New Developments in LAPACK and ScaLAPACK

Sven Hammarling NAG Ltd, Oxford & University of Manchester

With thanks to Jim Demmel, Jack Dongarra and the LAPACK team & contributors

Plan of Talk

- Introduction and Motivation
- LAPACK 3.1
- Future LAPACK and ScaLAPACK
 - New functionality
 - Improved efficiency
 - Improved accuracy
 - Automatic tuning
 - Improved ease of use
- Community involvement

LAWN – LAPACK Working Note www.netlib.org/lapack/lawns/downloads

Motivation

- LAPACK and ScaLAPACK are widely used
 - Adopted by AMD, Cray, Fujitsu, HP, IBM, IMSL, Intel, MathWorks, NAG, NEC, Octave, SGI, Sun, ...
 - > 70M web hits on netlib (incl. CLAPACK, LAPACK95)
- Many ways to improve the packages, based on
 - Algorithmic research of the project
 - Enthusiastic participation of research community
 - User/vendor survey
 - Opportunities and demands of new architectures, programming languages
- Further releases planned (NSF support); LAWN 164

Information on the Future

- Further releases planned (NSF support)
- LAWN 164: NSF Proposal
- LAWN 181: Prospectus for the Next LAPACK and ScaLAPACK Libraries (February '07)

Participants

- UC Berkeley:
 - Jim Demmel, Ming Gu, W. Kahan, Beresford Parlett, Xiaoye Li, Osni Marques, Christof Voemel, David Bindel, Yozo Hida, Jason Riedy, Jianlin Xia, Jiang Zhu, ...
- U Tennessee, Knoxville
 - Jack Dongarra, Julien Langou, Julie Langou, Piotr Luszczek, Stan Tomov, Alfredo Buttari, Jakub Kurzak, ...
- Other Academic Institutions
 - UT Austin, UC Davis, Florida IT, U Kansas, U Maryland, North Carolina SU, San Jose SU, UC Santa Barbara
 - TU Berlin, U Electrocomm. (Japan), FU Hagen, U Carlos III Madrid, U Manchester, U Umeå, U Wuppertal, U Zagreb, ...
- Research Institutions
 - CERFACS, LBL, ...
- Industrial Partners
 - Cray, HP, IBM, Intel, MathWorks, NAG, SGI, ...

Challenges

- Challenges for all large scale computing
- Example ... your laptop
 - 64 cores, 256 threads/multicore chip in a few years
- Exponentially growing gaps between processor speed and memory speed
 - Yearly speed up: processor 59%; main memory bandwidth 23%; main memory latency 5.5% (National Research Council, 2005)
- Heterogeneity
- Asynchrony
- Fault tolerance

What do users want?

- High performance, ease of use, ...
- Survey results
 - Small but interesting sample
 - What matrix sizes do you care about?
 - 1000s: 34%
 - 10,000s: 26%
 - 100,000s or 1Ms: 26%
 - How many processors, on distributed memory?
 - >10: 34%, >100: 31%, >1000: 19%
 - Do you use more than double precision?
 - Sometimes or frequently: 16%
 - Would Automatic Memory Allocation help?
 - Very useful: 72%, Not useful: 14%

Goals of Forthcoming Sca/LAPACK

- 1. Expand contents
 - More functions, more parallel implementations
- 2. Better algorithms
 - Faster, more accurate
- 3. Improve ease of use
- 4. Automate performance tuning
- 5. Better software engineering
- 6. Increased community involvement

LAPACK Release 3.1

- 3.1.0 released on 12 November 2006
 - Improved numerical algorithms
 - Some further functionality
 - Thread safety
 - Bug fixes
- See: www.netlib.org/lapack/lapack-3.1.0.changes
- 3.1.1 released on 26 February 2007
 Mainly bug fixes (principally to test software)
- See: www.netlib.org/lapack/lapack-3.1.1.changes

Improved numerical algorithms

- More efficient nonsymmetric eigensolver
 - improved reduction to Hessenberg form
 - improved multishift with aggressive early deflation for the *QR* algorithm applied to the Hessenberg form, can be up to ten times faster
 - SIMAX 23:929-973, 2002 (SIAG LA prize)
- Improved MRRR algorithm for tridiagonal matrices; impacts symmetric eigenproblem solvers
 - faster and more accurate than LAPACK 3.0
 - support for subset computation, O(kn) operations
 - LAWNs 162, 167

Run Time Ratios of Eigensolvers

(2.2 GHz Opteron + ACML)

Further Functionality

• Mixed precision iterative refinement for Ax=b

Solve $A\tilde{x} = b$ via A = PLU in single precision Compute $r = b - A\tilde{x}$ in double precision Solve Ay = r for y in single precision, Update solution $x = \tilde{x} + y$ in double precision.

- Typically two times speed up on modern PCs
- Need $\kappa(A) \leq 1/\varepsilon_s$, use double precision otherwise
- LAWN 175 (LAWN 177 cell processor, LAWN 180 sparse)

IBM Cell 3.2 GHz, Ax = b Performance

Thread Safety

- All driver and computational routines now thread safe
- xLAMCH supplied with LAPACK not absolutely guaranteed to be thread safe. Can be manually replaced by thread safe version
- Some obsolete auxiliaries not thread safe

Bug Fixes

- Subtle bug dating back to LINPACK fixed in *QR* factorization with pivoting. LAWN 176
- More support for NaNs and subnormal numbers
- Many other lesser bug fixes

Future LAPACK and ScaLAPACK

Future Developments: Functionality

- More LAPACK functionality into ScaLAPACK
- Updating matrix factorizations
- Polynomial eigenvalue problems, particularly quadratic
- Matrix functions such as $A^{\frac{1}{2}}$ and e^{A}
- CS decomposition and Product SVD
- Pivoted Cholesky
- More generalized Sylvester and Lyapunov equations
- Improved algorithms
- Enhanced accuracy algorithms

Improved Ease of Use

- Core version likely to remain Fortran 77, with some Fortran 95 features (dynamic memory allocation, recursion, modules, environmental enquiries, ...)
- Wrappers for the drivers in C and Fortran 95
- Wrappers for higher level languages such as MATLAB and Python
- Maximum efficiency in Fortran, best ease of use in high level languages or packages
- Straightforward to interface to Fortran

Automate Performance Tuning

- Widely used in performance tuning of Kernels, e.g. ATLAS, FFTW
- 1300 calls to ILAENV to get block sizes, etc.
 - Never been systematically tuned
- Extend automatic tuning techniques of ATLAS, etc. to these other parameters
 - Automation important as architectures evolve
- Allow users to supply simpler data layouts to ScaLAPACK and, if necessary, convert on the fly

Examples of New Functionality

Pivoted Cholesky Factorization

If A is positive semidefinite, of rank r, then there exists a permutation matrix P such that

$$P^T A P = U^T U$$

and U has the form

$$U = \begin{pmatrix} U_{11} & U_{12} \\ 0 & 0 \end{pmatrix},$$

where U_{11} is upper triangular with positive diagonal elements

Pivoted Cholesky and LAPACK

- In order to incorporate pivoting, we need a Cholesky algorithm that updates the trailing matrix
- The Level 2 BLAS routine in LAPACK (xPOTF2) does update
- The Level 3 BLAS routine in LAPACK (**xPOTRF**) uses a left looking algorithm, and so does not update
- Need a right looking block-partitioned algorithm comparable to **xPOTF2**

$$M_k A_{k-1} M_k^T = A_k = \begin{pmatrix} I & 0 \\ 0 & \tilde{A}_k \end{pmatrix}$$

Level 2 BLAS Pivoting Routine

- We can readily introduce pivoting into a right
- looking Level 2 BLAS Cholesky routine.
- At the (k+1)th stage:
- Find pivot index q as

$$q = \min\left\{j : a_{jj}^{(k)} = \max_{k \le i \le n} a_{ii}^{(k)}\right\}$$

- Swap rows and columns k and q
- Stop if $\max_{k \le i \le n} a_{ii}^{(k)} \le n \cdot eps \cdot a_{11}^{(1)}$ (Higham) (LINPACK uses $\max_{k \le i \le n} a_{ii}^{(k)} \le 0$)

Block-Partitioned Right Looking Cholesky

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} \\ . & A_{22} & A_{23} \\ . & . & A_{33} \end{pmatrix} = \begin{pmatrix} U_{11}^T & 0 & 0 \\ U_{12}^T & U_{22}^T & 0 \\ U_{13}^T & U_{23}^T & I \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & \tilde{A} \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & I \end{pmatrix}$$

$$U_{22}^{T}U_{22} = A_{22} - U_{12}^{T}U_{12}$$
$$U_{22}^{T}U_{23} = A_{23} - U_{12}^{T}U_{13}$$
$$\tilde{A} = A_{33} - U_{13}^{T}U_{13} - U_{23}^{T}U_{23}$$

$$\begin{aligned} A_{k-1} = \begin{pmatrix} \Box & \Box \\ \Box & \tilde{A}_{k-1} \end{pmatrix} = \begin{pmatrix} U_{11}^T & 0 \\ U_{12}^T & I \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & A_k \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ 0 & I \end{pmatrix} \\ A_k = \tilde{A}_{k-1} - U_{12}^T U_{12} \end{aligned}$$

Block-Partitioned Pivoted Cholesky

- This gives the basis of a Level 3 BLAS algorithm in which pivoting can be incorporated
 - Form the trailing matrix \tilde{A}
 - Use the Level 2 BLAS algorithm with pivoting to factorize the *b* by *b* matrix U_{22} , where *b* is the block size (but choose pivot from whole of trailing matrix)
- Routine is significantly faster than the equivalent LINPACK routine and, with Higham's stopping criterion, gives more reliable rank detection
- Craig Lucas, LAWN 161

Results - Speed

Results – Level 3 Ratios

Ratio of time for pivoted code over LAPACK unpivoted code

Rank Revealing Properties

- Comparing computed rank vs the "expected" rank of our test matrices, the new code gets it right in 299/300 cases
- Table below shows over estimation of rank in DCHDC $(|\hat{r} r|)$

n	70	100	200	500	1000
min	0	1	1	3	5
max	8	11	13	19	19

Rook Pivoting

- Incorporate rook pivoting into the symmetric indefinite factorization, with diagonal pivoting $A = P^T U^T D U P$
 - allows U to be bounded
 - -D has well-conditioned 2 by 2 diagonal blocks
- (need to investigate fast Bunch Parlett)
- Ashcraft, Grimes and Lewis, SIMAX 20:513-561, 1998

Block-Partitioned QR Factorization

$$A = Q\begin{pmatrix} R\\ 0 \end{pmatrix}, \quad Q = H_1 H_2 \dots H_n,$$

where H_r is an elementary Householder transformation matrix of the form

$$H_r = I - \tau_r v_r v_r^T.$$

Block partitioned algorithms are based on the representation

$$H_1H_2\ldots H_b=I-VTV^T,$$

where $V = (v_1 v_2 \dots v_b)$, T is b by b upper triangular and

b is the block size. Multiplication by $(I - VTV^T)$ involves Level 3 BLAS operations.

Block-Partitioned QR Updating

Commonest case is that of adding new rows, for example adding new observations in a least squares problem.

$$\tilde{A} = \begin{pmatrix} A \\ X \end{pmatrix} = \begin{pmatrix} Q & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} R \\ 0 \\ X \end{pmatrix} = \tilde{Q} \begin{pmatrix} \tilde{R} \\ 0 \\ 0 \end{pmatrix}.$$

To achieve this we just need a QR factorization of $\begin{pmatrix} R \\ X \end{pmatrix}$. We can apply block partitioned Householder in the usual way

Block-Partitioned Updating

- Updating by a contiguous block of columns is also straightforward
- Downdating, as in the standard case, needs care.
- Craig Lucas, PhD thesis, 2004
- SH, Nicholas J. Higham and Craig Lucas (2006) *LAPACK-Style Codes for Pivoted Cholesky and QR Updating*. MIMS preprint 2006.385 <u>eprints.ma.man.ac.uk</u>

Condition number of a Tridiagonal Matrix

- Computed via the *QR* factorization in *O*(*n*) operations (not estimated)
- Utilizes a result from 1974 of Gill, Golub, Murray and Saunders, on the structure of a 'special' matrix
- Algorithm 2.1 in "G Hargreaves. Computing the Condition Number of Tridiagonal and Diagonal-Plus-Semiseparable Matrices in Linear Time, SIMAX, 27, 801–820, 2006", for which stability is proved

Lyapunov and Sylvester Equations

- Further Lyapunov and Sylvester solvers based upon
 - RECSY: High Performance Library for Sylvester-Type Matrix Equations, Isak Jonsson and Bo Kågström at the University of Umeå
 - Uses recursive blocked algorithms
 - ScaLAPACK versions also underway

– www.cs.umu.se/~isak/recsy/

• Speeds up the generalized nonsymmetric eigenproblem

Improved Efficiency Examples

Faster Algorithms 1

- Faster symmetric eigensolvers and SVD routines
 - MRRR algorithm for bidiagonal SVD
 - faster tridiagonal; initially reduce to band form
 - Improved bidiagonal reduction; LAWN 174
- Faster generalized eigensolvers; LAWNs 171, 173
 - On 26 real test matrices, speedups of 14.7, 4.4 on average
- Further mixed precision iterative refinement routines
 - More linear equation solvers
 - Eigenvalue problems

Faster Algorithms 1 (cont'd)

- Faster GSVD routine
 - Based on CS decomposition (C Van Loan.
 Generalizing the Singular Value Decomposition, SINUM, 13, 76–83, 1976)
 - MSc Thesis, Jenny Jian Wang, UC Davis

New GSVD Algorithm

Given *m* by *n A* and *p* by *n B*, factor $A = U \sum_{a} X$ and $B = V \sum_{b} X$

PSVD, CSD under development

Bai and Wang, UC Davis

Faster Algorithms 2

• Novel Data Layouts

- E Elmroth, F Gustavson, I Jonsson and B Kågstrom.
 Recursive Blocked Algorithms and Hybrid Data Structures for Dense Matrix Library Software, SIAM
 Review, 2004
- require different data layouts, but will provide conventional interfaces
- Some aim to be cache oblivious

Level 3 BLAS Packed Routines

- Utilize rectangular full packed (RFP) format
- Can convert in $O(n^2)$ data movement
- LAPACK packed format cannot utilise Level 3 BLAS

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{pmatrix} \Longrightarrow AS = \begin{pmatrix} U_{11} & A_{12} \\ & U_{22} \end{pmatrix}$$
$$AF = \begin{pmatrix} \frac{U_{22}}{U_{11}^T} \\ A_{12} \end{pmatrix}$$

a₁₁ a_{14} a_{18} a_{17} a_{12} *a*₁₃ a_{15} a_{16} *a*₁₉ a222 a_{23} a_{24} a_{25} a₂₇ a_{26} a29 a_{28} a₃₃ a₃₇ *a*₃₄ *a*₃₈ a₃₉ a_{35} a_{36} ٠ a_{44} a₄₇ a_{48} *a*₄₉ a_{45} a_{46} • a₅₅ a_{56} a₅₉ A =a₅₇ a_{58} • a_{66} a₆₇ a₆₉ a_{68} • *a*₇₇ a₇₉ a_{78} • ٠ • • a_{88} a_{89} • • • • a₉₉ • $AP = (a_{11} \mid a_{12})$ a₂₄ a₃₄ a₂₃ a₃₃ $a_{22} \mid a_{13}$ a_{14}

$$AF = \begin{bmatrix} a_{55} & a_{56} & a_{57} & a_{58} & a_{59} \\ a_{11} & a_{66} & a_{67} & a_{68} & a_{69} \\ a_{12} & a_{22} & a_{77} & a_{78} & a_{79} \\ a_{13} & a_{23} & a_{33} & a_{88} & a_{89} \\ a_{14} & a_{24} & a_{34} & a_{44} & a_{99} \\ a_{15} & a_{16} & a_{17} & a_{18} & a_{19} \\ a_{25} & a_{26} & a_{27} & a_{28} & a_{29} \\ a_{35} & a_{36} & a_{37} & a_{38} & a_{39} \\ a_{45} & a_{46} & a_{47} & a_{48} & a_{49} \end{bmatrix}$$

$A = U^T U$ - Block Cholesky

$$\begin{pmatrix} A_{11} & A_{12} \\ . & A_{22} \end{pmatrix} = \begin{pmatrix} R_{11}^T & 0 \\ R_{12}^T & R_{22}^T \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix}$$
$$A_{11} = R_{11}^T R_{11}, \quad A_{12} = R_{11}^T R_{12}$$
$$A_{22} = R_{12}^T R_{12} + R_{22}^T R_{22}$$

$$R_{11}^{T}R_{11} = A_{11}$$

$$R_{11}^{T}R_{12} = A_{12}$$

$$R_{22}^{T}R_{22} = A_{22} - R_{12}^{T}R_{12}$$

(DPOTRF) (DTRSM) (DSYRK + DPOTRF)

Improved Accuracy Examples

More Accurate Algorithms

- Iterative refinement for Ax = b
 - "Promise" the right answer for $O(n^2)$ additional cost
 - Iterative refinement with extra-precise residuals
 - Extra-precise BLAS needed
 - "Guarantees" based on condition number estimates
 - Condition estimate $< 1/(n^{1/2}\varepsilon) \Rightarrow$ reliable answer and tiny error bounds
 - No bad bounds in 6.2M tests
- LAWN 165 (TOMS 32:325–351, 2006)

More Accurate: Solve *Ax=b*

Conventional Gaussian Elimination

With extra precise iterative refinement

More Accurate Algorithms

- Iterative refinement for least squares problems using the extra-precise BLAS
- Arbitrary precision versions of everything

 using your favourite multiple precision package
- Jacobi-based SVD
 - can be arbitrarily more accurate on tiny singular values
 - yet faster than QR iteration, and within two times of divide and conquer
 - preprocess by QR with pivoting, block Jacobi, ...
 - LAWNs 169, 170

Improved ScaLAPACK Coverage

Missing Drivers in Sca/LAPACK

		LAPACK	ScaLAPACK
Linear	LU	xGESV	PxGESV
Equations	Cholesky	xPOSV	PxPOSV
	LDL ^T	xSYSV	missing
Least Squares (LS)	QR	xGELS	PxGELS
	QR +pivot	xGELSY	missing
	SVD/QR	xGELSS	missing
	SVD/D&C	xGELSD	missing (ok?)
	SVD/MR ³	missing	missing
Generalized LS	LS + equality constr.	xGGLSE	missing
	Generalized LM	xGGGL	missing
	Above + Iterative ref.	missing	missing

More Missing Drivers

		LAPACK	ScaLAPACK
Symmetric EVD	QR / Bisection+Invit	xSYEV / X	PxSYEV / X
	D&C	xSYEVD	PxSYEVD
	MR ³	xSYEVR	missing
Nonsymmetric EVD	Schur form	xGEES / X	missing (driver)
	Vectors also	xGEEV / X	missing
SVD	QR	xGESVD	PxGESVD
	D&C	xGESDD	missing (ok?)
	MR ³	missing	missing
	Jacobi	missing	missing
Generalized Symmetric	QR / Bisection+Invit	xSYGV / X	PxSYGV / X
EVD	D&C	xSYGVD	missing (ok?)
	MR ³	missing	missing
Generalized	Schur form	xGGES / X	missing
Nonsymmetric EVD	Vectors also	xGGEV / X	missing
Generalized SVD	Kogbetliantz	xGGSVD	missing (ok)
	MR ³	missing	missing

Optimizing Blocksizes for Matmul

Finding a Needle in a Haystack – So Automate

ScaLAPACK Data Layouts

Speedups for using 2D processor grid range from 2x to 8x Cost of redistributing from 1D to best 2D layout 1% - 10%

Times obtained on: 60 processors, Dual AMD Opteron 1.4GHz Cluster w/Myrinet Interconnect with 2GB Memory

Community Involvement

- To help identify priorities
 - more interesting tasks than are funded
 - see <u>www.netlib.org/lapack-dev</u> for list
- To help identify promising algorithms
 - what have we missed?
- To help do the work
 - bug reports, provide fixes
 - again, more tasks than we are funded to do
 - already happening: thank you!
- Contributors Guide:

www.netlib.org/lapack-dev/lapack-coding/program-style.html

Conclusions

- Lots to do in dense linear algebra
 - new and improved numerical algorithms
 - continuing architectural challenges
 - Parallelism, performance tuning
 - ease of use, software engineering
- Some grant support, but success depends also on contributions from community
 - Contributors' guide drafted

www.netlib.org/lapack