New Developments In
LAPACK and ScaLAPACK

Sven Hammarling
NAG Ltd, Oxford

&
University of Manchester

With thanks to Jim Demmel, Jack Dongarra and
the LAPACK team & contributors

Plan of Talk

ntroduction and Motivation
_ APACK 3.1

—uture LAPACK and ScaLAPACK
New functionality

Improved efficiency

|mproved accuracy

Automatic tuning

Improved ease of use

Community involvement

LAWN — LAPACK Working Note
www.netlib.org/l apack/lawns/downl oads

http://www.netlib.org/lapack/lawns/downloads/

Motivation

LAPACK and ScaLAPACK are widely used

Adopted by AMD, Cray, Fujitsu, HP, IBM, IMSL, Intdl,
MathWorks, NAG, NEC, Octave, SGI, Sun, ...

> 70M web hitson netlib (incl. CLAPACK, LAPACK95)

Many ways to improve the packages, based on
Algorithmic research of the project
Enthusiastic participation of research community
User/vendor survey
Opportunities and demands of new architectures,
programming languages

Further releases planned (NSF support); LAWN 164

Information on the Future

Further releases planned (NSF support)
LAWN 164: NSF Proposal

LAWN 181: Prospectus for the Next LAPACK
and ScaL APACK Libraries (February ’07)

Participants

UC Berkeley:

Jm Demmel, Ming Gu, W. Kahan, Beresford Parlett, Xiaoye
Li, Osni Marques, Christof Voemel, David Bindel, Y ozo Hida,
Jason Riedy, Jianlin Xia, Jang Zhu, ...

U Tennessee, Knoxville

Jack Dongarra, Julien Langou, Julie Langou, Piotr Luszczek,
Stan Tomov, Alfredo Buttari, Jakub Kurzak, ...

Other Academic Institutions

UT Austin, UC Dauvis, Florida I T, U Kansas, U Maryland,
North Carolina SU, San Jose SU, UC Santa Barbara

TU Berlin, U Electrocomm. (Japan), FU Hagen, U Carlos |
Madrid, U Manchester, U Umea, U Wuppertal, U Zagreb, ...

Research Institutions
CERFACS, LBL, ...
Industrial Partners
Cray, HP, IBM, Intel, MathWorks, NAG, SGlI, ...

Challenges

Challenges for all large scale computing

Example ... your laptop

64 cores, 256 threads/multicore chip in afew years
Exponentially growing gaps between processor
speed and memory speed

Y early speed up: processor 59%; main memory
bandwidth 23%; main memory latency 5.5%
(National Research Council, 2005)

Heterogeneity
Asynchrony
Fault tolerance

What do users want?

High performance, ease of use, ...

Survey results
Small but interesting sample

What matrix sizes do you care about?
1000s. 34%
10,000s: 26%
100,000s or 1IMs:. 26%

How many processors, on distributed memory?
>10: 34%, >100: 31%, >1000: 19%

Do you use more than double precision?
Sometimes or frequently: 16%

Would Automatic Memory Allocation help?
Very useful: 72%, Not useful: 14%

Goals of Forthcoming Sca/LAPACK

1. Expand contents
e Morefunctions, more parallel implementations

2. Better algorithms
 Faster, more accurate

3. Improve ease of use

4. Automate performance tuning

5. Better software engineering

6. Increased community involvement

LAPACK 3.1

L APACK Release 3.1

3.1.0 released on 12 November 2006
|mproved numerical algorithms

Some further functionality
Thread safety
Bug fixes
See: www.netlib.org/lapack/lapack-3.1.0.changes

3.1.1 released on 26 February 2007
Mainly bug fixes (principally to test software)

See: www.netlib.org/lapack/lapack-3.1.1.changes

http://www.netlib.org/lapack/lapack-3.1.0.changes
http://www.netlib.org/lapack/lapack-3.1.1.changes

Improved numerical algorithms

More efficient nonsymmetric elgensol ver
Improved reduction to Hessenberg form

Improved multishift with aggressive early deflation for
the OR algorithm applied to the Hessenberg form, can
be up to ten times faster

SIMAX 23:929-973, 2002 (SIAG LA prize)
Improved MRRR algorithm for tridiagonal
matrices, iImpacts symmetric eigenproblem solvers

faster and more accurate than LAPACK 3.0

support for subset computation, O(kn) operations

LAWNS 162, 167

Run Time Ratios of Eigensolvers

(2.2 GHz Opteron + ACML)

Time/Time(MR) vs n for Opteron, practical
— ; ey

T oR (O.IB) |
< Bl (0.7)
o DC (0.3)

o
92
=
%
| .
9
T
E
=
)
£
'—

Dimension

Further Functionality

Mixed precision iterative refinement for Ax=b

Solve Ax =b viaAd = PLU Insingle precision

Compute » = b — Ax in double precision

Solve Ay =r for y In single precision,

Update solution x = X + y In double precision.
Typically two times speed up on modern PCs

Need x(A) <1/¢_, use double precision otherwise

LAWN 175 (LAWN 177 —cdll processor, LAWN 180 —
Sparse)

IBM Cell 3.2 GHz, Ax = b Performance

=—4—5SF Peak (204 Chopis)
=& 5P Awvb BM
DSGESY
UP Peak (15 Ghopd's
=#=[P Ax=b B

KMairiz Sire

Thread Safety

All driver and computational routines now
thread safe

XLAMCH supplied with LAPACK not
absolutely guaranteed to be thread safe.

Can be manually replaced by thread safe
version

Some obsolete auxiliaries not thread safe

Bug Fixes

Subtle bug dating back to LINPACK fixed
In OR factorization with pivoting.
LAWN 176

More support for NaNs and subnormal
numbers

Many other lesser bug fixes

Future LAPACK and
ScaLAPACK

Future Developments:
Functionality

More LAPACK functionality into ScaLAPACK
Updating matrix factorizations

Polynomial eigenvalue problems, particularly quadratic
Matrix functions such as 4’2 and ¢

CS decomposition and Product SVD

Pivoted Cholesky

More generalized Sylvester and Lyapunov equations
|mproved algorithms

Enhanced accuracy algorithms

Improved Ease of Use

Core version likely to remain Fortran 77, with
some Fortran 95 features (dynamic memory
allocation, recursion, modules, environmental
enquiries, ...)

Wrappers for the driversin C and Fortran 95

Wrappers for higher level languages such as
MATLAB and Python

Maximum efficiency in Fortran, best ease of use
In high level languages or packages
Straightforward to interface to Fortran

Automate Performance Tuning

Widely used in performance tuning of Kernels,
e.q. ATLAS, FFTW

1300 callsto I1LAENV to get block sizes, etc.
Never been systematically tuned

Extend automatic tuning techniques of ATLAS, etc. to
these other parameters
Automation important as architectures evolve

Allow usersto supply ssmpler datalayouts to
ScaL APACK and, if necessary, convert on the fly

Examples of New Functionality

Pivoted Cholesky Factorization
If 4 1s positive semidefinite, of rank », then there
exists a permutation matrix P such that
P'AP=U"U
and U hastheform

[— Un Up
0 O0)

where U, IS upper triangular with positive
diagona elements

Pivoted Cholesky and LAPACK

In order to incorporate pivoting, we need a Cholesky
algorithm that updates the trailing matrix

TheLevel 2 BLASroutinein LAPACK (xPOTF2) does
update

The Level 3BLASoutinein LAPACK (xPOTRF) uses
a left looking algorithm, and so does not update

Need aright looking block-partitioned algorithm
comparable to xPOTF2

_evel 2 BLAS Pivoting Routine

We can readily introduce pivoting into aright
looking Level 2 BLAS Cholesky routine.
At the (k +1th stage:
e Find pivot index g as
q= min{j 1a' = maxal.(l.")}

k<i<n

e Swap rows and columns £ and ¢
o Stopif maxal” <n-eps-ay (Higham)

k<i<n

(LINPACK uses maxa'” <0)

k<i<n

Block-Partitioned Right Looking Cholesky

/All A4, A13\ (U1T1 0 O\ (1 0 0) (Ull Uy, Ups)
A22 A23 = U1T2 Usz 0jo0 7 O 0 Uy Uy
-+ Adg) \Uz Uy I)\O 0 4)(0 0 1)

J
UszUzz = Azz - U1T2U12

UszUzs — A23 - U1T2U13

A= A33 - U1T3U13 - UszUzs

_U1T1010 U, U,
u, 1)\0 4)L 0 I

~

— Ak—l - U1T2U12

Block-Partitioned Pivoted Cholesky

Thisgivesthe basisof alLevel 3 BLAS algorithm
In which pivoting can be incorporated
Form the trailing matrix A

Usethe Level 2 BLAS algorithm with pivoting to

factorize the b by » matrix U.,,, where b is the block size

(but choose pivot from whole of trailing matrix)
Routine is significantly faster than the equivalent
LINPACK routine and, with Higham’ s stopping
criterion, gives more reliable rank detection

Craig Lucas, LAWN 161

Results - Speed

| -~©-- LINPACKs DCHDC |
. | —=— Our Level 2 Algorithm | .
. | —2— Our Level 3 Algorithm | :

o
o
o

.
(-
o

)
O
@

o
"
@D
=

I—

3000 4000
Dimension, n, of matrix

Results — Level 3 Ratios

Ratio of time for pivoted code
over LAPACK unpivoted code

Level 3 codes - LAPACK DPOTRF vs LEV3PCHOL

2

I I I I —_—
1000 2000 3000 4000 6000
Dimension, n, of matrix

Rank Revealing Properties

Comparing computed rank vs the “expected’ rank
of our test matrices, the new code getsit right in
299/300 cases

Table below shows over estimation of rank In
DCHDC (|r—r|)

min

Rook Pivoting

Incorporate rook pivoting into the symmetric
Indefinite factorization, with diagonal pivoting
A=P'U'DUP
allows U to be bounded
D has well-conditioned 2 by 2 diagonal blocks
(need to investigate fast Bunch — Parl ett)

Ashcraft, Grimesand Lewis, SIMAX 20:513-561,
1998

30

Block-Partitioned QR Factorization

A:Q[gj, O=HH,. H,

where H . is an elementary Householder transformation
matrix of the form

H=I-tvv..

r r r

Block partitioned algorithms are based on the representation
HH, . H =I-VTV',

where V' = (v, v,...v,), T 1Sb by b upper triangular and

b isthe block size. Multiplication by (I —VTV") involves

Level 3 BLAS operations.

Block-Partitioned QR Updating

Commonest case Is that of adding new rows, for example
adding new observations in aleast squares problem.

(R N
X 0 7 0
(X

To achieve thiswe just need a QR factorization of {]
We can apply block partitioned Householder in the
usual way

Block-Partitioned Updating

Updating by a contiguous block of columnsisalso
straightforward

Downdating, as in the standard case, needs care.
Craig Lucas, PhD thesis, 2004

SH, Nicholas J. Higham and Craig L ucas (2006)
LAPACK-Style Codes for Pivoted Cholesky and OR
Updating. MIMS preprint 2006.385
eprints.ma.man.ac.uk

http://eprints.ma.man.ac.uk/

Condition number of a
Tridiagonal Matrix

Computed viathe OR factorization in O(n)
operations (not estimated)

Utilizes aresult from 1974 of Gill, Golub, Murray
and Saunders, on the structure of a‘specia’
matrix

Algorithm 2.1 in “G Hargreaves. Computing the
Condition Number of Tridiagonal and Diagonal-
Plus-Semiseparable Matrices in Linear Time,
SIMAX, 27, 801-820, 2006”, for which stability
IS proved

Lyapunov and Sylvester Equations

Further Lyapunov and Sylvester solvers
based upon

RECSY: High Performance Library for
Sylvester-Type Matrix Equations, |sak Jonsson
and Bo Kagstrom at the University of Umea

Uses recursive blocked algorithms
ScalL APACK versions also underway
WWW.CS.Umu.se/~Isak/recsy/

Speeds up the generalized nonsymmetric
elgenproblem

http://www.cs.umu.se/~isak/recsy/

Improved Efficiency Examples

Faster Algorithms 1

Faster symmetric elgensolvers and SVD routines
MRRR algorithm for bidiagonal SVD
faster tridiagonal; initially reduce to band form
Improved bidiagonal reduction; LAWN 174

Faster generalized eigensolvers, LAWNs 171, 173

On 26 real test matrices, speedups of 14.7, 4.4 on
average
Further mixed precision iterative refinement
routines
More linear equation solvers
Eigenvalue problems

Faster Algorithms 1 (cont’d)

Faster GSVD routine

Based on CS decomposition (C Van Loan.
Generalizing the Singular Value Decomposition,

SINUM, 13, 76-83, 1976)
MSc Thesis, Jenny Jian Wang, UC Davis

New GSVD Algorithm

Given mbynAd and pbyn B,factor A=UY, X and B=V >, X

1000

"
O
c
Q
O
L
»
=
L
=
=
(@)
=
c
c
S
'

100 200 300 400 en 700

M = N = P and full rank
PSVD, CSD under development

Bai and Wang, UC Davis

Faster Algorithms 2

Novel Data Layouts

E Elmroth, F Gustavson, | Jonsson and B Kagstrom.
Recursive Blocked Algorithms and Hybrid Data
Structures for Dense Matrix Library Software, SIAM
Review, 2004

require different data layouts, but will provide
conventional interfaces

Some am to be cache oblivious

| evel 3 BLAS Packed Routines

Utilize rectangular full packed (RFP) format
Can convert in O(n?) data movement
LAPACK packed format cannot utilise Level 3 BLAS

A:(A];I. Ale:AS:(Ull Ale
A12 A22 " U22
(% h

AF =| U},
\Alzj

s Uig di7 g g

Uy Uy Uy Uyg Uyg

(g Uzg Uzz Uzg Uz

Uys Uyg Uy Uy Uy

A= Ugg Ugg U5 Ugg Ugg
e g7 g Ugg

77 dzg Ao

Ugg Ugg

N g9

AP :(all‘ typ Uy | Uz Uy gz | iy Uy

AF

/ass dgg dg; dgg g
g ~dgg Ug7 Ugg g
i, Uy ~dep Uig Uy
(i3 Uy Uzz ~Ugg gg
iy Uyy Uz Uy Uy
s Uig U7 Gig lyg
Uys dyg Uy Uypg Uyg
g Uzg U3y dgyg g

\ Qa5 yg gy Qug Ay

A = U'U - Block Cholesky

(All A12 j _ (R]ﬁ_ O) (Rll R12 j
) A22 R]Z Rsz O R22

A11 — R1T1R11’ A12 — R1T1R12

Azz — R1T2R12 + RszRzz

R1T1R11 = Ay, (DPOTREF)
R.R,=A4, (DTRSM)
RLR,, = A, — RLR,, IRCRGIEIZ OIS

Improved Accuracy Examples

More Accurate Algorithms

Iterative refinement for Ax=b
“Promise” the right answer for O(n2) additional cost
Iterative refinement with extra-precise residuals
Extra-precise BLAS needed
“Guarantees’ based on condition number estimates

Condition estimate < 1/(n12¢) = reliable answer
and tiny error bounds

No bad boundsin 6.2M tests

LAWN 165 (

OMS 32:325-351, 2006)

More Accurate: Solve Ax=b

Conventional Gaussian Elimination

With extra precise
Iterative refinement

log 10 E norm

5 10 b 10

108; 10 Fnorm

log 10 K norm

c=npnli2n-24

More Accurate Algorithms

Iterative refinement for least squares problems using the
extra-precise BLAS

Arbitrary precision versions of everything
using your favourite multiple precision package

Jacobi-based SVD
can be arbitrarily more accurate on tiny singular values

yet faster than QR iteration, and within two times of divide and
conguer

preprocess by QR with pivoting, block Jacobi, ...
LAWNSs 169, 170

Improved ScaLAPACK
Coverage

Missing Drivers in Sca/LAPACK

LAPACK

ScaLAPACK

Linear
Equations

LU
Cholesky
LDLT

XGESV
xPOSV
xSYSV

PxXGESV
PxPOSV
missing

Least Squares

(LS)

QR
QR+pivot
SVD/QR
SVD/D&C
SVD/MR3

XGELS
XGELSY
XGELSS
XGELSD
missing

PXGELS
missing
missing
missing (ok?)
missing

Generalized LS

LS + equality constr.
Generalized LM
Above + lterative ref.

XGGLSE
XGGGL
missing

missing
missing
missing

More Missing Drivers

LAPACK ScaLAPACK

Symmetric EVD QR / Bisection+Invit XSYEV / X PXSYEV / X

D&C XSYEVD PxSYEVD

MR3 XxSYEVR missing
Nonsymmetric EVD Schur form XGEES / X missing (driver)

Vectors also XGEEV / X missing
SVD QR XGESVD PxGESVD

D&C XGESDD missing (o0k?)

MR3 missing missing

Jacobi missing missing
Generalized Symmetric QR / Bisection+Invit XSYGV [X PxSYGV / X
EVD D&C xSYGVD missing (0k?)

MR3 missing missing
Generalized Schur form XGGES/ X missing
Nonsymmetric EVD Vectors also XGGEV / X missing
Generalized SVD Kogbetliantz XxGGSVD missing (ok)

MR3 missing missing

Automatic Tuning

Optimizing Blocksizes for Matmul

Finding a Needle in a Haystack — So Automate

1D Cyclic
2D Block
Cyclic

0|1
0|1

g|17({o0|1|0(1 0|1
2|13 (213|213 |23
232|323 [2](3
gl(1(a(1]|0]|1

2|3 (21323 |23
0|1 ({o1|0(1 |01
213213213123

g1 (o)1 |0[1

10T 201 2300 (2 00 [0 Psin 26

he
-
>
q
-
Qe
e
qu
A
X
@,
<
al
<
-
qu;
&)
)

1D Block
1D Block
Cyclic

Execution time of PDGESV for various

grid shapes

seconds

10000 9000 8000 7000 6000 5000 4000 3000 2000 1000

problem size

— 1x60
2x30

grid shape

Speedups for using 2D processor grid range from 2x to 8x

Cost of redistributing from 1D to best 2D layout 1% -

10%

Times obtained on: 60 processors, Dual AMD Opteron
1.4GHz Cluster w/Myrinet Interconnect with 2GB Memory

@ 90-100
W 80-90
0O 70-80
@ 60-70
O 50-60
W 40-50
0O 30-40
0O 20-30
E 10-20
O 0-10

Community Involvement

To help identify priorities
more interesting tasks than are funded
see www.netlib.org/lapack-dev for list

To help identify promising algorithms
what have we missed?

To help do the work
bug reports, provide fixes

again, more tasks than we are funded to do

already happening: thank you!
Contributors Guide:
www.netlib.org/lapack-dev/lapack-coding/program-style.html

http://www.netlib.org/lapack-dev
http://www.netlib.org/lapack-dev/lapack-coding/program-style.html

Conclusions

Lotsto do in dense linear algebra
new and improved numerical algorithms

continuing architectural challenges
Parallelism, performance tuning

ease of use, software engineering
Some grant support, but success depends also
on contributions from community
Contributors guide drafted

www.netlib.org/lapack

http://www.netlib.org/lapack

	New Developments in LAPACK and ScaLAPACK
	Plan of Talk
	Motivation
	Information on the Future
	Participants
	Challenges
	What do users want?
	Goals of Forthcoming Sca/LAPACK
	LAPACK 3.1
	LAPACK Release 3.1
	Improved numerical algorithms
	Further Functionality
	Thread Safety
	Bug Fixes
	Future LAPACK and ScaLAPACK
	Future Developments:Functionality
	Improved Ease of Use
	Automate Performance Tuning
	Examples of New Functionality
	Pivoted Cholesky Factorization
	Pivoted Cholesky and LAPACK
	Level 2 BLAS Pivoting Routine
	Block-Partitioned Right Looking Cholesky
	Block-Partitioned Pivoted Cholesky
	Results - Speed
	Results – Level 3 Ratios
	Rank Revealing Properties
	Rook Pivoting
	Block-Partitioned QR Factorization
	Block-Partitioned QR Updating
	Block-Partitioned Updating
	Condition number of a Tridiagonal Matrix
	Lyapunov and Sylvester Equations
	Improved Efficiency Examples
	Faster Algorithms 1
	Faster Algorithms 1 (cont’d)
	New GSVD Algorithm
	Faster Algorithms 2
	Level 3 BLAS Packed Routines
	A = UTU - Block Cholesky
	Improved Accuracy Examples
	More Accurate Algorithms
	More Accurate: Solve Ax=b
	More Accurate Algorithms
	Improved ScaLAPACKCoverage
	Missing Drivers in Sca/LAPACK
	More Missing Drivers
	Automatic Tuning
	Optimizing Blocksizes for Matmul
	ScaLAPACK Data Layouts
	Community Involvement
	Conclusions

