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Abstract. In this article, we formulate and analyze a two-level preconditioner for Optimized
Schwarz and 2-Lagrange Multiplier methods for PDEs with highly heterogeneous (multiscale) dif-
fusion coefficients. The preconditioner is equipped with an automatic coarse space consisting of
low-frequency modes of the subdomain Dirichlet-to-Neumann maps. Under a suitable change of
basis, the preconditioner is a 2 × 2 block upper triangular matrix with the identity matrix in the
upper-left block. We show that the spectrum of the preconditioned system is included in the disk
having center z = 1/2 and radius r = 1/2 − ε, where 0 < ε < 1/2 is a parameter that we can
choose. We further show that the GMRES algorithm applied to our heterogeneous system converges
in O(1/ε) iterations (neglecting certain polylogarithmic terms). The number ε can be made arbi-
trarily large by automatically enriching the coarse space. Our theoretical results are confirmed by
numerical experiments.
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1. Introduction. Simulations with heterogeneous media arise naturally in many
problems in science and engineering, e.g., modelling of flows in oil reservoirs, porous
media, and heat conduction in composite materials [5, 45, 3, 35]. Realistic simulations
for such problems often require high-resolution (very fine) meshes. Direct solvers can
be expensive for these very large sparse systems of linear equations. In addition,
heterogeneity in media can make the associated linear systems severely ill-conditioned
and pose a challenge for traditional iterative schemes. Consequently, there has been
a lot of research on development of efficient and robust iterative parallel solvers for
heterogeneous media, especially in the setting of multigrid, multilevel and domain
decomposition methods [9, 19, 23, 1, 20, 39, 48, 47, 15, 16, 31, 40, 42, 6, 41, 44, 43].

Domain decomposition splits a problem into coupled subproblems on smaller sub-
domains forming a partition of the original domain [36, 46, 30]. It is one of the most
popular approaches to solve large-scale problems on parallel supercomputers. In do-
main decomposition, a coarse grid is an essential ingredient to achieve scalability.
Early works, e.g, [4, 10, 9, 23, 46, 29, 48], show that many domain decomposition
methods work for heterogeneous media. However, these methods all require a geo-
metric coarse grid which resolves the discontinuities in the properties of the media.
In practice, this is a strong requirement as the properties of the media might have
complicated variation on many scales and be difficult to capture by a geometric coarse
grid. Recently, there have been works on coarse grids that do not resolve the het-
erogeneity in the media [19, 39, 20, 32], and especially automatic coarse spaces that
depend on the properties of the media [15, 16, 31, 40, 42, 6, 41, 44, 43]. In the latter,
the coarse spaces are constructed from eigenfunctions associated with small eigenval-
ues (low-frequency modes) of appropriated generalized eigenvalue problems. They are
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indeed “energy minimizing spaces with constraints” and can be analyzed using the
unified theory in [40]. In this paper, we utilize automatic coarse spaces similar to the
ones in [31, 6] to formulate an efficient preconditioner for the optimized Schwarz and
2-Lagrange multiplier (2LM) domain decomposition methods.

2LM methods are generalized versions of Optimized Schwarz Methods [18, 17, 26,
27, 11]. They use Robin transmission condition across the “artificial interface” and
the Robin parameter can be optimized to obtain the fastest convergence. The first
form of 2LM method was introduced in [13] and its relation with Optimized Schwarz
Methods was established in [37]. In [24], Loisel gave a rigorous formulation of the
methods for general domains and cross points. The methods have been successfully
used for different academic and engineering large-scale applications [34, 21, 2].

2LM methods work with a nonoverlapping decomposition. Their formulations are
similar to that of the FETI method [14]. However, instead of having local Neumann
problems, 2LM methods have local Robin problems (one for each subdomain). The
solvabilty of these Robin problems is guaranteed, thus there is no need for special
treatment of floating subdomains as in the FETI method. In 2LM methods, the global
linear system is reduced to a system on the interface for the Lagrange multipliers.
The 2LM interface system, which is non-symmetric in the considered methods, is of
much smaller size but can still be difficult to solve by iterative solvers. One-level
and two-level preconditioners for this system were studied in [24, 25]. For the two-
level preconditioner, the coarse space is spanned by piecewise constant functions on
the trace space. These are indeed eigenfunctions associated with the eigenvalue 0
of the subdomain Dirichlet-to-Neumann (DtN) maps [6]. Under a suitable change
of basis, the two-level preconditioner in [25] has a 2 × 2 block diagonal structure.
This preconditioner appears to work well for homogeneous media but its performance
deteriorates for heterogeneous media (see numerical experiments in subsections 5.4
and 5.5).

In this work, not only the piecewise constant functions but other low-frequency
eigenfunctions of the subdomain DtN maps are also included in the coarse space as
suggested by [31, 6]. Our preconditioner is formulated, under a suitable change of
basis, as a 2× 2 block upper triangular matrix with the identity matrix in the upper-
left block. The changes in the coarse space and the form of the preconditioner mean
the analysis in [25] is no longer valid. With a new analysis, we are able to show that
the spectrum of the preconditioned system, except for the isolated eigenvalue 1, is
included in the disk having center (1/2, 0) and radius 1/2 − ε, where 0 < ε < 1/2
is a parameter. Under suitable assumptions, this leads to explicit upper bounds for
the relative residual norm of the GMRES algorithm. Asymptotically, these bounds
decreases to 0 linearly with the same rate at which (1− 2ε)k−2 converges to 0, where
k is the iteration number. In addition, the parameter ε, and consequently the rate of
convergence, can be calculated a priori once a tentative coarse space is chosen. If ε is
too small (slow convergence), it can be made bigger (faster convergence) by enriching
the tentative coarse space with eigenmodes of the subdomain DtN maps associated
with the next (larger) frequencies. In other words, the coarse space can be adapted
automatically to the variation of the coefficient and the difficulty of the problem to
ensure a good rate of convergence.

The rest of this paper is organized as follows. We first state the model prob-
lem, derive the 2LM system and introduce the spectral coarse space preconditioner
in section 2. In section 3, we discuss the motivations as well as the structure of our
preconditioner through studying a transform of the 2LM system. Convergence anal-
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ysis and optimal choice of the Robin parameter is given in section 4. In section 5, we
present an extensive set of numerical experiments for different types of the diffusion
coefficient with different configurations of the mesh size, the number of subdomains
and the partition to verify our theoretical results. We end with a short conclusion in
section 6.

2. Method formulation.

2.1. Preparatory material. We consider the following model problem

(2.1)
−∇ · (α(x)∇u(x)) = f(x) in Ω,

u(x) = 0 on ∂Ω
,

where the diffusion coefficient α(x) is a positive function that may have large variations
within Ω.

Let Th be a mesh of size h of Ω. We assume that Th resolves any discontinuity
in α(x), i.e, α(x) is piecewise constant on Th. When (2.1) is discretized, e.g, using
piecewise linear finite elements with basis {φj}nj=1, we obtain the following system of
linear equations

(2.2) Au = f.

Assume the domain Ω has a nonoverlapping decomposition Ω = ∪pi=1Ωi\∂Ω with
the “artificial interface” Γ = ∪pi=1∂Ωi\∂Ω. The partition can have floating subdo-
mains. Let H = maxi{diam(Ωi)}. For each subdomain Ωi, we consider the local
problem

(2.3)

−∇ · (α(x)∇ui(x)) = f(x) in Ωi,
(a+ ∂

∂ni
) (α(x)ui(x)) = λi(x) on ∂Ωi\∂Ω

ui(x) = 0 on ∂Ωi ∩ ∂Ω

,

where a > 0 is the “Robin parameter”, ni is the outward normal vector of the bound-
ary ∂Ωi\∂Ω and λi is a Lagrange multiplier.

Multiplying the first equation of (2.3) with a test function v ∈ H1
0 (Ωi, ∂Ωi ∩ ∂Ω),

applying the divergence theorem and using the second and third equation, we get the
variational formulation of the local problem: find ui ∈ H1

0 (Ωi, ∂Ωi ∩ ∂Ω) such that

(2.4)

∫
Ωi

α(∇ui · ∇v)dx+ a

∫
∂Ωi

αuivdx =

∫
Ωi

fvdx+

∫
∂Ωi

λivdx,

for all v ∈ H1
0 (Ωi, ∂Ωi ∩ ∂Ω).

Discretizing (2.4) using the finite element method with {φ(i)
j }

ni
j=1, the subset of

the basis associated with Ωi, we have

(2.5) (A(i) + aB(i))ui = f (i) + λ(i),

where

A
(i)
kl =

∫
Ωi

α(∇φl · ∇φk)dx, B
(i)
kl =

∫
∂Ωi

αφlφkdx(2.6a)

f
(i)
k =

∫
Ωi

fφkdx, λ
(i)
k =

∫
∂Ωi

λiφkdx.(2.6b)



4 Sébastien Loisel, Hieu Nguyen and Robert Scheichl

We would like to find λi so that each local discrete solution ui is the restriction of the
global discrete solution u on Ωi, namely

(2.7) Riu = ui.

Here Ri is the restriction matrix, which restricts any n-dimensional vector u (associ-
ated with a grid function on the mesh Th of Ω) to an ni-dimensional vector Riu that
contains only the components of u corresponding to Ωi.

2.2. 2LM system. Relabelling degrees of freedom (dofs) to separate those in
the interior of Ωi (corresponding to subscript I) and those on the boundary ∂Ωi
(corresponding to subscript Γ), (2.5) becomes:

(2.8)

[
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ + aBi

][
u

(i)
I

u
(i)
Γ

]
=

[
f

(i)
I

f
(i)
Γ + λi

]
.

Theoretically, Bi and λi are respectively the submatrix and “subvector” of B(i) and
λ(i) associated only with dofs on ∂Ωi. However, we will show later in Lemma 2.1 that
our method formulation does not rely on the formulation of B(i) in (2.6). Therefore,
we let Bi be an arbitrary symmetric positive definite matrix of the appropriated size.

Eliminating the interior unknowns u
(i)
I in (2.8), we arrive at the following system

for the unknowns on the interface

(2.9) (Si + aBi)u
(i)
Γ = gi + λi

where Si = A
(i)
ΓΓ − A

(i)
ΓI(A

(i)
II )−1A

(i)
IΓ and gi = f

(i)
Γ − A

(i)
ΓI(A

(i)
II )−1f

(i)
I are the Schur

complement and the accumulated right-hand-side, respectively.
Let S and B be the block-diagonal matrices S = diag{S1, S2, . . . , Sp} and B =

diag{B1, . . . , Bp}. In addition, denote g = [gT1 , . . . , g
T
p ]T , λ = [λT1 , . . . , λ

T
p ]T and

uΓ = [u
(i)
Γ

T
, . . . , u

(p)
Γ

T
]T . Since the matrices Si are symmetric positive semi-definite,

the matrices Bi are symmetric positive definite and a > 0, the matrices Si + aBi are
invertible. Therefore, (2.9) is equivalent to

(2.10) aBuΓ = Q(g + λ),

where

(2.11) Q = aB(S + aB)−1 =

aB1(S1 + aB1)−1

. . .

aBp(Sp + aBp)
−1

 .
If we think of the vector [uT1 , . . . , u

T
p ]T as a functions which is defined on Ω,

continuous inside each Ωi, but with jump discontinuities across Γ, then the vector uΓ

is actually its multi-valued or many-sided trace. For each vertex xj ∈ Γ, let mj

be its multiplicity, namely the number of subdomains adjacent to xj . In order for uΓ

to correspond to a continuous function, e.g the solution of (2.1), the following relation
must hold

(2.12) KuΓ = uΓ,

where

(2.13) K = ΠTdiag{ 1

mj1

1mj1×mj1 , . . . ,
1

mjp

1mjnΓ
×mjnΓ

}Π,
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with 1 is the matrix of ones, jk, 1 ≤ k ≤ nΓ are the global indices of the dofs on the
interface and Π is the permutation that rearranges these dofs so that they have the
same ordering as in uΓ. Since K2 = K and KT = K, K is an orthogonal projection
(it projects onto the space of continuous many-side trace).

We also need to equate the fluxes of the sub-solutions across the artificial interface
Γ. Using φj , a nodal basis function associated with Γ, as a test function for (2.3), we
find that

(2.14)

∫
∂Ωi

α
∂ui
∂ni

φjdx =

∫
Ωi

α(∇ui · ∇φj)dx−
∫

Ωi

fvdx.

Consequently, the “discrete flux vector” η(i) of the local solution ui across ∂Ωi can
be computed by:

(2.15) η(i) = A
(i)
ΓIu

(i)
I +A

(i)
ΓΓu

(i)
Γ − f

(i)
Γ = λi − aBiu(i)

Γ ( using (2.8) ).

The discrete weighted fluxes are matched when
∑p
i=1R

T
i [0 η(i)T ]

T
= 0, or equiva-

lently

(2.16) aBuΓ = λ.

The following result is purely algebraic, namely (2.2) and (2.6) do not need to
come from (2.1).

Lemma 2.1. Let us assume that A is invertible, A =
∑p
i=1R

T
i A

(i)Ri and
f =

∑p
i=1R

T
i fi. We also assume that the matrices on the left hand side of (2.8)

are invertible. Then there exists a unique solution u1, . . . , up, λ1, . . . , λp to the si-
multaneous equations (2.8), (2.12) and (2.16). Such solution u1, . . . , up implies the
unique solution u of (2.2) through (2.7) and vice versa.

Proof. Assume u is the unique solution of (2.2). Let ui = Riu and substitute
them into (2.8) we obtain λi. Clearly, (2.12) holds. In addition,

Au =

p∑
i=1

RTi A
(i)Riu =

p∑
i=1

RTi A
(i)ui =

p∑
i=1

RTi (f (i) + λ(i) − aB(i)ui)(2.17)

= f +

p∑
i=1

RTi

[
0

λi − aBiu(i)
Γ

]
.

This implies (2.16).
Now assume that u1, . . . , up, λ1, . . . , λp is a solution to the simultaneous equations

(2.8), (2.12) and (2.16). As (2.12) holds, there is clearly a unique u that satisfies (2.7).
The fact that this u is also the solution of (2.2) comes from arguments in (2.17).

If u∗1, . . . , u
∗
p, λ

∗
1, . . . , λ

∗
p is another solution to the simultaneous equations (2.8),

(2.12) and (2.16). From (2.8), if u∗i = ui then λ∗i = λ. If u∗i 6= ui for some 1 ≤ i ≤ p,
we then obtain u∗ satisfying (2.7) and consequently Au∗ = f . Since A is invertible,
u∗ = u. Hence u∗i = Riu

∗ = Riu = u which contradicts u∗i 6= ui.
Remark 2.2. We again emphasize that the result in Lemma 2.1 is purely alge-

braic. Especially, B(i), and thus Bi do not need to come from (2.1), i.e. they do not
have to be defined as in (2.6).

As there is freedom in choosing Bi, we make the following assumption.
Assumption 2.3. The matrices B and K commute, i.e,

KB = BK.
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In fact, we will choose B to be the diagonal matrix satisfying

(2.18) diag(B) = K diag(B̄),

where B̄ = diag{B̄1, . . . , B̄p}, with B̄i being the lumped mass matrix on ∂Ωi. In
other words, B is the “average” of the lumped mass matrix associated with dofs on
the interface. In some sense, our choice of B means that the interface mass matrix and
the local generalized eigenproblem introduced later in (3.5) take into account some
information about the behaviour of the coefficient in the vicinity of the interface in
adjacent subdomains.

Using Assumption 2.3, equations (2.16), (2.12) and (2.10), after some algebra, we
find the non-symmetric 2LM system

(2.19) A2LMλ := (I − 2K)(Q−K)λ = −(I − 2K)Qg.

The 2LM system (2.19) can be regarded as a generalization of Optimized Schwarz
methods to the case where the partition has cross points (cf. [24, 25]).

2.3. The spectral coarse space preconditioner. The system (2.19) can be
solved iteratively using GMRES [38]. In order to accelerate the convergence of GM-
RES, we now briefly introduce a preconditioner with a spectral coarse space. Its
motivations and derivation will be given in detail in section 3.

In the homogeneous case [25], the coarse space would consist of the kernel of S
(i.e. the piecewise constant functions). When the problem is heterogeneous, we use
the same piecewise constant functions, as well as any functions that are “almost” in
the kernel of S.

We choose a “truncation parameter” smin for the coarse space, and we consider
all the generalized eigenvectors

Sv = sBv where s < smin.

We collect all such column vectors into the columns of a matrix J , which is B-
orthonormalized

JTBJ = I.

We define the B−1-orthogonal projection E = BJJT and the spectral coarse space
preconditioner by

(2.20) P = (I − E) +A2LME.

The preconditioned system is

(2.21) P−1A2LMλ = −P−1(I − 2K)Qg

An efficient strategy for evaluating the matrix-vector product P−1λ is as follows (see
subsection 3.3 for explanation). Let

Z = JTA2LMBJ(2.22)

be the “coarse matrix”. Then,

P−1 =
(
I + (I − E)A2LME

)(
I − E +BJZ−1JT

)
=
(
I + (I −BJJT )A2LMBJJ

T
)(
I −BJJT +BJZ−1JT

)
.(2.23)
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The size of the coarse matrix Z (also the number of columns of the matrix J) is
the number of coarse basis functions, which depends on our choice of smin and on
the inherent physical difficulty of the underlying problem. In general, this number is
much smaller than the size of the 2LM system. This ensures that P is competitive in
term of computational cost.

3. Transformed 2LM system.

3.1. The transformation. It is clear from (2.11) that Q is non-symmetric.
In order to exploit symmetry in our analysis, we consider the following similarity
transformation.

Definition 3.1. Given a matrix C, a vector v, we define their “hat-associates”:

(3.1) Ĉ := B−1/2CB1/2, v̂ := B−1/2v.

Here we note that B1/2 and B−1/2 are well-defined because B is a diagonal matrix
with positive entries.

Remark 3.2. σ(C) = σ(Ĉ), where σ(·) denotes the spectrum of a matrix.
Multiplying (2.19) with B−1/2 from the left, and using the fact that B1/2 and K

commute, we obtain the transformed 2LM system

Â2LM λ̂ = (I − 2K)(Q̂−K)λ̂ = −(I − 2K)Q̂ĝ.(3.2)

Using the definition of Q in (2.11), it follows that

Q̂ = B−1/2QB1/2 = B−1/2aB(S + aB)−1B1/2 = a(B−1/2SB−1/2 + aI)−1.

Clearly, Q̂ is symmetric. In addition,

(3.3) σ(Q) = σ(Q̂) =

{
a

a+ s

∣∣∣ s ∈ σ(B−1/2SB−1/2)

}
.

Furthermore, the spectrum of Š = B−1/2SB−1/2 is exactly the same as the spectrum
of the following generalized eigenvalue problem:

(3.4) Sv = sBv.

Due to the block-structure of S and B, the spectrum of (3.4) is the union of the
spectra of the following sub-generalized eigenvalue problems on the subdomains:

(3.5) Siv
(i) = sBiv

(i).

As Si is symmetric positive semi-definite and Bi is symmetric positive definite, all the
eigenvalues of (3.5) are non-negative. In addition, when Ωi is a floating subdomain,
(3.5) has exactly one eigenvalue that is 0 with constant eigenvectors. This together
with (3.3), (3.4) and (3.5) imply that

(3.6) σ(Q̂) = σ(Q) ⊂ (0, 1].

According to [6], if Bi is the submatrix of B(i) associated with dofs on ∂Ωi and is com-
puted exactly as in (2.6) then (3.5) is the discrete form of the following eigenproblem
in function space

(3.7) DtNi(v
(i)
Γ ) = s α v

(i)
Γ , where DtNi(v

(i)
Γ ) = α

∂v(i)

∂ni

∣∣∣
∂Ωi\∂Ω
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and v(i) is the α-harmonic extension of v
(i)
Γ to Ωi. The coarse spaces in [31, 6] are

spanned by eigenfunctions associated with low-frequency modes of (3.7). We use the
same type of coarse space but with Bi being the “averaged” lumped mass matrix on
the boundary (cf. (2.18)). In other words, the α in (3.7) at each dof on Γ ∩ ∂Ωi is
replaced by its domain-wise averaged counterpart.

3.2. Block structure of the preconditioner. Assume σ(Q̂) = σ(Q) = [ε, 1−
ε]∪ (1− ε, 1], where 0 < ε < 1/2. Then the coarse space V̂0 is defined as the subspace
spanned by eigenvectors of Q̂ corresponding to the eigenvalues in the interval (1−ε, 1]
(these eigenvalues correspond to the small eigenvalues of (3.5) and (3.7)). Let Ĵ be a
matrix whose columns are orthonormal eigenvectors of Q̂ spanning V̂0. Also let

Ê = Ĵ ĴT ,

i.e., Ê is the orthogonal projection onto the coarse space V̂0. We define our precondi-
tioner for the transformed 2LM system (3.2) as follows

P̂ = (I − Ê) + Â2LM Ê.(3.8)

Under a suitable change of basis, the matrices Q̂ and K have the following forms

Q̂ =

[
Q̂1 O

O Q̂2

]
and K =

[
K11 K12

K21 K22

]
,(3.9)

where Q̂1, Q̂2 and K are symmetric with σ(Q̂1) ⊂ [ε, 1 − ε], σ(Q̂2) ⊂ (1 − ε, 1],
σ(K) = {0, 1}. Under this permutation, we find that the transformed 2LM matrix is

(3.10) Â2LM =

[
(I − 2K11)Q̂1 +K11 −2K12Q̂2 +K12

−2K21Q̂1 +K21 (I − 2K22)Q̂2 +K22

]
,

the projection is

Ê =

[
O O
O I

]
,(3.11)

and the preconditioner is

(3.12) P̂ =

[
I −2K12Q̂2 +K12

O (I − 2K22)Q̂2 +K22

]
.

It can be seen that the preconditioner P̂ is a 2 × 2 block upper triangular matrix
which is obtained from Â2LM (cf. (3.10)) by “zeroing out” the lower-left block and
replacing the top-left block by I.

3.3. Connection with the original 2LM system. The preconditioned trans-
formed 2LM system is

(3.13) P̂−1(I − 2K)(Q̂−K)λ̂ = P̂−1(I − 2K)Q̂ĝ.

Multiplying (3.13) from the left by B1/2, using Definition 3.1, the fact that K and
B1/2 commute and B−1/2B1/2 = I, it yields

B1/2P̂−1B−1/2(I − 2K)(Q−K)λ = −B1/2P̂−1B−1/2(I − 2K)Qg.(3.14)
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This implies that using P̂ as the preconditioner for the transformed system (3.2) is
equivalent with using P = B1/2P̂B−1/2 as the preconditioner for the original 2LM
system (2.19). In addition, σ(P−1A2LM ) = σ(P̂−1Â2LM ).

Using the definition of P̂ in (3.2), we recover the formulation of P

P = B1/2P̂B−1/2 = B1/2(I − Ê) + Â2LM ÊB
−1/2 = (I − E) +A2LME,(3.15)

where

E = B1/2ÊB−1/2 = B1/2Ĵ ĴTB−1/2 = BJJT , J = B−1/2Ĵ .

In addition, if v̂ is a normalized eigenvector of Q̂ (a column of Ĵ) then B−1/2v̂ is an
eigenvector the generalized eigenvalue problem (3.4). Furthermore, as the columns of
Ĵ are orthonormal, the columns of J are orthonormal with respect to the B-norm:

JTBJ = ĴT Ĵ = I.

These explain the formulation of our spectral coarse space preconditioner given in
advance in section 2.

We now explain how to efficiently compute the matrix-vector product P̂−1λ̂.
First, we note that Z is the lower-right block of P̂ and Â2LM :

Z = JTA2LMBJ = JTB1/2Â2LMB
−1/2BJ = ĴT Â2LM Ĵ

= (I − 2K22)Q̂2 +K22.(3.16)

Then consider P̂ given by (3.12), we find that

P̂−1 =

[
I −2K12Q̂2 +K12

O I

] [
I O
O Z−1

]
,

=
(
I + (I − Ê)Â2LM Ê

)(
I − Ê + ĴZ−1ĴT

)
=
(
I + (I − Ĵ ĴT )Â2LM Ĵ Ĵ

T
)(
I − Ĵ ĴT + ĴZ−1ĴT

)
.(3.17)

Conjugating by B1/2 gives P−1 in (2.23).

4. Convergence Analysis. We first study the transformed 2LM system.
Lemma 4.1. P̂ is invertible if and only if Q̂2−K22 is invertible. In that case, the

spectrum of the preconditioned system P̂−1Â2LM , except for the isolated eigenvalue 1,
is included in the disk having center (1/2, 0) and radius 1− ε, i.e,

σ(P̂−1Â2LM ) ⊂ {z ∈ C : |z − 1/2| ≤ 1/2− ε} ∪ {1} =: Sε.(4.1)

Proof. We refer the reader to [25, Remark 4] for the invertibility of Q̂2 − K22.
Now we only need to show that (4.1) holds.

Since K2 = K, it implies that (I − 2K)−1 = I − 2K. Thus, for any θ ∈ C, we
have

rank
(
P̂−1Â2LM − θI

)
= rank

(
Â2LM − θP̂

)
= rank

(
(I − 2K)(Q̂−K)− θ(I − Ê)− θ(I − 2K)(Q̂−K)Ê

)
= rank

(
(Q̂−K)− θ(I − 2K)(I − Ê)− θ(Q̂−K)Ê

)
= rank

([
Q̂1 −K11 − θ(I − 2K11) (θ − 1)K12

(2θ − 1)K21 (1− θ)(Q̂2 −K22)

])
.(4.2)
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The number θ is an eigenvalue of P̂−1Â2LM if and only if the rank of P̂−1Â2LM − θI
is deficient. This obviously occurs when θ = 1. Let’s now consider the case θ 6= 1.
Note that the matrix (4.2) has an invertible lower-right block so we can use a Schur
complement and study the rank deficiency of the matrix

W =

(
Q̂1 −K11 − θ(I − 2K11) + (2θ − 1)K12

(
Q̂2 −K22

)−1

K21

)
.(4.3)

Setting θ = 1
2 + s and Q̂1 = 1

2I +M , we find that

(4.4) W = M + sG, where G =

(
2

(
K12

(
Q̂2 −K22

)−1

K21 +K11

)
− I
)
.

We assume that

(4.5) σ(G) ⊂ (−∞,−1] ∪ [1,∞).

According to (4.2), (4.3) and (4.4), θ 6= 1 is an eigenvalue of P̂−1Â2LM only if σ(M +
sG) 3 0. This only happens when

(4.6) |θ − 1/2| = |s| ≤ 1/2− ε,

because of Lemma 3 in [8] and the fact that σ(M) = [ε − 1/2, 1/2 − ε]. The desired
relation follows immediately.

Now we need to show that the assumption (4.5) is actually true. Let K =[
U
V

] [
UT V T

]
with UTU + V TV = I. The Woodbury identity gives

K12

(
Q̂2 −K22

)−1

K21 +K11 = UV T (Q̂2− V V T )−1V UT + UUT

= U
(
V T (Q̂2 − V V T )−1V + I

)
UT

= U(I − V T Q̂−1
2 V )−1UT =: F.(4.7)

Applying Woodbury’s identity one more time, we have

(I − 2F )−1 =
(
I − 2U(I − V T Q̂−1

2 V )−1UT
)

= I − (−2U)
(
I − V T Q̂−1

2 V + (−2U)UT
)−1

UT

= I + 2U(I − V T Q̂−1
2 V − 2UTU)−1UT

= I − 2U(V T (Q̂−1
2 − I)V + UTU)−1UT ≤ I.

Furthermore, note that U(V T (Q̂−1
2 − I)V + UTU)−1UT ≤ PU , where PU is the or-

thogonal projection onto the range of U , and hence (I−2F )−1 ≥ −I. This completes
the proof.

Lemma 4.2. Let R(θ) = (P̂−1Â2LM − θI)−1. Then, for θ /∈ Sε the resolvent
norm is bounded by

‖R(θ)‖ ≤
|1− θ|+ |θ − 1

2 | −
1
2 + ε+ (1− 2ε)‖Z−1‖

|1− θ|
(
|θ − 1

2 | −
1
2 + ε

)(4.8)

=: Rb(θ).(4.9)
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Proof. Performing block-row eliminations on (3.12), we find that[
I O

O ((I − 2K22)Q̂2 +K22)−1

]
P̂ =

[
I −2K12Q̂2 +K12

O I

]
[
I 2K12Q̂2 −K12

O I

] [
I O

O ((I − 2K22)Q̂2 +K22)−1

]
P̂ = I

Hence,

P̂−1 =

[
I (2K12Q̂2 −K12)((I − 2K22)Q̂2 +K22)−1

O ((I − 2K22)Q̂2 +K22)−1

]
.

This together with (3.10) implies that the preconditioned matrix P̂−1Â2LM is[
(I − 2K11)Q̂1 +K11 + (2K12Q̂2 −K12)((I − 2K22)Q̂2 +K22)−1(K21 − 2K21Q̂1) O

((I − 2K22)Q̂2 +K22)−1(K21 − 2K21Q̂1) I

]
.

We now simplify the top-left and bottom-left blocks of the preconditioned matrix
using Q̂1 = 1

2 +M where ‖M‖ ≤ 1
2 − ε, which gives:

(P̂−1Â2LM )11 =
1

2
I +

(
I − 2K11 − 2K12(2Q̂2 − I)((I − 2K22)Q̂2 +K22)−1K21

)
M.

We use the Woodbury identity to compute the inverse

(I + V T (2Q̂2 − I)((I − 2V V T )Q̂2 + V V T )−1V )−1

= I − V T (2Q̂2 − I)(((I − 2V V T )Q̂2 + V V T ) + V V T (2Q̂2 − I))−1V

= I − V T (2I − Q̂−1
2 )V.

This leads to

(P̂−1Â2LM )11 =
1

2
I +

(
I − 2U

(
I − V T (2I − Q̂−1

2 )V
)−1

UT
)
M =:

1

2
I + YM.

In order to save space, we set X := P̂−1Â2LM such that

R(θ) =

[
X11 − θI 0
X21 (1− θ)I]

]−1

=

[
(X11 − θI)−1 0

−(1− θ)−1X21(X11 − θI)−1 (1− θ)−1I

]
.

Using the triangle inequality, it follows that

(4.10) ‖R(θ)‖ ≤ ‖(X11 − θI)−1‖+ ‖(1− θ)−1I‖+ ‖(1− θ)−1X21(X11 − θI)−1‖.

We begin with the upper-left block R11(θ) = (X11 − θI)−1. We find that ‖YM‖ =
‖R11(1/2)‖ ≤ ‖M‖ ≤ 1

2 − ε and hence

σmin

(
(1/2− θ)I + YM

)
≥ |1/2− θ| − (1/2− ε).

In other words,

‖R11(θ)‖ ≤ 1

|θ − 1
2 | −

1
2 + ε

for |θ − 1

2
| > 1

2
− ε.(4.11)
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We now look at the lower-left entry R21(θ) and find

R21(θ) = −2(1− θ)−1((I − 2K22)Q̂2 +K22)−1K21M (R11(θ))(4.12)

From (4.12), (4.11), (3.16) and the fact that ‖M‖ ≤ 1/2− ε, we have

‖R21(θ)‖ ≤ 2|1− θ|−1‖(I − 2K22)Q̂2 +K22)−1‖‖K21M‖‖R11(θ)‖

≤

(
1− 2ε

|1− θ|
(
|θ − 1

2 | −
1
2 + ε

)) ‖Z−1‖.(4.13)

Then the resolvent norm estimate (4.8) follows from (4.10), (4.11) and (4.13).
We now state the main convergence result for the transformed 2LM system.
Theorem 4.3. Let ĈZ = max

{
2‖Z−1‖, 2

}
with Z as defined in (3.16). Then, the

relative residual norm in solving (3.2) by GMRES with preconditioner (3.8) satisfies

‖r̂k‖
‖r̂0‖

≤ min{1, ĈZ kk(k − 2)2−k(1− 2ε)k−2}, for k ≥ 3.(4.14)

Furthermore, the GMRES algorithm in solving the transformed 2LM system converges
to a fixed tolerance in

O(((1− log ε)2)ε−1 + log2 ĈZ)(4.15)

iterations.
Proof. The residuals in GMRES algorithm satisfy the minimum residual property,

i.e,

‖r̂k‖ = min
p∈P̄k
‖p(P̂−1A2LM )r̂0‖,

where P̄k = {polynomials p of degree ≤ k with p(0) = 1 }. This implies that ‖r̂k‖ ≤
‖r̂0‖.

Let Sε̃ be the disk with center (1/2, 0) and radius 1/2 − ε̃, where 0 ≤ ε̃ < ε.
Denote by Γε̃ the (circular) boundary of Sε̃ and recall the definition of Rb(·) in (4.9).
Using estimates popular in pseudo-spectral analysis, e.g in [12], we have

‖r̂k‖
‖r̂0‖

≤ min
p∈P̄k
‖p(P̂−1Â2LM )‖ ≤ min

p∈P̄k

1

2π

∫
Γε̃

|p(z)|‖Rb(z)‖dz(4.16)

≤ L(Γε̃)

2π
max
z∈Γε̃
‖Rb(z)‖ min

p∈P̄k
max
z∈Sε̃
|p(z)|, (L(Γε̃) : length of Γε̃)

≤ (1− ε̃) max
z∈Γε̃
‖Rb(z)‖ min

p∈P̄k
max
z∈Sε̃
|p(z)|(4.17)

Since Sε̄ is a disk, according to [7], the last term in (4.17) can be estimated by

(4.18) min
p∈P̄k

max
z∈Sε̃
|p(z)| ≈ ρk, where ρ = 1− 2ε̃.

Recalling the definition of Rb(·) in (4.9) and noting that for z ∈ Γε̃, Rb(z) is large
when either z = ε̃ or z = 1− ε̃, we have a rough estimate for the second term in (4.17)

(4.19) max
z∈Γε̃
‖Rb(z)‖ ≤ ĈZ (ε̃− ε)−2,
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where ĈZ is defined in the statement of the theorem. From (4.17), (4.18), and (4.19),
we find that

‖r̂k‖
‖r̂0‖

≤ ĈZ

ρ(ε,ε̃,k)︷ ︸︸ ︷(
(ε̃− ε)−2(1− 2ε̃)k

)
.(4.20)

Fig. 4.1. Different upper bounds of the relative residual for different values of ε̃.

We emphasize that this estimate is valid for all values of 0 ≤ ε̃ < ε. Figure 4.1
shows some of these bounds for ĈZ = 1, ε = 0.1. It can be noticed that in the
asymptotic regime, the overall bound behaves very much like C̄s(1− 2ε)k−2 for some
constant C̄s.

Now, solving ∂
∂ε̃ρ(ε, ε̃, k) = 0 reveals that the best choice of ε̃ is ε̃ = max

{
εk−1
k−2 , 0

}
.

Substituting this best choice of ε̃ into (4.20) gives (4.14).
To obtain the iteration estimate, substitute k = k0 = ((1− log ε)2)ε−1 + log2 ĈZ

into (4.14) and obtain

ρ(ε, ĈZ) =
ĈZ
ε2

((
(1− log ε)2 + ε log2 ĈZ

)((1−log ε)2+ε log2 ĈZ)ε−1

×(
1− 2ε

(1− log ε)2 + ε(log2 ĈZ − 2)

)((1−log ε)2+ε(log2 ĈZ−2))ε−1 .

We have plotted ρ(ε, ĈZ) in Fig. 4.2. From this plot, we see that the relative residual
is reduced by a factor of ρ(ε, ĈZ) < 0.01 every k0 iterations, as required.

We are now ready to give our main result on the convergence of GMRES algorithm
for solving the preconditioned 2LM system (2.21).

Theorem 4.4. Let CZ =
√
κ(B) max

{
2‖Z−1‖, 2

}
with Z as defined in (3.16).

Then, the relative residual norm in solving (2.21) by GMRES satisfies

‖rk‖
‖r0‖

≤ min{1, CZ kk(k − 2)2−k(1− 2ε)k−2}, for k ≥ 3.(4.21)
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Fig. 4.2. Residual norm ρ(ε, ĈZ) after k0 = ((1− log ε)2)ε−1 +log2 ĈZ iterations, as a function

of ε and 1/ĈZ .

Furthermore, the GMRES algorithm in 2LM method converges to a fixed tolerance in

O(((1− log ε)2)ε−1 + log2 CZ)(4.22)

iterations.
Proof. The residual norms of GMRES in solving (2.21), satisfy the minimum

residual property, namely

‖rk‖ = min
p∈P̄k
‖p(P−1A2LM )r0‖.

Therefore,

‖rk‖
‖r0‖

≤ min
p∈P̄k
‖p(P−1A2LM )‖ = min

p∈P̄k
‖p(B1/2P̂−1Â2LM )B−1/2‖

≤ κ(B1/2)min
p∈P̄k
‖p(P̂−1Â2LM )‖ =

√
κ(B) min

p∈P̄k
‖p(P̂−1Â2LM )‖.(4.23)

The proof is finished using the same estimate in the proof for Theorem 4.3 for the
second factor of the last term in (4.23).

4.1. Optimal Robin parameter. In [31, 6], all eigenvectors of (3.5) associated

with eigenvalues of size less than diam(Ωi)
−1

are included in the coarse space. This
seems to work well for all of their considered test problems. The same approach can
be utilized for our proposed method. However, in our method, the rate of convergence
can be estimated a priori and we should exploit this feature in determining our spectral
coarse space.

Assume that the spectrum of the generalized eigenvalue problem can be decom-
posed as follows (3.4)

(4.24) σ(S,B) = {0 < · · · < s0} ∪ {smin < · · · < smax},

where the coarse space is constructed using the eigenfunctions associated with eigen-
values in the set {0 < · · · < s0}. We recall that the eigenvalues of Q are of the form
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a/(a+s) with s ∈ σ(S,B). In addition, the spectrum of Q is σ(Q) = [ε, 1−ε]∪(1−ε, 1].
Therefore, it is required that

a

a+ s
⊂ [ε, 1− ε], for smin < s < smax.

Or equivalently,

(4.25) ε ≤ min

{
smin

a+ smin
,

a

a+ smax

}
According to Theorem 4.4, the larger ε is the faster the 2LM method converges.
Therefore, we would like to choose a so that ε is largest. This happens when the two
quantities on the right hand side of (4.25) equal, or

(4.26) aop =
√
sminsmax,

as one of the ratios in (4.25) is increasing and the other decreasing w.r.t a.
Consequently, the optimal value of ε is

(4.27) εop =
1

1 +
√
κeff(S)

, where κeff(S) =
smax

smin
.

Since we only need smin and smax to determine ε, the convergence rate of our method
can be obtained a priori. If the rate of convergence is not as good as expected, more
eigenvectors can be added to the coarse space.

4.2. Convergence estimate in term of mesh parameters. Although we
cannot estimate the norm of the coarse problem ‖Z−1‖ and thus ĈZ when we have
no information about the coarse space, it is worthwhile discussing what the estimate
(4.14) reveals about the classical case where the coarse space consists of piecewise con-
stant functions and where the problem is homogeneous, with benign variations in the
diffusion coefficient (or even in the case where the elliptic problem is the Laplacian).

In this case, the condition number of the local Schur complement S (modulo the
coarse space of constant functions) is O(H/h), yielding the value ε−1 = O(

√
H/h);

and ĈZ = 2‖((I − 2K22)Q̂2 +K22)−1‖ = 2‖(I −K22)−1‖ = O(H−2) [24]. As a result,
the iteration count estimate (4.15) becomes

O(
√
H/h log2

√
H/h+ log2(H)) iterations,(4.28)

which is consistent with the Fourier analysis done in [11].
The above analysis also applies to the heterogeneous case where the diffusion co-

efficient is “quasi-monotone” [33]. Recall that the diffusion coefficient α(x) is quasi-
monotone, roughly, if for any x ∈ Ω there is a path γ(t) from x to y = argmaxx α(x)
such that α(γ(t)) is monotonically increasing. In that situation, the generalized con-
dition number of the pencil (S,B), modulo the coarse space of piecewise constant
functions, is also O(H/h) and the estimate is again (4.28).

If the diffusion coefficient is heterogeneous and not quasi-monotone then the pencil
(S,B) is likely to have some extreme eigenvalues apart from those related to the kernel
of S. In that case, using a “classical” coarse space gives very slow convergence. Our
new spectral coarse space automatically adapts to this difficult heterogeneous case
and gives arbitrarily good convergence by automatically enriching the coarse space.
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5. Numerical Experiments. In this section, we will use our proposed method
to solve the model problem (2.1) for different types of variation in the coefficient α.
The considered types of α are similar to the ones in [31].

In all of the experiments, the domain Ω is the unit square Ω = (0, 1)2. We use
uniform triangular meshes of size h = 1/64, 1/128, 1/256. Unless stated otherwise,
the regular tile partitions 4× 4, 8× 8 and 16× 16 will be considered.

The transformed 2LM system (3.13) is solved by GMRES algorithm [38] with
relative residual tolerance of 10−9 and maximum number of iterations of nΓ or 500,
whatever is smaller (nΓ is the size of the 2LM systems). We consider three cases:
without any preconditioner, with the two-level preconditioner P0 in [25] and with

our preconditioner P̂ in (3.8). The λ obtained from λ̂ is used as data for the local
discrete problems (2.8). These are solved directly to obtain u, the approximation
of the discrete solution. We will report the number of GMRES iterations in solving
(3.13) for the Lagrange multiplier λ̂, and the relative error of the approximation of

the discrete solution ‖u−uex‖‖uex‖ , where uex is computed by a direct solver. We will also

provide “dim”, the dimension of the coarse space and the value of parameter ε for the
case with preconditioner P̂ . In all of the experiments, we will start with

dim = min
{

max
{

4p, round(0.1nΓ)
}

), round(0.2nΓ)
}

and increase “dim” (through adding more eigenfunctions to the coarse space) by
0.05nΓ if ε < 0.1.

For the last three experiments, the configuration with h = 1/64 and partition 4×4
is more thoroughly studied. We plot eigenvalues of the generalized eigenvalue problem
(3.4), the spectrum of the preconditioned system P̂−1Â2LM and the convergence
history of solving (3.13) by GMRES. A plot of Cs(1 − 2ε)k−2 for a suitable Cs is
provided along the convergence history for comparison.

5.1. Continuous Variations of the Coefficient. In this experiments, we con-
sider a continuous function αc(x), where

log10(αc(x)) = κ sin(wπ(x(1) + x(2)),

with κ = 3, w = 4 and x(i) is the ith coordinate of x. The coefficient α(x) is a

Fig. 5.1. log10(α(x)) in the continuous test case (left) and alternating test case (right).
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piecewise constant approximation of αc(x) with interpolation points at the centroids
of elements. The contrast ratio in this experiment is 106. Figure 5.1-left shows
log10(α(x)) on the uniform mesh of size 1/64 for the continuous test case.

Table 5.1
Convergence in continuous test case.

No Preconditioner Preconditioner P̂

p Its. ‖u−uex‖
‖uex‖ Its. ‖u−uex‖

‖uex‖ dim ε

h−1 = 64
16 76 4.5e-8 21 2.1e-10 128 2.56e-1
64 134 2.5e-8 24 9.3e-11 353 2.67e-1

256 265 7.6e-1 25 3.2e-10 756 2.62e-1
h−1 = 128

16 88 4.0e-9 21 9.3e-11 229 2.78e-1
64 157 9.4e-9 22 3.1e-10 533 2.74e-1

256 288 1.2e-8 21 9.3e-10 1524 3.02e-1
h−1 = 256

16 106 6.3e-9 18 1.9e-10 459 2.82e-1
64 193 1.1e-9 18 6.3e-10 1071 2.83e-1

256 337 8.8e-9 22 2.2e-10 2295 2.83e-1

In table 5.1, we can see that the preconditioner P̂ helps to substantially reduce the
number of GMRES iterations while delivering better accuracy for the approximation of
the discrete solution. The convergence rate (which is a function of ε) and consequently
the iteration count in the preconditioned case are stable with respect to changes in
the mesh size h and the number of subdomains p. The size of the coarse space does
grow as h becomes smaller and p becomes bigger. However, this is inevitable as the
problem becomes harder and the coarse space must adapt to maintain a reasonable
iteration count.

5.2. Highly Heterogeneous Coefficient: Alternating Case. We consider
the case where the coefficient α alternates between 1 and 108 in eleven horizontal
stripes (cf. Figure 5.1-right). More precisely, α|τ = 108 if every point x in τ satisfies

mod
(

floor(11x(2)), 2
)

= 1,

and ατ = 1 otherwise. Here “mod” and “floor” denotes the modulo and rounding (to
the nearest integer towards minus infinity) operators, respectively. The contrast ratio
in this experiment is 108.

In Table 5.2, P̂ shows a performance similar to that in the continuous test case.
It requires small, stable number of iterations while delivering better accuracy.

5.3. Highly Heterogeneous Coefficient: Skyscraper Case. In this experi-
ment, we consider

α|τ = 102∗mod(floor(10 cxτ (1)),2)−1, cxτ is the centroid of τ

if every point x of τ satisfies

mod
(

floor(10x(i)), 2
)

= 1, i = 1, 2.
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Table 5.2
Convergence in alternating test case.

No Preconditioner Preconditioner P̂

p Its. ‖u−uex‖
‖uex‖ Its. ‖u−uex‖

‖uex‖ dim ε

h−1 = 64
16 70 3.1e-8 16 1.6e-10 128 3.08e-1
64 148 2.0e-8 18 4.8e-10 353 3.24e-1

256 214 9.3e-9 24 5.8e-10 756 2.98e-1
h−1 = 128

16 88 1.7e-8 17 7.1e-11 229 2.95e-1
64 157 2.2e-8 20 2.0e-10 533 2.95e-1

256 337 7.1e-9 20 3.0e-10 1524 3.12e-1
h−1 = 256

16 108 1.2e-8 16 1.2e-10 459 2.98e-1
64 198 1.1e-8 17 2.3e-10 1071 2.95e-1

256 402 9.5e-9 20 2.3e-10 2295 2.96e-1

Figure 5.2-left shows log10(α) for the skyscraper test case. Basically, in the islands,
we have α = 10(2k−1), k = 1, . . . , 5 from left to right. In the rest of the domain,
α = 1. The contrast ratio in this experiment is 109.

Fig. 5.2. log10(α(x)) in the skyscraper test case (left) and channels and inclusions test case
(right).

According to Table 5.3, in this test case, the equation (3.13) is very difficult to
solve without a preconditioner. In many cases, the desired tolerance of 10−9 can not
be achieved even after the maximum GMRES iterations min{nΓ, 500}. Consequently,
the computed discrete solutions are inaccurate with relative errors often bigger than
10−2. On the other hand, the preconditioner P̂ keeps the number of GMRES iterations
below 21. The computed discrete solutions are also fairly accurate with relative errors
of around 10−6. We also do not see big changes in iteration count as the mesh size
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Table 5.3
Convergence in skyscraper test case.

No Preconditioner Preconditioner P̂

p Its. ‖u−uex‖
‖uex‖ Its. ‖u−uex‖

‖uex‖ dim ε

h−1 = 64
16 301 2.7e-2 21 3.7e-6 128 1.74e-1
64 442 3.7e-2 19 3.8e-6 353 2.33e-1

256 500 7.6e-1 19 2.1e-6 756 2.16e-1
h−1 = 128

16 457 1.7e-2 20 6.4e-6 229 1.67e-1
64 500 5.2e-2 19 2.2e-6 533 1.98e-1

256 500 8.8e-1 18 1.7e-6 1524 2.41e-1
h−1 = 256

16 500 1.1e-0 17 2.5e-5 459 1.70e-1
64 500 8.9e-1 16 6.7e-6 1071 2.01e-1

256 500 1.0e-0 15 4.1e-6 2295 2.16e-1
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Fig. 5.3. Skyscraper: plots of eigenvalues of the generalized eigenvalue problem (3.4) with the
selected ones for the coarse space marked by circles in red on the right.
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Fig. 5.4. Skyscraper: spectrum of P̂−1Â2LM (left) and convergence history with predicted rate

of convergence (slope of the dotted line) in solving P̂−1Â2LM λ̂ = −P̂−1(I − 2K)Q̂ĝ (right).
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and the number of subdomains vary.

For the case study, where h = 1/64 and p = 16, the eigenvalues of the generalized
eigenvalue problem are plotted in Figure 5.3 with the ones selected for the coarse space
marked by circles in red on the right. The number of selected eigenvalues is small
compared to the size of the 2LM system. The spectrum of P̂−1Â2LM is illustrated
in Figure 5.4 (left). We can see that all of the eigenvalues lie inside the circle Sε as
proved by Lemma 4.1. The convergence history and predicted rate of convergence
(dashed-dotted line) is shown in Figure 5.4 (right). It can be seen that the rate of
convergence agrees with the prediction in Theorem 4.3.

5.4. Channels and Inclusions. The set up for the coefficient α in this exper-
iment is similar to the one in subsection 5.3 with α = 10k, k = 1, . . . , 5 in the islands
from left to right. In addition, there are three channels with α = 106 (see Figure
5.2-right). The contrast ratio of the coefficient α in this experiment is 106. This is a
test problem with known difficulties for many common preconditioners.

In this experiment, we also compare our new preconditioner P̂ with the more
classical preconditioner P0 based on a piecewise constant coarse space [25]. Due to
limited space, we omit the coarse space dimensions. They are actually the same as in
the previous experiments.

From Table 5.4, it can be seen that P0 only helps to reduce the GMRES iteration
count minimally, and that its performance and accuracy quickly deteriorate when p
increases. Our preconditioner P̂ , on the other hand, keeps the iteration count stable
and reasonably small while delivering superior accuracy.

For the case study, where h = 1/64 and p = 16, the eigenvalues of the generalized
eigenvalue problem are plotted in Figure 5.5. The spectrum of the preconditioned
system in Figure 5.6 (left) and the convergence history in Figure 5.6 (right) agree
with Lemma 4.1 and Theorem 4.3, respectively.

Table 5.4
Convergence in channels and inclusions test case.

No Preconditioner Preconditioner P0 Preconditioner P̂

p Its. ‖u−uex‖
‖uex‖ Its. ‖u−uex‖

‖uex‖ Its. ‖u−uex‖
‖uex‖ ε

h−1 = 64
16 205 1.4e-6 185 1.4e-5 32 3.0e-8 1.84e-1
64 332 1.2e-6 224 1.3e-2 30 2.3e-8 2.28e-1

256 500 9.0e-2 500 3.6e-1 36 2.6e-8 2.08e-1
h−1 = 128

16 299 3.4e-7 185 1.4e-5 33 2.4e-8 1.73e-1
64 414 2.9e-7 239 4.6e-3 35 1.4e-8 2.01e-1

256 500 1.9e-2 500 1.6e-1 30 1.2e-8 2.41e-1
h−1 = 256

16 408 2.3e-7 377 6.9e-6 37 1.4e-8 1.74e-1
64 498 1.6e-7 302 1.4e-3 30 6.2e-9 2.06e-1

256 500 5.9e-2 500 1.3e-1 30 1.0e-8 2.16e-1
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Fig. 5.5. Channels and inclusions: plots of eigenvalues of the generalized eigenvalue problem
(3.4) with the selected ones for the coarse space marked by circles in red on the right.
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Fig. 5.6. Channels and inclusions: spectrum of P̂−1Â2LM (left) and convergence history with

predicted rate of convergence (slope of the dotted line) in solving P̂−1Â2LM λ̂ = −P̂−1(I − 2K)Q̂ĝ
(right).

5.5. Lognormal. In this experiment, α = α(x,w) = 10Z(x,w), where Z(x,w) is
a Gaussian random field with zero mean and Gaussian covariance

C(x, y) = σ2 exp

(
−‖x− y‖

2

`2

)
, with σ = 1, `2 = 1e-3.

Our realization of α is generated by the spectral decomposition method described in
[28]. An example of log10(α) for the mesh of size 1/128 is shown in Figure 5.7-left.
The contrast ratio in this example is 108.

Similar to the channels and inclusions test case 5.4, the preconditioner P0 only
helps to reduce the GMRES iteration count minimally (cf. Table 5.5). Its performance
and accuracy quickly deteriorate when p increases. Our preconditioner P̂ , on the other
hand, keeps the iteration count stable and small while delivering good accuracy. It
is also robust with the changes in mesh size and number of subdomains. The coarse
space dimensions are again the same as in the first three test cases.

For the case study, where h = 1/64 and p = 16, the eigenvalues of the generalized
eigenvalue problem are plotted in Figure 5.3. The spectrum of the preconditioned



22 Sébastien Loisel, Hieu Nguyen and Robert Scheichl

Fig. 5.7. log10(α(x)) in the lognormal test case (left) and a partition generated by Metis (right).

Table 5.5
Convergence in lognormal test case.

No Preconditioner Preconditioner P0 Preconditioner P̂

p Its. ‖u−uex‖
‖uex‖ Its. ‖u−uex‖

‖uex‖ Its. ‖u−uex‖
‖uex‖ ε

h−1 = 64
16 99 1.5e-9 66 3.3e-4 23 1.2e-9 2.65e-1
64 161 1.5e-9 113 2.1e-3 23 2.1e-9 2.79e-1

256 500 7.6e-1 308 1.7e-2 19 2.1e-6 2.16e-1
h−1 = 128

16 128 2.8e-9 74 6.2e-5 23 2.0e-9 2.40e-1
64 216 1.5e-9 141 2.9e-4 28 4.5e-9 2.22e-1

256 451 7.9e-10 372 1.2e-2 27 4.0e-9 2.46e-1
h−1 = 256

16 158 1.5e-9 102 7.6e-6 20 3.4e-9 2.59e-1
64 267 7.9e-9 159 1.4e-4 21 3.4e-9 2.58e-1

256 500 3.0e-9 367 1.3e-3 23 3.5e-9 2.50e-1
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Fig. 5.8. Lognormal: plots of eigenvalues of the generalized eigenvalue problem (3.4) with the
selected ones for the coarse space marked by circles in red on the right.
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system and the convergence history shown in Figure 5.9 agrees with Lemma 4.1 and
Theorem 4.3, respectively.
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Fig. 5.9. Lognormal: spectrum of P̂−1Â2LM (left) and convergence history with predicted rate

of convergence (slope of the dotted line) in solving P̂−1Â2LM λ̂ = −P̂−1(I − 2K)Q̂ĝ (right).

In order to make sure that our preconditioner works for general partitions, we use
Metis [22] to generate the partitions used in our last test (see Table 5.6). Figure 5.7-
right shows the partition for the mesh with h = 1/64 and p = 64.

The preconditioner P̂ is still the winner with good accuracy and much smaller
iteration count. In comparison with the case where regular partitions are used, the
iteration counts are bigger especially when the mesh is coarse (h = 1/64). However,
they become reasonably small for finer meshes.

Table 5.6
Convergence in lognormal test case with Metis partitions.

No Preconditioner Preconditioner P0 Preconditioner P̂

p Its. ‖u−uex‖
‖uex‖ Its. ‖u−uex‖

‖uex‖ Its. ‖u−uex‖
‖uex‖ ε

h−1 = 64
16 130 9.7e-10 80 1.0e-4 39 4.9e-9 1.53e-1
64 202 1.1e-9 155 3.5e-4 46 6.9e-9 1.51e-1

256 390 8.2e-10 463 3.9e-3 64 1.2e-8 8.65e-2
h−1 = 128

16 156 1.1e-9 112 1.6e-5 30 5.9e-9 1.91e-1
64 249 9.0e-10 186 1.9e-4 32 8.1e-9 1.84e-1

256 465 1.1e-9 454 4.7e-3 33 9.0e-9 1.68e-1
h−1 = 256

16 181 1.5e-9 133 2.0e-6 22 5.2e-9 2.25e-1
64 294 7.9e-10 192 1.1e-4 25 4.7e-9 2.10e-1

256 500 9.1e-9 478 1.3e-3 27 5.8e-9 2.19e-1

6. Conclusion. We have formulated and analyzed a two-level preconditioner
for optimized Schwarz and 2-Lagrange methods. With a coarse space that can auto-
matically adapt to diffusion coefficient and achieve any a priori given linear rate of



24 Sébastien Loisel, Hieu Nguyen and Robert Scheichl

convergence, our preconditioner is very efficient and robust with highly heterogeneous
diffusion coefficient. Numerical results have verified our theoretical findings.
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