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Abstract Finite element tearing and interconnecting (FETI) methods are efficient
parallel domain decomposition solvers for large-scale finite element equations. In
this work we investigate the robustness of FETI methods in case of highly hetero-
geneous (multiscale) coefficients. Our main application are magnetic field compu-
tations where both large jumps and large variation in the reluctivity coefficient may
arise. We give theoretical condition number bounds which are confirmed in numer-
ical tests.

1 Introduction

Finite element tearing and interconnecting (FETI) methods due to Farhat and Roux
[2, 14] are parallel solvers for large-scale finite element (FE) systems arising from
partial differential equations (PDEs). Typically, the conditioning of such FE system
matrices heavily suffers from the total number of degrees of freedom (DOFs). When
the number of DOFs grows large, direct solvers are out of question and efficient
preconditioners for iterative solvers are required. Additionally, the parallelization of
numerical algorithms gets increasingly important to date. FETI methods are known
to be parallely scalable and quasi-optimal with respect to the number of DOFs. For a
comprehensive presentation of FETI and related methods we refer to the monograph
by Toselli and Widlund [14]. As an additional advantage, one can easily couple
finite and boundary element discretizations within the same framework, resulting in
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so-called coupled FETI/BETI methods, see [4, 6, 7]. Even exterior domains can be
incorporated to model radiation conditions, see [5, 11]

Let us briefly describe the FETI method. As a model problem we consider the
finite element discretization of the Poisson-type problem

−∇ · (α ∇u) = f (1)

in the bounded domain Ω ⊂Rd , d = 2 or 3, subject to suitable interface and bound-
ary conditions. In Section 4 we will consider a similar equation for 2D magne-
tostatics. The domain Ω is partitioned into N non-overlapping subdomains Ωi,
i = 1, . . . ,N, cf. Fig. 1, right. Introducing separate unknowns ui on the subdomains
including the DOFs on their boundaries, we obtain the saddle point problem

K1 0 B>1
. . .

...
0 KN B>N

B1 · · · BN 0




u1
...

uN
λ

 =


f1
...
fN
0

 , (2)

where Ki are the subdomain stiffness matrices, and are fi the corresponding load
vectors. The operators Bi are signed Boolean matrices such that each row of the
system

N

∑
i=1

Bi ui = 0

has the form ui(xh)− u j(xh) = 0 for a finite element node xh on the interface be-
tween the subdomains Ωi and Ωi, thus enforcing the continuity of the solution u.
The Lagrange multiplier λ plays the role of a continuous flux on the subdomain
interfaces. Introducing a special projection P, the dual problem to (2) can be written
in the form

PF λ̃ = d̃ , (3)
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Fig. 1 Left: Model of an electric motor. Right: Possible subdomain partitioning (explosive view).
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with F = ∑
N
i=1 Bi K†

i B>i , where the operators K†
i correspond to the solution of (pos-

sibly) regularized Neumann problems on the subdomains. The FETI method is now
a special projected preconditioned conjugate gradient (PCG) method to solve prob-
lem (3). The chosen preconditioner involves the solution of local Dirichlet problems,
and the projection P involves the solution of a coarse problem which corresponds
to a sparse linear system of dimension O(N). Usually, one chooses the partition in
a way that the local subdomain problems can efficiently be handled by sparse di-
rect solvers, such as LU-factorization with suitable pivoting. The factorizations of
the local system matrices can be computed in a preprocessing phase and kept in
memory during the whole FETI method. Note that these local, decoupled problems
can be parallelized in a straightforward manner, e. g., treating each subdomain on a
different processor. Once problem (3) is solved, the actual solution u can easily be
determined from the Lagrange multiplier λ̃ . The spectral condition number κ of the
preconditioned system can finally be estimated by

κ ≤ C∗(α)
N

max
i=1

(
1+ log(Hi/hi)

)2
, (4)

where the constant C∗(α) is independent of the subdomain diameters Hi, the mesh
parameters hi, and the number N of subdomains. If α is (globally) constant, then
C∗(α) ∼ 1. As it is well known, the number of PCG iterations needed to achieve
a given accuracy, is essentially determined by

√
κ . In a parallel scheme, the total

computational complexity of the FETI-PCG method is given by

O
(
(D(N)+D(Nloc)) log(ε−1)

√
κ
)
, (5)

where Nloc ∼maxN
i=1(Hi/hi)d is the maximal number of DOFs per subdomain, D(·)

is the cost of the direct solver, and ε > 0 is the desired relative error reduction in the
energy norm.

However, in many applications the original system matrix is ill-conditioned due
to heterogeneous coefficient distributions. As we will discuss in Section 4, in mag-
netic field computations one may have

• large jumps in the reluctivity coefficient due to different materials, and
• smooth but large variation in the same coefficient due to nonlinear effects.

We are interested in the question whether/how the condition number κ of the pre-
conditioned FETI system is affected by this. If the heterogeneities are resolved by
the subdomain partition (i. e., α constant on each Ωi), then, using a special diago-
nal scaling, Klawonn and Widlund [3] proved that C∗(α)∼ 1. However, in general,
using classical proof techniques, we only get

C∗(α) ≤ C max
i=1,...,N

max
x,y∈Ωi

α(x)
α(y)

, (6)

with C independent of α , i. e., the bound is proportional to the maximum local vari-
ation of α on the subdomains, which can be rather large. As noticed by several au-
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thors [4, 13] this asymptotic bound is in general far too pessimistic, and robustness
is observed for many special kinds of coefficient distributions.

The aim of the present contribution is to give more theoretical insight on the
coefficient-dependency. Due to space limitations we summarize our recent work
[10] considering variation in subdomain interiors in Section 2, and we give an out-
look to new theoretical results for the case of variation near the subdomain interfaces
in Section 3. Finally, Section 4 deals with the application to magnetostatic problems.

2 Variation in subdomain interiors

In this section we give a sharper estimate than (6) for the case of variation in the
subdomain interiors. On each subdomain Ωi with diameter Hi and discretization
parameter hi, we choose a width ηi ∈ [hi, Hi/2] and define the boundary layer Ωi,ηi

by the agglomeration of those finite elements which have distance at most ηi from
the boundary, cf. Fig. 2, left. Under suitable assumptions on the geometric setting
and the subdomain partition, we can prove the bound

C∗(α) ≤ C
N

max
j=1

(H j

η j

)2 N
max
i=1

max
x,y∈Ωi,ηi

α(x)
α(y)

. (7)

This bound involves only the variation of α in the boundary layer Ωi,ηi and is in-
dependent of the variation of α in the subdomain interior Ωi \Ωi,ηi . For η j ∼ H j
we reproduce the known estimate (6), in particular our bound is still robust with
respect to large jumps across the subdomain interfaces. However, if α exhibits large
(even arbitrary) variation in the interior Ωi \Ωi,ηi of the subdomains, but varies little
in the boundary layers, our new bound (7) is in general far better/sharper than (6).
Moreover, if in addition the coefficient is larger in the interior Ωi \Ωi,ηi than in the
boundary layer on each subdomain, then the quadratic factor (H j/η j)2 reduces to a
linear factor H j/η j. The detailed proof can be found in our recent paper [10].

In the following we give a two-dimensional numerical example. We partition the
unit square into 25 congruent, square-shaped subdomains. The coefficient is chosen
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Fig. 2 Left: Subdomain boundary layer. Right: Estimated condition numbers κ for varying width
parameter η , fixed discretization parameter h (logarithmic scales).
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to be α = 105 (Case 1) and α = 10−5 (Case 2) in the subdomain interiors, and α = 1
on the rest. The distance between the “material” jump and the subdomain interfaces
is denoted by η . We have used a globally uniform discretization with H/h = 512.
Fig. 2, right, shows the estimated condition numbers κ of the preconditioned FETI
systems for different values of the width parameter η . We see that our asymptotic
bound is sharp for Case 1, but still slightly pessimistic for Case 2.

3 Interface variation

In this section we would like to give an outlook on our work for interface varia-
tion which will be exposed in more detail in an upcoming paper. A key tool to the
analysis of FETI methods is Poincaré’s inequality,∫

Ωi

|w(x)|2 dx ≤ CP H2
i

∫
Ωi

|∇w(x)|2 dx ,

which holds for all w∈H1(Ωi) with vanishing mean value, i. e.,
∫

Ωi
w(x)dx = 0. The

constant CP > 0 depends only on the shape of Ωi. A similar inequality holds if the
average of w over a part of the boundary ∂Ωi vanishes. Concerning heterogeneous
coefficients, we would be interested in an inequality of the same form but where the
integrals are weighted with the coefficient α(x) and where the constant CP does not
depend on α , or at least only very mildly on the heterogeneity in α . Such inequalities
are not known in general, but we can show one for a special case.

Assume that each subdomain Ωi consists of two connected subregions Ω
(1)
i , Ω

(2)
i

where α is mildly varying, i. e.,

α
(k)
i ≤ α(x) ≤ α

(k)
i ∀x ∈ Ω

(k)
i , k = 1, 2 ,

with moderate ratios α
(k)
i /α

(k)
i ; we can think of two quasi-homogeneous materials

within each subdomain. Using two separate Poincaré inequalities one can show that

∫
Ωi

α(x) |w(x)|2 dx ≤
{

max
k=1,2

C(k)
P

α
(k)
i

α
(k)
i

}
H2

i

∫
Ωi

α(x) |∇w(x)|2 dx , (8)

for all functions w∈H1(Ωi) which have vanishing mean value over a connected part
Λi of the interface ∂Ω

(1)
i ∩∂Ω

(2)
i , i. e.,

∫
Λi

w(x)dsx = 0 . The constants C(1)
P and C(2)

P

depend only on the shapes of the subregions Ω
(1)
i and Ω

(2)
i respectively, and on the

relative shape of Λi. For a variant of FETI called all-floating FETI method [1, 8, 9],
our Poincaré type inequality (8) eventually allows a proof of the bound

C∗(α) ≤ C
N

max
i=1

max
k=1,2

α
(k)
i

α
(k)
i

, (9)
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Fig. 3 Upper: Sketch of coefficient “islands” cutting through edges and crosspoints of the sub-
domain partitioning. Lower left: Condition numbers for “edge islands”. Lower right: Condition
numbers for “crosspoint islands”.

where the constant C is independent of Hi, hi, N, and α , but it depends on the ge-
ometry of the subregions Ω

(k)
i . Combining this idea with the theory from Section 2,

one can even allow three qualitatively different subregions per subdomain:

• two connected subregions of mild variation in α that cover the boundary layer
Ωi,ηi of the subdomain , and

• a remaining part contained in the subdomain interior, where arbitrary variation
of α can be allowed.

Under suitable assumptions on the shapes of these subregions it is again possible to
give explicit bounds for C∗(α) involving (9) and the ratios Hi/ηi similar to (7). For
numerical examples we have tested so-called coefficient “islands” which cut through
an edge, i. e., the interface of two subdomains, or which contain a crosspoint of four
subdomains, cf. Fig. 3, upper. A suitable choice for η , the witdh of the boundary
layer, is also indicated in that figure. Note, however, that we have only tested one
island at a time. In each example we have set the coefficient α = 105 in the island,
and α = 1 elsewhere. The estimated condition numbers for different values of η and
different levels of mesh refinement are depicted in Fig. 3, lower.

4 Application to magnetostatic problems

In the case of nonlinear magnetostatics in two dimensions (transverse magnetic
mode), we have to solve

−∇ · [νi(|∇u|)∇u] = f in Ωi , (10)
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subject to suitable interface and boundary conditions, where u is the z-component
of the magnetostatic vector potential, and νi is the reluctivity. For linear materials,
νi is constant. For other materials, such as ferromagnetic ones, the reluctivity νi de-
pends nonlinearly on the magnetic flux density |B| = |∇u|, and it is defined by the
material law H = νi(|B|)B in Ωi, where H denotes the magnetizing force (note that
we restrict ourselves to isotropic materials and neglect hysteresis). In our numerical
computations we use realistic approximations of such material curves using the in-
terproximation method proposed in [12]. If we apply Newton’s method to (10), the
linearized system in each Newton step is of similar form as problem (1), only that
we obtain a matrix-valued coefficient which depends on the current Newton iterate
u(k), see, e. g., [4]. For many material curves, the variation of the coefficient depends
mainly on the variation of |B|. However, the flux density |B|may vary strongly along
subdomain boundaries and large values of |B| appear mostly at singularities of the
potential u, e. g., near material corners.

Contrary to the usual suggestion to choose subdomain partitions that resolve ma-
terial interfaces in order to obtain robustness (for numerical examples see [4, 5]),
our new bounds (7), (9) suggest that it might be more advantageous to put each
peak of |B| and thus each material corner into the center of a subdomain. Fig. 4
shows two such examples. In both cases, the coefficient variation is approximately
7×103 but our FETI solver performs extremely well (Case 1: condition number 8.5,
Case 2: condition number 13.7, compared to 8.3 for a globally constant coefficient).
Our theory for interior variation (Section 2) can perfectly explain the low condition
number in Case 1 since the boundary variation is small. Inspecting Case 2, we find
that there are indeed two regions contained in the boundary layer with qualitatively
different coefficients, see the jump in Fig. 4, lower right. Thus, Section 3 partially
explains why the condition number is still quite robust with respect to the highly
heterogeneous coefficient.

Acknowledgements We would like to thank Ulrich Langer for his encouragement. The first au-
thor acknowledges the financial support by the Austrian Science Funds (FWF), grant SFB F013.

References

1. Zdeněk Dostál, David Horák, and Radek Kučera. Total FETI – An easier implementable
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