
New Developments in
LAPACK and ScaLAPACK

Sven Hammarling
NAG Ltd, Oxford

&
University of Manchester

With thanks to Jim Demmel, Jack Dongarra and
the LAPACK team & contributors

Plan of Talk
• Introduction and Motivation
• LAPACK 3.1
• Future LAPACK and ScaLAPACK

– New functionality
– Improved efficiency
– Improved accuracy
– Automatic tuning
– Improved ease of use

• Community involvement

LAWN – LAPACK Working Note
www.netlib.org/lapack/lawns/downloads

http://www.netlib.org/lapack/lawns/downloads/

Motivation
• LAPACK and ScaLAPACK are widely used

– Adopted by AMD, Cray, Fujitsu, HP, IBM, IMSL, Intel,
MathWorks, NAG, NEC, Octave, SGI, Sun, …

– > 70M web hits on netlib (incl. CLAPACK, LAPACK95)

• Many ways to improve the packages, based on
– Algorithmic research of the project
– Enthusiastic participation of research community
– User/vendor survey
– Opportunities and demands of new architectures,

programming languages

• Further releases planned (NSF support); LAWN 164

Information on the Future
• Further releases planned (NSF support)
• LAWN 164: NSF Proposal
• LAWN 181: Prospectus for the Next LAPACK

and ScaLAPACK Libraries (February ’07)

Participants
• UC Berkeley:

– Jim Demmel, Ming Gu, W. Kahan, Beresford Parlett, Xiaoye
Li, Osni Marques, Christof Voemel, David Bindel, Yozo Hida,
Jason Riedy, Jianlin Xia, Jiang Zhu, …

• U Tennessee, Knoxville
– Jack Dongarra, Julien Langou, Julie Langou, Piotr Luszczek,

Stan Tomov, Alfredo Buttari, Jakub Kurzak, …
• Other Academic Institutions

– UT Austin, UC Davis, Florida IT, U Kansas, U Maryland,
North Carolina SU, San Jose SU, UC Santa Barbara

– TU Berlin, U Electrocomm. (Japan), FU Hagen, U Carlos III
Madrid, U Manchester, U Umeå, U Wuppertal, U Zagreb, …

• Research Institutions
– CERFACS, LBL, …

• Industrial Partners
– Cray, HP, IBM, Intel, MathWorks, NAG, SGI, …

6

Challenges
• Challenges for all large scale computing
• Example … your laptop

– 64 cores, 256 threads/multicore chip in a few years
• Exponentially growing gaps between processor

speed and memory speed
– Yearly speed up: processor 59%; main memory

bandwidth 23%; main memory latency 5.5%
(National Research Council, 2005)

• Heterogeneity
• Asynchrony
• Fault tolerance

What do users want?
• High performance, ease of use, …
• Survey results

– Small but interesting sample
– What matrix sizes do you care about?

• 1000s: 34%
• 10,000s: 26%
• 100,000s or 1Ms: 26%

– How many processors, on distributed memory?
• >10: 34%, >100: 31%, >1000: 19%

– Do you use more than double precision?
• Sometimes or frequently: 16%

– Would Automatic Memory Allocation help?
• Very useful: 72%, Not useful: 14%

Goals of Forthcoming Sca/LAPACK
1. Expand contents

• More functions, more parallel implementations

2. Better algorithms
• Faster, more accurate

3. Improve ease of use
4. Automate performance tuning
5. Better software engineering
6. Increased community involvement

LAPACK 3.1

LAPACK Release 3.1
• 3.1.0 released on 12 November 2006

– Improved numerical algorithms
– Some further functionality
– Thread safety
– Bug fixes

• See: www.netlib.org/lapack/lapack-3.1.0.changes
• 3.1.1 released on 26 February 2007

– Mainly bug fixes (principally to test software)
• See: www.netlib.org/lapack/lapack-3.1.1.changes

http://www.netlib.org/lapack/lapack-3.1.0.changes
http://www.netlib.org/lapack/lapack-3.1.1.changes

Improved numerical algorithms
• More efficient nonsymmetric eigensolver

– improved reduction to Hessenberg form
– improved multishift with aggressive early deflation for

the QR algorithm applied to the Hessenberg form, can
be up to ten times faster

– SIMAX 23:929-973, 2002 (SIAG LA prize)
• Improved MRRR algorithm for tridiagonal

matrices; impacts symmetric eigenproblem solvers
– faster and more accurate than LAPACK 3.0
– support for subset computation, O(kn) operations
– LAWNs 162, 167

Run Time Ratios of Eigensolvers
(2.2 GHz Opteron + ACML)

Further Functionality
• Mixed precision iterative refinement for Ax=b

• Typically two times speed up on modern PCs
• Need , use double precision otherwise
• LAWN 175 (LAWN 177 – cell processor, LAWN 180 –

sparse)

Solve via in single precision
Compute in double precision
Solve for in single precision,
Update solution in double precision.

Ax b A PLU
r b Ax

Ay r y
x x y

= =
= −

=
= +

%

%

%

() 1/ sAκ ε≤

Thread Safety

• All driver and computational routines now
thread safe

• xLAMCH supplied with LAPACK not
absolutely guaranteed to be thread safe.
Can be manually replaced by thread safe
version

• Some obsolete auxiliaries not thread safe

Bug Fixes

• Subtle bug dating back to LINPACK fixed
in QR factorization with pivoting.
LAWN 176

• More support for NaNs and subnormal
numbers

• Many other lesser bug fixes

Future LAPACK and
ScaLAPACK

Future Developments:
Functionality

• More LAPACK functionality into ScaLAPACK
• Updating matrix factorizations
• Polynomial eigenvalue problems, particularly quadratic
• Matrix functions such as
• CS decomposition and Product SVD
• Pivoted Cholesky
• More generalized Sylvester and Lyapunov equations
• Improved algorithms
• Enhanced accuracy algorithms
• …

1
2 and AA e

Improved Ease of Use
• Core version likely to remain Fortran 77, with

some Fortran 95 features (dynamic memory
allocation, recursion, modules, environmental
enquiries, …)

• Wrappers for the drivers in C and Fortran 95
• Wrappers for higher level languages such as

MATLAB and Python

• Maximum efficiency in Fortran, best ease of use
in high level languages or packages

• Straightforward to interface to Fortran

Automate Performance Tuning
• Widely used in performance tuning of Kernels,

e.g. ATLAS, FFTW
• 1300 calls to ILAENV to get block sizes, etc.

– Never been systematically tuned

• Extend automatic tuning techniques of ATLAS, etc. to
these other parameters
– Automation important as architectures evolve

• Allow users to supply simpler data layouts to
ScaLAPACK and, if necessary, convert on the fly

Examples of New Functionality

Pivoted Cholesky Factorization

11 12

11

If is positive semidefinite, of rank , then there
exists a permutation matrix such that

and has the form

 ,
0 0

where is upper triangular wit

T T

A r
P

P AP U U
U

U U
U

U

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
h positive

diagonal elements

Pivoted Cholesky and LAPACK
• In order to incorporate pivoting, we need a Cholesky

algorithm that updates the trailing matrix
• The Level 2 BLAS routine in LAPACK (xPOTF2) does

update
• The Level 3 BLAS routine in LAPACK (xPOTRF) uses

a left looking algorithm, and so does not update
• Need a right looking block-partitioned algorithm

comparable to xPOTF2

1

0
0

T
k k k k

k

I
M A M A

A−

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠%

Level 2 BLAS Pivoting Routine

{ }() ()

We can readily introduce pivoting into a right
looking Level 2 BLAS Cholesky routine.
At the (1)th stage:
 Find pivot index as

 min : max

 Swap rows and columns and
 Stop i

k k
jj iik i n

k
q

q j a a

k q
≤ ≤

+
•

= =

•

• () (1)
11

()

f max (Higham)

 (LINPACK uses max 0)

k
iik i n

k
iik i n

a n eps a

a
≤ ≤

≤ ≤

≤ ⋅ ⋅

≤

Block-Partitioned Right Looking Cholesky

11 12 13 11 11 12 13

22 23 12 22 22 23

33 13 23

0 0 0 0
. 0 0 0 0
. . 0 0 0 0

T

T T

T T

A A A U I U U U
A A U U I U U

A U U I A I

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
%

1U
2A U→%

A%

22 22 22 12 12

22 23 23 12 13

33 13 13 23 23

T T

T T

T T

U U A U U

U U A U U

A A U U U U

= −

= −

= − −%

11 1211
1

1 12

1 12 12

00
0 0

T

k T
k k

T
k k

I U UU
A

A A IU I

A A U U

−
−

−

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
= −

 
%

%

Block-Partitioned Pivoted Cholesky

• This gives the basis of a Level 3 BLAS algorithm
in which pivoting can be incorporated
– Form the trailing matrix
– Use the Level 2 BLAS algorithm with pivoting to

factorize the b by b matrix , where b is the block size
(but choose pivot from whole of trailing matrix)

• Routine is significantly faster than the equivalent
LINPACK routine and, with Higham’s stopping
criterion, gives more reliable rank detection

• Craig Lucas, LAWN 161

A%

22U

Results - Speed

Results – Level 3 Ratios
Ratio of time for pivoted code
over LAPACK unpivoted code

Rank Revealing Properties
• Comparing computed rank vs the “expected” rank

of our test matrices, the new code gets it right in
299/300 cases

• Table below shows over estimation of rank in
DCHDC ˆ(| |)r r−

30

Rook Pivoting

• Incorporate rook pivoting into the symmetric
indefinite factorization, with diagonal pivoting

– allows U to be bounded
– D has well-conditioned 2 by 2 diagonal blocks

• (need to investigate fast Bunch – Parlett)
• Ashcraft, Grimes and Lewis, SIMAX 20:513-561,

1998

T TA P U DUP=

Block-Partitioned QR Factorization

1 2

1 2

 , ,
0

where is an elementary Householder transformation
matrix of the form
 .
Block partitioned algorithms are based on the representation
 ,
where

n

r

T
r r r r

T
b

R
A Q Q H H H

H

H I v v

H H H I VTV

τ

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

= −

= −

K

K

1 2 (), is by upper triangular and

 is the block size. Multiplication by () involves
Level 3 BLAS operations.

b
T

V v v v T b b

b I VTV

=

−

K

Block-Partitioned QR Updating
Commonest case is that of adding new rows, for example
adding new observations in a least squares problem.

0
0 .

0 0

R
A Q R

A Q
X I

X

⎛ ⎞
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= = = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

%
% %

To achieve this we just need a QR factorization of .
We can apply block partitioned Householder in the
usual way

R
X

⎛ ⎞
⎜ ⎟
⎝ ⎠

R

X

Block-Partitioned Updating
• Updating by a contiguous block of columns is also

straightforward
• Downdating, as in the standard case, needs care.
• Craig Lucas, PhD thesis, 2004

• SH, Nicholas J. Higham and Craig Lucas (2006)
LAPACK-Style Codes for Pivoted Cholesky and QR
Updating. MIMS preprint 2006.385
eprints.ma.man.ac.uk

http://eprints.ma.man.ac.uk/

Condition number of a
Tridiagonal Matrix

• Computed via the QR factorization in O(n)
operations (not estimated)

• Utilizes a result from 1974 of Gill, Golub, Murray
and Saunders, on the structure of a ‘special’
matrix

• Algorithm 2.1 in “G Hargreaves. Computing the
Condition Number of Tridiagonal and Diagonal-
Plus-Semiseparable Matrices in Linear Time,
SIMAX, 27, 801–820, 2006”, for which stability
is proved

Lyapunov and Sylvester Equations
• Further Lyapunov and Sylvester solvers

based upon
– RECSY: High Performance Library for

Sylvester-Type Matrix Equations, Isak Jonsson
and Bo Kågström at the University of Umeå

– Uses recursive blocked algorithms
– ScaLAPACK versions also underway
– www.cs.umu.se/~isak/recsy/

• Speeds up the generalized nonsymmetric
eigenproblem

http://www.cs.umu.se/~isak/recsy/

Improved Efficiency Examples

Faster Algorithms 1
• Faster symmetric eigensolvers and SVD routines

– MRRR algorithm for bidiagonal SVD
– faster tridiagonal; initially reduce to band form
– Improved bidiagonal reduction; LAWN 174

• Faster generalized eigensolvers; LAWNs 171, 173
– On 26 real test matrices, speedups of 14.7, 4.4 on

average
• Further mixed precision iterative refinement

routines
– More linear equation solvers
– Eigenvalue problems

Faster Algorithms 1 (cont’d)
• Faster GSVD routine

– Based on CS decomposition (C Van Loan.
Generalizing the Singular Value Decomposition,
SINUM, 13, 76–83, 1976)

– MSc Thesis, Jenny Jian Wang, UC Davis

New GSVD Algorithm
Given m by n A and p by n B, factor A = U ∑a X and B = V ∑b X

PSVD, CSD under developmentBai and Wang, UC Davis

Faster Algorithms 2

• Novel Data Layouts
– E Elmroth, F Gustavson, I Jonsson and B Kågstrom.

Recursive Blocked Algorithms and Hybrid Data
Structures for Dense Matrix Library Software, SIAM
Review, 2004

– require different data layouts, but will provide
conventional interfaces

– Some aim to be cache oblivious

Level 3 BLAS Packed Routines

• Utilize rectangular full packed (RFP) format
• Can convert in O(n2) data movement
• LAPACK packed format cannot utilise Level 3 BLAS

11 12 11 12

12 22 22

22

11

12

.

T

T

A A U A
A AS

A A U

U
UAF
A

⎛ ⎞ ⎛ ⎞
= ⇒ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29

33 34 35 36 37 38 39

44 45 46 47 48 49

55 56 57 58 59

66 67 68 69

77 78 79

88 89

99

.

. .

. . .

. . . .

.

.

.

.

a a a a a a a a a
a a a a a a a a

a a a a a a a
a a a a a a

A a a a a a
a a a a

a a a
a a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜
⎜⎜
⎝ ⎠

⎟
⎟⎟

()11 12 22 13 23 33 14 24 34AP a a a a a a a a a= K

55 56 57 58 59

11 66 67 68 69

12 22 77 78 79

13 23 33 88 89

14 24 34 44 99

15 16 17 18 19

25 26 27 28 29

35 36 37 38 39

45 46 47 48 49

a a a a a
a a a a a
a a a a a
a a a a a

AF a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

A = UTU - Block Cholesky

11 12 11 1211

22 2212 22

11 11 11 12 11 12

22 12 12 22 22

0
. 0

,

T

T T

T T

T T

A A R RR
A RR R

A R R A R R

A R R R R

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
= =

= +

11 11 11

11 12 12

22 22 22 12 12

T

T

T T

R R A

R R A

R R A R R

=

=

= −

(DPOTRF)

(DTRSM)

(DSYRK + DPOTRF)

Improved Accuracy Examples

More Accurate Algorithms

• Iterative refinement for Ax=b
– “Promise” the right answer for O(n2) additional cost
– Iterative refinement with extra-precise residuals
– Extra-precise BLAS needed
– “Guarantees” based on condition number estimates

• Condition estimate < 1/(n1/2ε) ⇒ reliable answer
and tiny error bounds

• No bad bounds in 6.2M tests
• LAWN 165 (TOMS 32:325–351, 2006)

More Accurate: Solve Ax=b
Conventional Gaussian Elimination

With extra precise
iterative refinement

ε

1/ε

ε = n1/2 2−24

More Accurate Algorithms
• Iterative refinement for least squares problems using the

extra-precise BLAS
• Arbitrary precision versions of everything

– using your favourite multiple precision package
• Jacobi-based SVD

– can be arbitrarily more accurate on tiny singular values
– yet faster than QR iteration, and within two times of divide and

conquer
– preprocess by QR with pivoting, block Jacobi, …
– LAWNs 169, 170

Improved ScaLAPACK
Coverage

Missing Drivers in Sca/LAPACK
LAPACK ScaLAPACK

Linear
Equations

LU
Cholesky
LDLT

xGESV
xPOSV
xSYSV

PxGESV
PxPOSV
missing

Least Squares
(LS)

QR
QR+pivot
SVD/QR
SVD/D&C
SVD/MR3

xGELS
xGELSY
xGELSS
xGELSD
missing

PxGELS
missing
missing
missing (ok?)
missing

Generalized LS LS + equality constr.
Generalized LM
Above + Iterative ref.

xGGLSE
xGGGL
missing

missing
missing
missing

More Missing Drivers
LAPACK ScaLAPACK

Symmetric EVD QR / Bisection+Invit
D&C
MR3

xSYEV / X
xSYEVD
xSYEVR

PxSYEV / X
PxSYEVD
missing

Nonsymmetric EVD Schur form
Vectors also

xGEES / X
xGEEV / X

missing (driver)
missing

SVD QR
D&C
MR3

Jacobi

xGESVD
xGESDD
missing
missing

PxGESVD
missing (ok?)
missing
missing

Generalized Symmetric
EVD

QR / Bisection+Invit
D&C
MR3

xSYGV / X
xSYGVD
missing

PxSYGV / X
missing (ok?)
missing

Generalized
Nonsymmetric EVD

Schur form
Vectors also

xGGES / X
xGGEV / X

missing
missing

Generalized SVD Kogbetliantz
MR3

xGGSVD
missing

missing (ok)
missing

Automatic Tuning

Optimizing Blocksizes for Matmul

Finding a Needle in a Haystack – So Automate

ScaLAPACK Data Layouts

1D Cyclic1D Block

2D Block
Cyclic1D Block

Cyclic

0
10

20
30

40
50

60
70

80
90

100

seconds

10002000300040005000600070008000900010000

1x60
2x30

3x20
4x15

5x12
6x10

problem size

grid shape

Execution time of PDGESV for various
grid shapes

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

Speedups for using 2D processor grid range from 2x to 8x
Cost of redistributing from 1D to best 2D layout 1% - 10%

Times obtained on: 60 processors, Dual AMD Opteron
1.4GHz Cluster w/Myrinet Interconnect with 2GB Memory

Community Involvement
• To help identify priorities

– more interesting tasks than are funded
– see www.netlib.org/lapack-dev for list

• To help identify promising algorithms
– what have we missed?

• To help do the work
– bug reports, provide fixes
– again, more tasks than we are funded to do
– already happening: thank you!

• Contributors Guide:
www.netlib.org/lapack-dev/lapack-coding/program-style.html

http://www.netlib.org/lapack-dev
http://www.netlib.org/lapack-dev/lapack-coding/program-style.html

Conclusions
• Lots to do in dense linear algebra

– new and improved numerical algorithms
– continuing architectural challenges

• Parallelism, performance tuning
– ease of use, software engineering

• Some grant support, but success depends also
on contributions from community
– Contributors’ guide drafted

www.netlib.org/lapack

http://www.netlib.org/lapack

	New Developments in LAPACK and ScaLAPACK
	Plan of Talk
	Motivation
	Information on the Future
	Participants
	Challenges
	What do users want?
	Goals of Forthcoming Sca/LAPACK
	LAPACK 3.1
	LAPACK Release 3.1
	Improved numerical algorithms
	Further Functionality
	Thread Safety
	Bug Fixes
	Future LAPACK and ScaLAPACK
	Future Developments:Functionality
	Improved Ease of Use
	Automate Performance Tuning
	Examples of New Functionality
	Pivoted Cholesky Factorization
	Pivoted Cholesky and LAPACK
	Level 2 BLAS Pivoting Routine
	Block-Partitioned Right Looking Cholesky
	Block-Partitioned Pivoted Cholesky
	Results - Speed
	Results – Level 3 Ratios
	Rank Revealing Properties
	Rook Pivoting
	Block-Partitioned QR Factorization
	Block-Partitioned QR Updating
	Block-Partitioned Updating
	Condition number of a Tridiagonal Matrix
	Lyapunov and Sylvester Equations
	Improved Efficiency Examples
	Faster Algorithms 1
	Faster Algorithms 1 (cont’d)
	New GSVD Algorithm
	Faster Algorithms 2
	Level 3 BLAS Packed Routines
	A = UTU - Block Cholesky
	Improved Accuracy Examples
	More Accurate Algorithms
	More Accurate: Solve Ax=b
	More Accurate Algorithms
	Improved ScaLAPACKCoverage
	Missing Drivers in Sca/LAPACK
	More Missing Drivers
	Automatic Tuning
	Optimizing Blocksizes for Matmul
	ScaLAPACK Data Layouts
	Community Involvement
	Conclusions

