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What is Multi-level?

I A computationally efficient method for producing a point estimator
of a variable of interest in a stochastic system.

I Combines estimators of the differing accuracy in a ‘telescoping sum’.

I First calculate an estimator using an approximate stochastic
method, which is efficient, but has significant bias.

I Then reduce this bias successively on subsequent ‘levels’ by
combining estimators from approximate stochastic simulation
algorithms with increasing accuracy in an efficient manner.

I Optionally correct with an exact stochastic method to completely
remove the bias.
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Outline

I Biological motivation.

I Introduction to modelling of stochastic biochemical systems.

I Exact simulation methods.

I Approximate simulation methods.

I Introduction to fixed time step multi-level.

I Adaptive multi-level.
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Gene regulatory networks
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The role of noise

Stochastic gene expression in a single cell. M.B. Elowitz, and A.J.
Levine, and E.D. Siggia, and P.S. Swain, Science (2002).
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Modelling biochemical systems

Model using a discrete framework where we have:

I N species, S1,. . . ,SN , and M interactions, R1,. . . ,RM

e.g.
S1 + S2 → S3,

I state vector:
X(t) := [X1(t), . . . ,XN(t)]T , (1)

I stoichiometric or state-change vector:

ν j := [ν1j , . . . , νNj ]
T
, (2)

where νij is the change in the copy number of Si caused by reaction
Rj taking place.

I propensity function:
aj(X(t)), (3)

probability that reaction, j , occurs in the infinitesimally small time
interval [t, t + dt) is aj(t)dt.
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Modelling biochemical systems

The “chemical master equation” or “Kolmogorov’s forward
equation”

dP(x, t | x0, t0)

dt
=

M∑

j=1

{
P(x− νj, t | x0, t0) · aj(x− νj)

−P(x, t | x0, t0) · aj(x)
}
. (4)

Bad news
No matter how we write the model mathematically, unless the system is
very simple1, we can’t solve analytically.

The large (possibly infinite) state space of most models makes numerical
approximation of P(x, t | x0, t0) a solution infeasible.

1By simple, I mean only zeroth or first order reactions only, and this makes for
systems that are pretty boring and whose mean behaviour can be described by the
corresponding phenomenological ODE model. Even then the system of probability
master equations could be high or infinite dimensional.
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Good News

There is an equivalent model to the Chemical master equation:
Pathwise representation: the random-time-change representation

X(t) = X(0) +
M∑

j=1

Yj

(∫ t

0

aj(X(s))ds

)
· ν j , (5)

where the Yj are unit rate Poisson processes.
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The Poisson process

A Poisson process, Y (·), is a model for a series of random observations
occurring in time.

(a) Let ξi be i.i.d. exponential random variables with parameter one.

(b) Now, put points down on a line with spacing equal to the ξi .

Let Y (t) denote the number of points hit by time t.

In the figure above, Y (t) = 6.

Intuition:
The unit rate Poisson process is simply the number of points hit when we
run along the time frame at rate one.
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The Poisson process

I Let Y be a unit rate Possion process.

I Define Ya(t) , Y (at).

Then Ya is a Poisson process with parameter a.

Intuition:
The Poisson process with rate a is simply the number of points (of the
unit rate Possion process) hit when we run along the time frame at rate
a.

We have “changed time” to convert a unit rate Poisson process to one
which has rate a.
There is no reason a needs to be constant in time, in which case

Ya(t) = Y

(∫ t

0

a(s)ds

)
(6)

is an inhomogeneous Poisson process.
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Numerical simulation of paths

There are a number of numerical methods that produce
statistically exact sample paths:

1. Gillespie’s algorithm (the direct method).

2. The first reaction method.

3. The next reaction method.

4. The optimized direct method.

5. The sorting direct method.

6. The logarithmic direct method.

7. The recycling direct method.
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The (exact) Gillespie algorithm
1. Initialize the time t = t0 and the species numbers X(t0) = x0.

2. Evaluate the propensity functions, aj(x), associated with the reaction

channels Rj (j = 1, . . . ,M) and their sum a0(x) =
∑M

j=1 aj(x).

3. Generate two random numbers rand1 and rand2 uniformly
distributed in [0, 1].

4. Use rand1 to generate a time increment, τ , from the exponentially
distributed random variable with mean 1/a0(x). i.e.

τ =
1

a0
ln

(
1

rand1

)
. (7)

5. Use rand2 to generate a reaction index j with probability aj(x)/a0(x),
in proportion with its propensity function. i.e. find j such that

j−1∑

j′=1

aj′(x) < a0(x) · rand2 <

j∑

j′=1

aj′(x). (8)

6. Update the state vector, x = x + ν j and the time, t = t + τ .

7. If t < T , the desired stopping time, then go to step (2). Otherwise
stop.
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Bad news

Since the Chemical Master equation is often intractable, the estimation
of system statistics from collections of many system sample paths is the
main means by which to investigate model behaviour.

BUT
For each step of the simulation methods one must find:

1. the amount of time that passes until the next reaction takes place:

τ =
1

a0
ln

(
1

rand1

)
. (7)

2. which reaction takes place at that time.

If a0 =
∑M

j=1 aj(x)� 1, then 〈τ〉 = 1
a0
� 1.

If M � 1 then searching to find which reaction occurs can be slow.

Time to produce a single path over an interval [0,T ] can, therefore, be
prohibitive.
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A simple example

Consider a model of gene transcription and translation2:

R1 : G
25−→ G + M, (9)

R2 : M
1000−−−→ M + P, (10)

R3 : P + P
0.001−−−→ D, (11)

R4 : M
0.1−−→ ∅, (12)

R5 : P
1−→ ∅. (13)

Write the numbers of mRNA, protein and dimer molecules at time t,
respectively, as

X(t) = (X1(t),X2(t),X3(t))T .

with
X(0) = (0, 0, 0)T .

2Multi-level Monte Carlo for continuous time Markov chains, with applications in
biochemical kinetics. D. Anderson and D. Higham, SIAM Multiscale Model. Simul.
(2012).
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A simple example

ν =




1 0 0 −1 0
0 1 −2 0 −1
0 0 1 0 0


 . (14)

Aim: to estimate the numbers of dimers at time t = 1, X3(1).

If we use the Gillespie algorithm to generate n sample paths then we
estimate:

E[Xi (T )] ≈ 1

n

n∑

r=1

X
(r)
i (T ), (15)

where X
(r)
i (t) represents the copy number of species i at time t in path r .
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The (exact) Gillespie algorithm
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The (exact) Gillespie algorithm
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To compute E[X3(1)] to within a single dimer with 95% confidence
requires the generation of approximately 4,800,000 sample paths3.

Using an optimized Gillespie algorithm, this calculation took
approximately six hours (21,472 seconds) when run on our AMD desktop
computer.

Good News
Faster approximate methods exist: τ -leaping.

3For later comparison: E[X3(1)] = 3714.0 ± 0.99.
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The (approximate) τ -leaping algorithm

Recall the time inhomogeneous Poisson process model:

X(t) = X(0) +
M∑

j=1

Yj

(∫ t

0

aj(X(s))ds

)
· ν j .

The τ -leaping algorithm approximates the integral in steps of (fixed)
length, τ .

Let Nτ = t/τ to give

X(t) = X(0) +
M∑

j=1

Nτ∑

k=1

Yj

(
τaj(X({(k − 1)τ}−))

)
· ν j . (16)

All reaction rates are assumed to remain constant over each time step.
[Essentially an Euler approximation of the system dynamics.]
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The (approximate) τ -leaping algorithm

1. Initialize the time t = t0, the species numbers X(t0) = x0 and
choose the value of τ .

2. Evaluate the propensity functions, aj(X(t)).

3. For j = 1, . . . ,M, generate kj as a sample of the Poisson random
variable with mean aj(X(t))τ . kj represents the number of times
reaction Rj fires in [t, t + τ).

4. Update the state vector according to the number of each reactions
that have fired: X(t + τ ) = X(t) +

∑M
j=1 kjν j and the time,

t = t + τ .

5. If t < T , the desired stopping time, then go to step (2). Otherwise
stop.
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The (approximate) τ -leaping algorithm

Using the τ -leaping algorithm, we have4:

τ E[X3] Paths Time

3−2 3186.67± 1.03 3.71 ×106 175.7s
3−3 3537.98± 1.01 4.37 ×106 585.5s
3−4 3656.02± 1.05 4.24 ×106 1,435.6s
3−5 3694.02± 1.10 4.56 ×106 3,663.3s
3−6 3707.58± 1.02 4.56 ×106 6,851.3s

Bad News
Estimators appear to be fast and have a large bias or have a smaller bias,
but be considerably slower.

4Recall: E[X3(1)] = 3714.0 ± 0.99 was the estimate using the exact Gillespie
algorithm using 4.8 million paths, and it took 21,472 seconds to compute.

Christian A. Yates Multi-level methods for discrete state systems 20 /1



The (approximate) τ -leaping algorithm

A
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Summary of approaches

Bad News

I Exact stochastic simulation algorithms are computationally
expensive (prohibitively so if one wants to do e.g. sensitivity analysis
or consider complex networks).

I Approximate stochastic simulation algorithms can generate sample
paths more quickly, but the bias is often very significant.

I If one takes τ small enough to get an accurate estimator then the
computational cost is similar to that of an exact algorithm.

Good News
Enter the multi-level Monte Carlo method (which combines all the pros
and removes many of the cons...)
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Multi-level Monte Carlo

Generate an initial guess for the estimator.

I Use an approximate stochastic simulation algorithm for the initial
guess.

I Quick to calculate (so calculate lots of paths) but inaccurate due to
significant bias.

Gradually make the initial guess more accurate by adding correction
terms.

I Correction terms decrease the bias by combining estimators from
approximate stochastic simulations algorithms of increasing
accuracy, until a desired level of accuracy is reached.

Suppose we wish to estimate the expected value of Xi (T ), the population
of the i-th species at time T ...
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Multi-level Monte Carlo – level 0

Use a τ -leaping SSA with a large value of τ (τ0) to generate a large
number (n0) of sample paths of the system.

Q0 := E [Zτ0 ] ≈ 1

n0

n0∑

r=1

Z (r)
τ0

(T ). (17)

I Z
(r)
τ (t) – copy number of species i at time t in path r generated

using the tau-leaping method with time step τ .

I n` – number of paths generated on level `.

KEY POINT: estimate is calculated cheaply, but it has considerable bias.
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Multi-level Monte Carlo – level 1

GOAL: introduce a correction term that reduces this bias.

Q1 := E [Zτ1 − Zτ0 ] ≈ 1

n1

n1∑

r=1

[
Z (r)
τ1

(T )− Z (r)
τ0

(T )
]
. (18)

Two sets of n1 sample paths:

I one set comes from the τ -leaping SSA with τ = τ0;

I the other set also comes from τ -leaping SSA, but with τ = τ1 < τ0.

Add the correction term to the estimator calculated on level 0:

Q0 + Q1 = E [Zτ0 ] + E [Zτ1 − Zτ0 ] = E [Zτ1 ] . (19)

KEY POINT: the sum of the two estimators has a bias equivalent to that
of the tau-leaping method with τ = τ1.
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Multi-level Monte Carlo – Level 2

Repeat to get a second correction term:

Q2 := E [Zτ2 − Zτ1 ] ≈ 1

n2

n2∑

r=1

[
Z (r)
τ2

(T )− Z (r)
τ1

(T )
]
. (20)

Two sets of n2 sample paths:

I one set has τ = τ1;

I the second has τ = τ2 < τ1.

The estimator is now

Q0 + Q1 + Q2 = E [Zτ2 ] . (21)

KEY POINT: the sum of the two estimators has a bias equivalent to that
of the tau-leaping method with τ = τ2.
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Multi-level Monte Carlo

Repeat this lots of times5

...

to get a telescoping sum of the form

E [ZτL ] = E [Zτ0 ] +
L∑

`=1

E
[
Zτ` − Zτ`−1

]
=

L∑

`=0

Q`. (22)

KEY POINT: with the addition of each subsequent level the bias of the
estimator is reduced further, until a desired level of accuracy6 is reached.

5The number of levels is TBC.
6More about this on the next slide.
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Multi-level Monte Carlo

A
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Multi-level Monte Carlo – accuracy
At the end of it all we have a biased estimator:

Qb :=
L∑

`=0

Q` = E [Zτ0 ] +
L∑

`=1

E
[
Zτ` − Zτ`−1

]
. (23)

Errors

MSE(Qb) = E[(Qb − µ)2] = var(Qb) + (E[Qb − µ])2. (24)

Statistical error: var(Qb)

I Controlled by bounding the associated estimator variance, Vb < ε2,
and effectively requires generating “enough” sample paths on each
level.

Bias: E[Qb − µ]

I Controlled by taking “sufficiently many” correction levels.
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Multi-level Monte Carlo – unbiased estimator
Optionally we can remove the bias using a final level:

Q∗
L+1 = E [Xi − ZτL ] ≈ 1

nL+1

nL+1∑

r=1

[
X

(r)
i (T )− Z (r)

τL
(T )

]
. (25)

Two sets of nL+1 sample paths:

I one set generated using τ -leaping with τ = τL;

I and the other set using an exact SSA.

The estimator is now

E [Xi ] = E [Zτ0 ] +
L∑

`=1

E
[
Zτ` − Zτ`−1

]
+ E [Xi − ZτL ] =

L∑

`=0

Q` + Q∗
L+1.

(26)

KEY POINT: The total time taken to generate the sets of sample paths
for the base level, Q0, and each of the correction terms, Q` for
` = 1, . . . , L, and Q∗

L+1, can be less than that taken to estimate E[Xi (T )]
using an exact SSA.
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Multi-level Monte Carlo

A
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In order to use multi-level...

... a number of decisions have to be made.
We must consider:

1. the choice of time steps τ0, τ1, . . . , τL both within and between levels;

2. the values the target variance, V̂`, should take on each level, `. This
ensures statistical accuracy, and also affects the simulation time;

3. the choices of simulation techniques for the base level (0), the
correcting levels, 1, . . . , L, and (if desired) the final level L + 1.
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1. Time step choice

We let K ∈ {2, 3, . . . } be a scaling factor and take τ` = τ(`−1)/K so that

Q0 ≡ E[Zτ0 ],

Q1 ≡ E[Zτ0/K − Zτ0 ],

Q2 ≡ E[Zτ0/K 2 − Zτ0/K ],

...

QL ≡ E[Zτ0/KL − Zτ0/KL−1 ].

This means that the intervals are nested, with the same scaling factor
between each, and it renders the algorithm more simple to understand
and implement.
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2. How to choose n` and V̂`

I c` time taken to generate n` sample paths on level `.

I c` ∝ n` and V` ∝ 1/n` so

c` =
k`
V`
. (27)

I We want to minimize the total expected computational time:

L∑

`=0

ĉ` =
L∑

`=0

k`

V̂`
, (28)

subject to the constraint
∑L
`=0 V̂` < ε2.

I Estimate k` by an small initial number of simulations and solve the
Lagrange multiplier problem for V` and hence n`.
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3. Efficient simulation

To get our estimator, we have a lot of sample paths to generate, with
different values of τ :

Qb :=
L∑

`=0

Q` = E [Zτ0 ] +
L∑

`=1

E
[
Zτ` − Zτ`−1

]
,

with

Q` := E
[
Zτ` − Zτ`−1

]
≈ 1

n`

n∑̀

r=1

[
Z (r)
τ`

(T )− Z (r)
τ`−1

(T )
]
. (29)

QUESTION: how can this be made more efficient than just using paths
with τ = τL?

KEY IDEA: Generate sample paths to estimate Q` with low sample
variance.
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3. Efficient simulation – variance reduction

It is always the case that

Q` ≡ E [Z` − Z`−1] = E [Z`]− E [Z`−1] . (30)

So, we could generate Q̂` by first sampling paths for

E [Z`] ≈
1

n`

n∑̀

r=1

Z (r)
τ`
, (31)

and then sampling paths for

E [Z`−1] ≈ 1

n`

n∑̀

r=1

Z (r)
τ`−1

(32)

and taking the difference.
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3. Efficient simulation – variance reduction

BUT, recall that the accuracy of

Q̂` =
1

n`

n∑̀

r=1

[
Z (r)
τ`
− Z (r)

τ`−1

]
(33)

is quantified by the estimator variance:

V̂` =
1

n`
Var

[
Z` − Z`−1

]
=

1

n`

{
Var[Z`] + Var[Z`−1]− 2 · Cov[Z`,Z`−1]

}
.

(34)

THE SMART IDEA: Force a positive correlation between Z
(r)
τ` and Z

(r)
τ`−1

by keeping the r -th sample paths as similar to each other as possible.
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Multi-level Monte Carlo

e.g. for K = 3, τ0 = 1 and ` = 2:

Suppose we want to simulate a single pair of sample paths on level `.
Path with τ` = τ0/K

` is the fine path. Path with τ`−1 = τ0/K
`−1 is the

coarse path.

REMINDER: Each of the τ -leaping paths (with time-steps τ` and τ`−1)
are constructed by generating Poisson random variables (with different
rates) in order to simulate Poisson processes (with different rates).
QUESTION: How do we keep the paths together?
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Coupling paths to keep them close

Suppose we want to generate random variates from two Poisson
processes:

I one with rate 13.0;

I the other with rate 13.1.

We could use two independent, unit rate Poisson processes and set:

I Z13.0(t) = Y1(13.0t);

I Z13.1(t) = Y2(13.1t).

This means the processes are independent so that

Var(Z13.1(t)− Z13.0(t)) = Var(Z13.1(t)) + Var(Z13.0(t)) = 26.1t. (35)
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Coupling paths to keep them close

Or, use the Poisson thickening property:

P1(a + b) ∼ P2(a) + P3(b). (36)

So we could set:

I Z13.0(t) = Y1(13.0t);

I Z13.1(t) = Y1(13.0t) + Y2(0.1t).

This means the processes are dependent, and

Var(Z13.1(t)− Z13.0(t)) = 0.1t. (37)

KEY POINT: Multi-level Monte Carlo applies this logic to every reaction
at every time step to keep paths close together.
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Multi-level Monte Carlo

e.g. for K = 3, τ0 = 1 and ` = 2:

I Update the values of the state variables of each path at intervals
τ0/K

`.

I Update the propensities of the fine path (with τ = τ0/K
`) each

time-step.

I Update the propensities of the coarse path (with τ = τ0/K
`−1)

every K steps.
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Multi-level Monte Carlo – Example revisited

R1 : G
25−→ M; R2 : M

1000−−−→ M + P; R3 : P + P
0.001−−−→ D;

R4 : M
0.1−−→ ∅; R5 : P

1−→ ∅.
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Estimating the dimer population at T = 1

I Gillespie Algorithm – 3, 714.0± 1.0 – 6 hours (21,472 seconds).

I Multi-level Monte Carlo – 3, 714.6± 1.0 – 10 minutes (578 seconds).

This is a factor 37 speed up.
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A troublesome example: dimerization

R1 : S1
1−→ ∅; R2 : S2

1/25−−−→ S3;

R3 : S1 + S1
1/500−−−→ S2; R4 : S2

1/2−−→ S1 + S1.
(38)

We simulate until T = 30 with initial conditions X(0) = [105, 0, 0]T .
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An time-adaptive algorithm

Multi-level Monte Carlo vs Gillespie

I Exact simulation method – 20, 591.6± 1.0 – 2,089 seconds.

I Fixed time-step multi-level – 20, 591.6± 1.0 – 632 seconds.

This time we only see a factor three speed up.

Problems with a fixed time step algorithm:

I has to satisfy demands of stiffest timescale;

I currently available algorithms require time-steps between levels to be
nested.

Adaptive time-step would ideally:

I adapt to stochastic behaviour of individual sample paths;

I not require time-steps between levels to be nested.
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An time-adaptive algorithm7: the idea
I Use an adaptive τ -leaping algorithm to generate paths on each level.
I Let τ` = τ`(ε`,X(t)) where ε` is a control parameter for level `.

η1︷ ︸︸ ︷

η2︷ ︸︸ ︷

η3︷ ︸︸ ︷

η4︷ ︸︸ ︷

Tf

Tf

Tf

Tf

Tc

Tc

Tc

Tc

1

2

3

4

Increasing Time →

I Adaptive multi-level – 20, 591.1± 1.0 – 70 seconds (factor 30).
7An adaptive multi-level simulation algorithm for stochastic biological systems. C.

Lester, C.A. Yates, M.B. Giles, R.E. Baker (2015) J. Chem Phys. 142(2) 024113 or
http://arxiv.org/abs/1409.1838
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Summary

The multi-level method can be efficient in generating system statistics.

I We have constructed a modified direct method approach that is
easier to implement and provides computational savings.

I It can be parallelised (for example, with GPUs) which can further
reduce simulation time.

To use the multi-level method, a number of decisions have to be made:

I the choice of levels in the algorithm. This affects both the
simulation time and the bias of Qb, and is determined by both L and
the values of τ0, τ1, . . . , τL;

I the values the target variance, V̂`, should take on each level, `. This
ensures statistical accuracy, and also affects the simulation time;

I the choices of simulation techniques for the base level (0), the
correcting levels, 1, . . . , L, and (if desired) the final level, L + 1.

Initially levels are nested geometrically:

τ` = τ(`−1)/K . (39)

Christian A. Yates Multi-level methods for discrete state systems 46 /1



Summary

BUT, the multi-level method does not perform well for systems with
multiple time scales.

I τ0, the coarsest resolution, must be sufficiently small to ensure
numerical stability and (for efficient simulation reasons) avoid
negative populations occurring ‘too often’.

I τL, the finest resolution, should be sufficiently large so that the
multi-level method is justified. Otherwise the unbiased and simple
Gillespie SSA will win.

I As trajectories traverse different regimes, an adaptive approach
seems to be the safest way to handle the choosing of τ .

I This method makes no assumptions as to the nature of the system,
or indeed the estimator.

I How best to choose the ε` and τ` = τ`(ε`,X(t)) is still up for
discussion.
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