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In this talk we address the problem of the prohibitively large computational cost of
existing Markov chain Monte Carlo (MCMC) methods for large–scale applications
with high dimensional parameter spaces, e.g. uncertainty quantification in porous
media flow. We propose a new multilevel Metropolis-Hastings algorithm, and give
an abstract, problem dependent theorem on the cost of the new multilevel estima-
tor based on a set of simple, verifiable assumptions. For a typical model problem
in subsurface flow, we then provide a detailed analysis of these assumptions and
show significant gains over the standard Metropolis-Hastings estimator.

The parameters in mathematical models for many physical processes are often
impossible to determine fully or accurately, and are hence subject to uncertainty.
It is of great importance to quantify the uncertainty in the model outputs based
on the (uncertain) information that is available on the model inputs. A popular
way to achieve this is stochastic modelling. Based on the available information, a
probability distribution (the prior in the Bayesian framework) is assigned to the
input parameters. If in addition, some dynamic data (or observations) related to
the model outputs are available, it is possible to reduce the overall uncertainty and
to get a better representation of the model by conditioning the prior distribution
on this data (leading to the posterior). In most situations, however, the posterior
distribution is intractable in the sense that exact sampling from it is unavailable.
One way to circumvent this problem, is to generate samples using a Metropolis–
Hastings type MCMC approach [9], which consists of two main steps: (i) given the
previous sample, a new sample is generated according to some proposal distribu-
tion, such as a random walk; (ii) the likelihood of this new sample (the data fit) is
compared to the likelihood of the previous sample. Based on this comparison, the
proposed sample is then either accepted and used for inference, or it is rejected
and we use instead the previous sample again, leading to a Markov chain.

A major problem with MCMC is the high cost of the likelihood calculation
for large-scale applications, since it commonly involves the numerical solution of
a partial differential equation (PDE) with highly varying coefficients (for accu-
racy reasons usually) on a very fine spatial grid. Due to the slow convergence
of Monte Carlo averaging, the number of samples is also large and moreover, the
likelihood has to be calculated not only for the samples that are eventually used
for inference, but also for the samples that end up being rejected. Altogether,
this leads to an infeasibly high overall complexity, particularly in the context of
high-dimensional parameter spaces, typical in realistic subsurface flow problems,
where the acceptance rate of the algorithm can be very low.

We show here how the computational cost of the standard Metropolis-Hastings
algorithm can be reduced significantly by using a multilevel approach. This has
already proved highly successful in the context of standard Monte Carlo estimators
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based on independent and identically distributed (i.i.d.) samples [7, 5], in partic-
ular for subsurface flow problems [3, 1, 2, 10]. The basic ideas are to exploit the
linearity of expectation, to introduce (in an unbiased way) a hierarchy of computa-
tional models that are assumed to converge (as the model resolution is increased)
to some limit model (e.g. the original PDE), and to build estimators for differ-
ences of output quantities instead of estimators for the quantities themselves. In
that way each individual estimator will either (i) have a smaller variance, since the
differences of the output quantities from two consecutive models go to zero with
increased model resolution, or (ii) require significantly less computational work
per sample, if the model resolution is low. Either way the cost of an individual
estimator is significantly reduced, easily compensating for the extra cost of having
to compute L estimators instead of one, where L is the number of levels.

However, the application of the multilevel approach in the context of MCMC is
not straightforward. The posterior distribution, which depends on the likelihood,
has to be level-dependent, since otherwise the cost on all levels is dominated by the
evaluation of the likelihood in the finest model leading to no real cost reduction
on the coarser levels. Instead, and in order to avoid introducing extra bias in the
estimator, we construct two parallel Markov chains {θn` }n≥0 and {Θn

`−1}n≥0 on
levels ` and ` − 1 each from the correct posterior distribution on the respective
level. The coarser of the two chains is constructed using the standard Metropolis–
Hastings algorithm, for example using a (preconditioned) random walk. The main
innovation is a new proposal distribution for the finer of the two chains {θn` }n≥0.
A similar two-level proposal distribution has been investigated before in [4], but
only for standard single-level Metropolis-Hastings.

Let us describe the new algorithm for the following model problem of stationary,
single phase flow in a porous medium:

−∇ · (k(x, ω)∇p(x, ω)) = f(x), in D ⊂ Rd,(1)

subject to the Dirichlet boundary condition p(ω, x) = p0(x) on ∂D, with a lognor-
mal distribution for the input random field, the permeability k(x, ω), with covari-
ance function C(x, y) = σ2exp(−‖x − y‖1/λ). We discretise (1) using standard,
continuous, piecewise linear finite elements (FEs) on a sequence of grids {T`}`≥1,
with mesh width h` = h02−`, and we sample from the input random field on level
` using a truncated Karhunen-Loève (KL) expansion of log k,

(2) k`(θ`(ω), x) = exp
( R∑̀
j=1

√
µjφj(x)ξj(ω)

)
,

with R` terms. The KL-eigenpairs (µj , φj) are known explicitly for the above
(exponential) covariance function C(x, y). The prior of our model on level ` is
thus the R`-dimensional random vector θ` = (ξj)R`

j=1 with multivariate standard
normal N(0, I) distribution P`. Using Bayes’ Theorem, the posterior distribution,
conditioned on observations Fobs of some functional F(p) of the PDE solution, is

(3) π`(θ`) = P(θ`|Fobs) ∝ L`(Fobs|θ`)P`(θ`).
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with an (in general) intractable normalising constant PF (Fobs). The data fit is
modelled to be Gaussian, i.e. L`(Fobs|θ`) ∝ exp

(
− ‖Fobs − F(p`(θ`))‖2/(2σ2

F )
)
,

where p` is the PDE solution on T` and σ2
F is the fidelity. The output quantity of

interest is the expected value of another functional Q = G(p) of the PDE solution.
We start by choosing a tolerance ε > 0 and a grid TL, L ∈ N, such that the bias

|EπL
[Q−QL]| ≤ ε/

√
2, where Q` = G(p`). Now, as indicated, we use linearity of

expectation to define the following unbiased multilevel estimator for EπL
[QL]:

(4) Q̂ML
L = 1

N1

N1∑
n=1

Q1(θn1 ) +
L∑
`=2

1
N`

N∑̀
n=1

Q`(θn` )−Q`(Θn
`−1).

The two Markov chains {θn` }n≥0 and {Θn
` }n≥0, for 1 ≤ ` ≤ L − 1, are indepen-

dent, but drawn from the same posterior distribution π`. Clearly, the multilevel
estimator coincides with the standard MCMC estimator on level L (in the limit
as N1, . . . , NL →∞), since all other terms cancel.

All the Markov chains {θn` }n≥0 and {Θn
` }n≥0 in (4) are constructed via the

following (standard) Metropolis-Hastings algorithm (for details see [9, 8]):

Algorithm 1. Choose θ0 (from the prior P or from some “burnt-in” chain)
1. Given θn, generate a new proposal θ′ from a proposal distribution q(θ′|θn)

2. Evaluate α(θ′|θn) = min
{

1,
π(θ′) q(θn|θ′)
π(θn) q(θ′|θn)

}
.

3. Set θn+1 =
{
θ′ with probability α(θ′|θn),
θn with probability 1− α(θ′|θn).

In practice this is randomised by averaging over several such chains on each level.
For the “coarse” chains {θn1 }, {Θn

1}, . . . , {Θn
L−1} we use a standard proposal

distribution q = qRW
` based on a preconditioned random walk [6].

The important new ingredient is a novel two-level proposal distribution q = qTL
`

for the fine chains {θn2 }, . . . , {θnL}. We want the chains {θn` } and {Θn
`−1} to be

close, so that the variance of Q`(θn` )−Q`(Θn
`−1) is small and thus the variance of

the estimator on level ` in (4) is small. To ensure this, we use θ′` = [Θn+1
`−1 , θ

′
`,F ],

where θ′`,F contains the last R` − R`−1 (“fine”) components of θ′` that are not
active on level ` − 1 and is obtained again by a random walk from θn`,F . It turns
out that qTL

` is computable. It depends on the acceptance probability for Θn+1
`−1 ,

and so it follows via some algebra that the two-level acceptance probability is

(5) αTL
` (θ′`|θn` ) = min

{
1,
π`(θ′`) π`−1(θn`,C)

π`(θn` )π`−1(Θn+1
`−1 )

}
,

where θn`,C denotes the first R`−1 (“coarse”) components of θn` .
For linear (or Fréchet differentiable) functionals F and G we have the following

theoretical results. The first lemma is a consequence of the decay, as j → ∞, of
the KL-eigenvalues µj in (2).

Lemma 1 ([8, Theorem 4.6]). Let R` & h−2
` . Then all finite moments of

1− αTL
` (θ′`|θ`) are O(h1−δ

`−1), for any δ > 0.
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This means that on the finer levels we accept almost all samples. Using this
together with the theory for standard Multilevel MC based on i.i.d. samples in
[2, 10], it is possible to establish the following main result.

Theorem 2 ([8, Thm. 4.1 & 4.8]). For any ε, δ > 0 and {θ0`}L`=1 with π`(θ0` ) > 0,
we have limmin{N`}→∞ Q̂ML

L = EπL [QL] and there exists L ∈ N, (N`)L`=1 ∈ NL s.t.

(6) EML

[
(Q̂ML

L − EπL [Q])2
]
≤ ε2 and Cost(Q̂ML

L ) = O(ε−(d+1)−δ),

where EML[·] is expectation w.r.t. the joint distribution of all the chains in (4).

Note that in comparison, the standard Metropolis-Hastings algorithm with qRW
L

instead of qTL
L (but with the same L so that the bias is again less than ε/

√
2) has an

ε-cost of O(ε−(d+2)−δ), i.e. a whole power of ε more than the multilevel approach.
The numerical experiments for d = 2 in [8] confirm all these theoretical results.

In fact, in practice it seems that (at least in the pre–asymptotic phase) the cost
seems to grow only like O(ε−d) and the absolute cost is between 10 and 100 times
lower than for the standard estimator, which is a vast improvement and brings the
cost of the multilevel MCMC estimator down to a similar order than the cost of
standard multilevel MC estimators based on i.i.d. samples. This provides real hope
for practically relevant MCMC analyses for many large scale PDE applications.

Note also that there is nothing special about the model problem above and that
the algorithm is applicable in any other MCMC application, provided the input
parameters can be ordered according to their “importance” for the functionals F
and G. In [8, Theorem 3.5] we formulate the above theoretical results in abstract
terms and show that under certain assumptions – that need to be verified for any
new application – the multilevel estimator always leads to a reduction in the ε-cost
over the standard Metropolis-Hastings algorithm.
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