicted, the cost for standard and antithetic MC grows like TOL™3 and the cost for
MLMC grows like TOL™2. The actual cost depends on the choice of coarsest grid.

To estimate «, I use my MLMC code with only two levels, i.e. L =1 and s = M;/My and N
both sufficiently large, so that essentially the finer calculation is exact and the sampling error
is negligible. In the following figure (left) we see a log-log plot of |1?1| ~ |E[Qum — Q) | =
|E[Q — Qur,] |- Clearly the error decays like M *.
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To estimate v (above figure, right), I simply measured the CPU-time (with tic and toc in
Matlab) averaged over N samples. We see that v ~ 1 for M sufficiently large.

Finally, in the last figure below, we see a plot of Var|Y;] and Var[Q M, for a range of values
of £. We see that the numerically observed rate 8 = 2. To prove this, use the bound on the
Fuler discretisation error on Slide 18 from Lecture 2:
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(c¢) For example, you could combine antithetic sampling and MLMC, or use a quasi-Monte Carlo
method (see Wednesday).



