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Motivation

• What is the quality of a computed solution and 
why we should worry about the quality?

• Solutions returned by algorithms implemented 
on computers are not necessarily reliable

• Ideas such as condition, stability and error 
analysis, help us understand how to measure 
the quality of a computed solution

• We need to provide sensible models and data
• Important for both users and developers
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Excel Example:
Standard Deviation

Microsoft Excel 
Worksheet



German High Speed Trains (ICE)

Adobe Acrobat 7.0 
Document



Quality of Computed Solutions

The quality of computed solutions is concerned 
with assessing how good a computed solution is 
in some appropriate measure

Quality software should implement reliable 
algorithms and should, where appropriate, 
provide measures of solution quality



Example - Means
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Mean of a set of numbers can be outside
their range. Using 3 figure arithmetic:
5.01 5.03 2 10.0 2 5.00

Does this matter? If so, can we guarantee
an answer within range?
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Overflow/Underflow Example: 
Hypotenuse of a right angled triangle
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Excel Example:
Standard Deviation - Overflow

Microsoft Excel 
Worksheet



Condition

The condition of a problem is concerned with 
the sensitivity of the problem to perturbations 
in the data

A problem is ill-conditioned if small changes 
in the data cause relatively large changes in 
the solution. Otherwise a problem is well-
conditioned



Condition Number for 
Function of One Variable
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Condition Number for Function 
of One Variable (cont’d)

The quantity
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Example

( )     cos
Then
     ( ) tan
Thus cos  is most sensitive close to asymptotes
of tan .  For example with 1.57 and 0.01

     ( ) 12.5577.

ˆActually, ( ) / 12.55739
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Condition Number for Linear 
Equations
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Condition Examples (cont’d)
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Condition Number Example
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Stability

The stability of a method for solving a 
problem is concerned with the sensitivity of 
the method to (rounding) errors in the 
solution process

A method that guarantees as accurate a 
solution as the data warrants is said to be 
stable, otherwise the method is unstable



Quadratic Equation
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          ( ) 1.6 100.1 1.251 0
 Four significant figure arithmetic on the standard formula

          ( 4 ) (2 )
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            62.53, 0.03125,
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Recurrence Relation
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Easy to show that
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Recurrence Relation (Cont’d)
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Error Analysis

Error analysis is concerned with analysing the 
cumulative effects of errors

Usually these errors will be rounding or 
truncation errors



Definitions
Error analysis is concerned with establishing 
whether or not an algorithm is stable for the 
problem in hand

A forward error analysis is concerned with how 
close the computed solution is to the exact 
solution

A backward error analysis is concerned with 
how well the computed solution satisfies the 
problem to be solved
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Quadratic Equation

2

2

2

          ( ) 1.6 100.1 1.251
 Rounding to four significant figures,
   1.6 ( 62.53)( 0.03125) 1.6x 100.1 3.127,
so neither forward, nor backward stable. But
   1.6 ( 62.53)( 0.01251) 1.6x 100.1

q x x x

x x x

x x x

= − +

− − = − +

− − = − 1.252,
so both forward and backward stable

+



The Purpose of Error Analysis
“The clear identification of the factors determining the 
stability of an algorithm soon led to the development of 
better algorithms. …

“For me, then, the primary purpose of the rounding 
error analysis was insight.”

Wilkinson, 1986
Bulletin of the IMA, Vol 22, p197





A Posteriori Bound
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Backward Error and 
Perturbation Analysis

( )               ,
If we know how perturbations in  affect the
solution ,  then we can estimate the accuracy of the
computed solution . That is, an estimate of the
backward error allows us to 
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Condition and Error Analysis
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Floating Point Numbers - Representation

[ ]min max
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Floating Point Numbers - Example 
(cont’d)
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IEEE Arithmetic Formats

Format ecision Exponent Approx Range Approx precision
Single  bits 8 bits
Double 53 bits 11 bits
Extended

Pr
24 10 10

10 10
64 15 10 10

38 8

308 16

4932 20

± −

± −

± −≥ ≥



Floating Point Error Analysis

Floating point error analysis is concerned with 
the analysis of errors in the presence of floating 
point arithmetic

It is concerned with relative errors



Floating Point Error Analysis
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Floating Point Error Analysis
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Cancellation (Summation) Example
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Difference of Two Squares
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Other Problems

( )

Similar results to  can be obtained
for many other problems of linear algebra.
For example

   , ,

with  small relative to  for stable
methods for solving the eigenvalue problem
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LAPACK

Users’

Guide

E. Anderson, Z. Bai, C. Bischof
S. Blackford, J. Demmel, J. Dongarra

J. Du Croz, A. Greenbaum, S. Hammarling
A. McKenney, D. Sorensen
SIAM, 1999 (3rd Edition)

Proceeds to SIAM student travel fund
http://www.netlib.org/lapack/lug/lapack_lug.html





LAPACK and Error Bounds

“In Addition to providing faster routines than 
previously available, LAPACK provides more 
comprehensive and better error bounds. Our goal is to 
provide error bounds for most quantities computed by 
LAPACK.”

LAPACK Users’ Guide, Chapter 4 – Accuracy and 
Stability



Error Bounds in LAPACK

The Users’ Guide gives details of error 
bounds and code fragments to 
compute those bounds. In many cases 
the routines return the bounds directly



Error Bounds in LAPACK: Example

( )

DGESVX is an 'expert' driver for solving  
, , , , , ,
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ODE Software Example

0 0

NAG routines D02PCF and D02PDF integrate
     ( , )  given  ( ) ,
where  is the  element solution vector and  is the
independent variable, using a Runge-Kutta method.
(These routines are based 

y f t y y t y
y n t

′ = =

upon RKSUITE)



ODE Software Example (contd)
NAG routine D02PZF returns global error estimates 
for the Runge-Kutta solvers D02PCF and D02PDF:

D02PZF( RMSERR, ERRMAX, TERRMX,…)

RMSERR: Approximate Root mean square error

ERRMAX: Max approximate true error

TERRMX: Point at which max approximate true  
error occurred



LAPACK and Scaling

• Many routines perform scaling to move data 
away from overflow and underflow 
thresholds
– E.g. DGEEVX, DGELSS

• A number of routines offer options for 
equilibration and balancing
– E.g. DGESVX, DGEEVX



Science     Mathematical Model
• Mathematical model should be as realistic as 

possible
– Millennium bridge
– North Sea oil rig?

• If possible, model as a well-conditioned, well-
posed problem
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1 0
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1 , 1 1

n x
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n n

y e x e dx
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Modelling or Software? 
London Millennium Bridge, 

2000



Tacoma Bridge



What to do if Software does not 
Provide Error Estimates?

• Run the problem with perturbed data
• Better still, use a software tool such as PRECISE which 

allows you to perform a stochastic analysis 
http://www.cerfacs.fr/algor/Softs/PRECISE/index.html

• Interval analysis
– Interval analysis can provide automatic error bounds for a 

number of problems
– There is an interval arithmetic toolbox for MATLAB, 

INTLAB, and the Sun compiler supports interval arithmetic

• Put pressure on developers to provide estimates

http://www.cerfacs.fr/algor/Softs/PRECISE/index.html


Quote

“You have been solving these damn 
problems better than I can pose them.”

Sir Edward Bullard, Director NPL, in a 
remark to Wilkinson. (mid 1950s.)

(Provide solutions that are at least as good 
as the data deserves)



Web Sites

• Disasters attributable to bad numerical computing:
http://www.math.psu.edu/dna/disasters/

• Numerical problems: RISKS-LIST: 
http://catless.ncl.ac.uk/Risks/

• London millennium bridge: 
http://www.arup.com/MillenniumBridge/

• Stories for Computation: Why Care Is Needed: 
http://www.cs.clemson.edu/~steve/stories/stories.html

• Software Bugs - Software Glitches: 
http://wwwzenger.informatik.tu-
muenchen.de/persons/huckle/bugse.html

http://www.math.psu.edu/dna/disasters/
http://catless.ncl.ac.uk/Risks/
http://www.arup.com/MillenniumBridge/
http://www.cs.clemson.edu/~steve/stories/stories.html
http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html
http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html
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