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Diffusion processes in heterogeneous porous media are notoriously difficult to ap-
proximate accurately if the permeability α(x) of the medium varies over many
orders of magnitude and on multiple scales, particularly if the medium undergoes
deformations. Modern areas of interest such as hydraulic fracturing, enhanced oil
recovery or uncertainty quantification help to compound this problem. Classical
homogenisation only works when there is some scale separation, periodicity or
ergodicity which rarely is the case in applications. Accurate predictions of flow
through such media (with standard discretisation techniques) require the resolu-
tion of all major small-scale features. Alternatively, sub grid-scale features need to
be taken into account in more costly multiscale schemes. Whether the former or
the latter approach is chosen depends on how many simulations need to be carried
out through the same medium or through a possibly slightly deformed/modified
one (e.g. in a time-dependent multi-phase flow simulation or an optimisation loop).

However, both approaches need robust and efficient coarsening strategies. In
the former case, they are needed as the coarse component in multilevel precondi-
tioners that are essential for any scalable and efficient solution of the large-scale
linear algebra problems that arise when all features are resolved by the grid. In the
latter case, they are needed because standard FE methods will not converge unless
the mesh size h is larger than the frequency ε at which the coefficient oscillates.
The methodologies that have been developed and analysed are similar, but the
difficulties are not entirely the same. Nevertheless, the two research areas have
seen a fruitful interaction in recent years with the emergence of new multilevel
preconditioners with multiscale coarse spaces lifted from the upscaling literature
(e.g. [2]) and novel numerical upscaling techniques based on coarsening strate-
gies from multilevel preconditioners (e.g. [5, 1]). There have even been two very
successful Oberwolfach mini-workshops (#0910a and #1307a) on this interaction.

In this talk we consider a promising new numerical upscaling technique, the
localisable orthogonal decomposition (LOD) method [4], applied to

(1) a(u, v) :=

∫
Ω

α∇u · ∇vdx =

∫
Ω

gvdx =: G(v), for all v ∈ H1
0 (Ω),

with arbitrary heterogeneous coefficient αmin ≤ α(x) ≤ αmax, without any pe-
riodicity or scale separation assumptions. It is a variational multiscale method
[3] that uses a selectable quasi-interpolation operator to decompose the solution
into a low-dimensional coarse space and a high-dimensional remainder space. The
coarse space is spanned by computable basis functions with local support. The
localisation is rigorously justified in [4] due to the exponential decay of the “cor-
rectors” w.r.t. the standard hat functions. This avoids any artifical localisation
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boundary conditions, typical for other multiscale methods. For moderate contrast
and arbitrary oscillatory coefficients this methodology yields approximations that
converge to the true solution at the optimal rate (with respect to the coarse mesh
size) without any pre-asymptotic effects.

The promising numerical results in [4] for high-contrast model coefficients are
not reflected by the theoretical results for localized bases in that reference, because
the physical contrast αmax/αmin enters the error analysis via norm equivalences
between energy norm and H1-seminorm. These equivalences are heavily used to
connect variational techniques such as Galerkin orthogonality with approximation
properties of standard (coefficient-independent) quasi-interpolation operators. In
an upcoming paper [6], we circumvent the critical norm equivalences by using
coefficient-dependent quasi-interpolation operators, similar to those in [8], which
enjoy optimal approximation properties in α-weighted Sobolev spaces.

Definition. Let IH : Vh → VH be a linear, continuous interpolation operator
from a fine to a coarse piecewise linear FE space, with h < H, such that

(QI1) the restriction of IH to VH is an isomorphism,

(QI2) there exists a generic constant C2, such that for all vh ∈ Vh and all T ∈ TH ,

H−1‖α1/2(vh − IHvh)‖L2(T ) + ‖α1/2∇(vh − IHvh)‖L2(T ) ≤ C2‖α1/2∇vh‖L2(ωT )

with ωT := int
(⋃
{K ∈ TH |K ∩ T 6= ∅}

)
.

(QI3) there exists a generic constant C3, such that for all vH ∈ VH there exists
vh ∈ Vh with the properties

IHvh = vH , supp vh ⊂ supp vH and ‖α1/2∇vh‖L2(Ω) ≤ C3‖α1/2∇vH‖L2(Ω).

This operator gives rise to the L2-orthogonal decomposition Vh = VH ⊕V fs where
V fs := ker IH . The key idea to a better approximation is to a-orthogonalise this
decomposition. Consider the a-orthogonal projection Pcs : Vh → V fs that maps
v ∈ Vh to the unique solution of

(2) a(Pcsv, w) = a(v, w), for all w ∈ V fs,

and define V cs := (1− Pcs)VH . Then Vh = V cs ⊕ V fs and a(V cs, V fs) = 0.
In practice, we solve localised approximations of the corrector problems (2) for

the basis functions Φz of VH , restricting the calculation to nodal patches ωz,k ⊂ Ω,
centred at the corresponding coarse grid vertex z ∈ NH and 2k layers of coarse
grid elements wide (see [4, 6] for details). This leads to an approximate multiscale
coarse space V cs

k ≈ V cs with dim(V cs
k ) = dim(VH) and to the upscaled equation

(3) a(ucs
k , v) = G(v), for all v ∈ V cs

k .

Main Theorem. If (QI1)–(QI3) are satisfied with constants C2 = O(1) = C3

independent of α, and provided k & log
(

αmax

H αmin

)
and h is sufficiently small, then

(4) ‖α1/2∇(u− ucsk )‖L2(Ω) . α
−1/2
min ‖g‖L2(Ω)H.

This result does not require any periodicity or scale separation assumptions on the
coefficients, and the hidden constants are independent of the contrast αmax/αmin.
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An example of a quasi-interpolation operator that satisfies assumptions (QI1)–
(QI3) with constants C2 = O(1) = C3 independent of αmax/αmin for a special
class of coefficients that are quasi-monotone on the coarse mesh scale is the quasi-
interpolation operator analysed in [8] (or rather a slightly modified version of it.
See [8] for a more precise discussion of the type of coefficients that is covered. The
constants C2 and C3 in our analysis do unfortunately depend on H/ε, but this
dependence is not evident in the numerical experiments (see [6]).

In our future work we expect to extend this work to wider classes of coefficients,
using different initial coarse spaces, instead of the piecewise linear space VH , such
as those proposed in [1, 7] that enjoy optimal approximation properties in α-
weighted Sobolev spaces for arbitrary positive coefficients. The associated quasi-
interpolation operators satisfy an assumption similar to (QI2), but it remains to
be seen if the whole theory can readily be extended.
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