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Plan of Talk
• Introduction and Motivation
• LAPACK 3.1
• Future LAPACK and ScaLAPACK

– New functionality
– Improved efficiency
– Improved accuracy
– Automatic tuning
– Improved ease of use

• Community involvement

LAWN – LAPACK Working Note  
www.netlib.org/lapack/lawns/downloads

http://www.netlib.org/lapack/lawns/downloads/


Motivation
• LAPACK and ScaLAPACK are widely used

– Adopted by AMD, Cray, Fujitsu, HP, IBM, IMSL, Intel, 
MathWorks, NAG, NEC, Octave, SGI, Sun, …

– > 70M web hits on netlib (incl. CLAPACK, LAPACK95)

• Many ways to improve the packages, based on
– Algorithmic research of the project
– Enthusiastic participation of research community
– User/vendor survey
– Opportunities and demands of new architectures, 

programming languages

• Further releases planned (NSF support); LAWN 164



Information on the Future
• Further releases planned (NSF support)
• LAWN 164: NSF Proposal
• LAWN 181: Prospectus for the Next LAPACK 

and ScaLAPACK Libraries (February ’07)



Participants
• UC Berkeley:

– Jim Demmel, Ming Gu, W. Kahan, Beresford Parlett, Xiaoye
Li, Osni Marques, Christof Voemel, David Bindel, Yozo Hida, 
Jason Riedy, Jianlin Xia, Jiang Zhu, …

• U Tennessee, Knoxville
– Jack Dongarra, Julien Langou, Julie Langou, Piotr Luszczek, 

Stan Tomov, Alfredo Buttari, Jakub Kurzak, …
• Other Academic Institutions

– UT Austin, UC Davis, Florida IT, U Kansas, U Maryland, 
North Carolina SU, San Jose SU, UC Santa Barbara

– TU Berlin, U Electrocomm. (Japan), FU Hagen, U Carlos III 
Madrid, U Manchester, U Umeå, U Wuppertal, U Zagreb, …

• Research Institutions
– CERFACS, LBL, …

• Industrial Partners  
– Cray, HP, IBM, Intel, MathWorks, NAG, SGI, …
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Challenges
• Challenges for all large scale computing
• Example … your laptop

– 64 cores, 256 threads/multicore chip in a few years
• Exponentially growing gaps between processor 

speed and memory speed
– Yearly speed up: processor 59%; main memory 

bandwidth 23%; main memory latency 5.5% 
(National Research Council, 2005)

• Heterogeneity
• Asynchrony
• Fault tolerance



What do users want?
• High performance, ease of use, …
• Survey results

– Small but interesting sample
– What matrix sizes do you care about?

• 1000s: 34%
• 10,000s: 26%
• 100,000s or 1Ms: 26%

– How many processors, on distributed memory?
• >10:  34%,       >100:   31%,        >1000:  19%

– Do you use more than double precision? 
• Sometimes or frequently:  16%

– Would Automatic Memory Allocation help?
• Very useful: 72%,    Not useful: 14%



Goals of Forthcoming Sca/LAPACK
1. Expand contents 

• More functions, more parallel implementations

2. Better algorithms 
• Faster, more accurate

3. Improve ease of use 
4. Automate performance tuning
5. Better software engineering
6. Increased community involvement



LAPACK 3.1



LAPACK Release 3.1
• 3.1.0 released on 12 November 2006

– Improved numerical algorithms
– Some further functionality
– Thread safety
– Bug fixes

• See: www.netlib.org/lapack/lapack-3.1.0.changes
• 3.1.1 released on 26 February 2007

– Mainly bug fixes (principally to test software)
• See: www.netlib.org/lapack/lapack-3.1.1.changes

http://www.netlib.org/lapack/lapack-3.1.0.changes
http://www.netlib.org/lapack/lapack-3.1.1.changes


Improved numerical algorithms
• More efficient nonsymmetric eigensolver

– improved reduction to Hessenberg form
– improved multishift with aggressive early deflation for 

the QR algorithm applied to the Hessenberg form, can 
be up to ten times faster

– SIMAX 23:929-973, 2002 (SIAG LA prize)
• Improved MRRR algorithm for tridiagonal

matrices; impacts symmetric eigenproblem solvers
– faster and more accurate than LAPACK 3.0
– support for subset computation, O(kn) operations
– LAWNs 162, 167



Run Time Ratios of Eigensolvers
(2.2 GHz Opteron + ACML)



Further Functionality
• Mixed precision iterative refinement for Ax=b

• Typically two times speed up on modern PCs
• Need                      , use double precision otherwise
• LAWN 175 (LAWN 177 – cell processor, LAWN 180 –

sparse)

Solve  via  in single precision
Compute  in double precision
Solve  for  in single precision,
Update solution  in double precision.
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Thread Safety

• All driver and computational routines now 
thread safe

• xLAMCH supplied with LAPACK not 
absolutely guaranteed to be thread safe.  
Can be manually replaced by thread safe 
version

• Some obsolete auxiliaries not thread safe



Bug Fixes

• Subtle bug dating back to LINPACK fixed 
in QR factorization with pivoting.      
LAWN 176

• More support for NaNs and subnormal 
numbers

• Many other lesser bug fixes



Future LAPACK and 
ScaLAPACK



Future Developments:
Functionality

• More LAPACK functionality into ScaLAPACK
• Updating matrix factorizations
• Polynomial eigenvalue problems, particularly quadratic
• Matrix functions such as 
• CS decomposition and Product SVD
• Pivoted Cholesky
• More generalized Sylvester and Lyapunov equations
• Improved algorithms
• Enhanced accuracy algorithms
• …

1
2 and AA e



Improved Ease of Use
• Core version likely to remain Fortran 77, with 

some Fortran 95 features (dynamic memory 
allocation, recursion, modules, environmental 
enquiries, …)

• Wrappers for the drivers in C and Fortran 95
• Wrappers for higher level languages such as 

MATLAB and Python

• Maximum efficiency in Fortran, best ease of use 
in high level languages or packages

• Straightforward to interface to Fortran



Automate Performance Tuning
• Widely used in performance tuning of Kernels,              

e.g. ATLAS, FFTW
• 1300 calls to ILAENV to get block sizes, etc.

– Never been systematically tuned

• Extend automatic tuning techniques of ATLAS, etc. to 
these other parameters
– Automation important as architectures evolve

• Allow users to supply simpler data layouts to 
ScaLAPACK and, if necessary, convert on the fly



Examples of New Functionality



Pivoted Cholesky Factorization
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Pivoted Cholesky and LAPACK
• In order to incorporate pivoting, we need a Cholesky 

algorithm that updates the trailing matrix
• The Level 2 BLAS routine in LAPACK (xPOTF2) does 

update
• The Level 3 BLAS routine in LAPACK (xPOTRF) uses 

a left looking algorithm, and so does not update
• Need a right looking block-partitioned algorithm 

comparable to xPOTF2
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Level 2 BLAS Pivoting Routine
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We can readily introduce pivoting into a right
looking Level 2 BLAS Cholesky routine.
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Block-Partitioned Right Looking Cholesky
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Block-Partitioned Pivoted Cholesky

• This gives the basis of a Level 3 BLAS algorithm 
in which pivoting can be incorporated
– Form the trailing matrix 
– Use the Level 2 BLAS algorithm with pivoting to 

factorize the b by b matrix       , where b is the block size 
(but choose pivot from whole of trailing matrix)

• Routine is significantly faster than the equivalent 
LINPACK routine and, with Higham’s stopping 
criterion, gives more reliable rank detection

• Craig Lucas, LAWN 161

A%

22U



Results - Speed



Results – Level 3 Ratios
Ratio of time for pivoted code 
over LAPACK unpivoted code



Rank Revealing Properties
• Comparing computed rank vs the “expected” rank 

of our test matrices, the new code gets it right in 
299/300 cases

• Table below shows over estimation of rank in 
DCHDC ˆ(| |)r r−
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Rook Pivoting

• Incorporate rook pivoting into the symmetric 
indefinite factorization, with diagonal pivoting

– allows U to be bounded
– D has well-conditioned 2 by 2 diagonal blocks

• (need to investigate fast Bunch – Parlett)
• Ashcraft, Grimes and Lewis, SIMAX 20:513-561, 

1998

T TA P U DUP=



Block-Partitioned QR Factorization
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Block-Partitioned QR Updating
Commonest case is that of adding new rows, for example 
adding new observations in a least squares problem.
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Block-Partitioned Updating
• Updating by a contiguous block of columns is also 

straightforward
• Downdating, as in the standard case, needs care. 
• Craig Lucas, PhD thesis, 2004

• SH, Nicholas J. Higham and Craig Lucas (2006) 
LAPACK-Style Codes for Pivoted Cholesky and QR 
Updating. MIMS preprint 2006.385 
eprints.ma.man.ac.uk

http://eprints.ma.man.ac.uk/


Condition number of a 
Tridiagonal Matrix

• Computed via the QR factorization in O(n) 
operations (not estimated)

• Utilizes a result from 1974 of Gill, Golub, Murray 
and Saunders, on the structure of a ‘special’
matrix

• Algorithm 2.1 in “G Hargreaves. Computing the 
Condition Number of Tridiagonal and Diagonal-
Plus-Semiseparable Matrices in Linear Time, 
SIMAX, 27, 801–820, 2006”, for which stability 
is proved



Lyapunov and Sylvester Equations
• Further Lyapunov and Sylvester solvers 

based upon
– RECSY: High Performance Library for 

Sylvester-Type Matrix Equations, Isak Jonsson
and Bo Kågström at the University of Umeå

– Uses recursive blocked algorithms
– ScaLAPACK versions also underway
– www.cs.umu.se/~isak/recsy/

• Speeds up the generalized nonsymmetric
eigenproblem

http://www.cs.umu.se/~isak/recsy/


Improved Efficiency Examples



Faster Algorithms 1
• Faster symmetric eigensolvers and SVD routines

– MRRR algorithm for bidiagonal SVD
– faster tridiagonal; initially reduce to band form
– Improved bidiagonal reduction; LAWN 174

• Faster generalized eigensolvers; LAWNs 171, 173
– On 26 real test matrices, speedups of 14.7, 4.4 on 

average
• Further mixed precision iterative refinement 

routines
– More linear equation solvers
– Eigenvalue problems



Faster Algorithms 1 (cont’d)
• Faster GSVD routine

– Based on CS decomposition (C Van Loan. 
Generalizing the Singular Value Decomposition, 
SINUM, 13, 76–83, 1976)

– MSc Thesis, Jenny Jian Wang, UC Davis



New GSVD Algorithm
Given  m by n A and  p by n B, factor  A = U ∑a X and  B = V ∑b X

PSVD, CSD under developmentBai and Wang, UC Davis



Faster Algorithms 2

• Novel Data Layouts
– E Elmroth, F Gustavson, I Jonsson and B Kågstrom. 

Recursive Blocked Algorithms and Hybrid Data 
Structures for Dense Matrix Library Software, SIAM 
Review, 2004

– require different data layouts, but will provide 
conventional interfaces

– Some aim to be cache oblivious



Level 3 BLAS Packed Routines

• Utilize rectangular full packed (RFP) format
• Can convert in O(n2) data movement
• LAPACK packed format cannot utilise Level 3 BLAS
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A = UTU - Block Cholesky
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Improved Accuracy Examples



More Accurate Algorithms

• Iterative refinement for Ax=b
– “Promise” the right answer for O(n2) additional cost
– Iterative refinement with extra-precise residuals
– Extra-precise BLAS needed
– “Guarantees” based on condition number estimates

• Condition estimate < 1/(n1/2ε) ⇒ reliable answer 
and  tiny error bounds

• No bad bounds in 6.2M tests
• LAWN 165 (TOMS 32:325–351, 2006)



More Accurate: Solve Ax=b
Conventional Gaussian Elimination

With extra precise
iterative refinement

ε

1/ε

ε = n1/2 2−24



More Accurate Algorithms
• Iterative refinement for least squares problems using the 

extra-precise BLAS
• Arbitrary precision versions of everything

– using your favourite multiple precision package
• Jacobi-based SVD

– can be arbitrarily more accurate on tiny singular values
– yet faster than QR iteration, and within two times of divide and

conquer
– preprocess by QR with pivoting, block Jacobi, …
– LAWNs 169, 170



Improved  ScaLAPACK
Coverage



Missing Drivers in Sca/LAPACK
LAPACK ScaLAPACK

Linear 
Equations

LU
Cholesky
LDLT

xGESV
xPOSV
xSYSV

PxGESV
PxPOSV
missing

Least Squares 
(LS)

QR
QR+pivot
SVD/QR
SVD/D&C
SVD/MR3

xGELS
xGELSY
xGELSS
xGELSD
missing

PxGELS
missing
missing
missing (ok?)
missing

Generalized LS LS + equality constr.
Generalized LM
Above + Iterative ref.

xGGLSE
xGGGL
missing

missing
missing
missing



More Missing Drivers
LAPACK ScaLAPACK

Symmetric EVD QR / Bisection+Invit
D&C
MR3

xSYEV / X
xSYEVD
xSYEVR

PxSYEV / X
PxSYEVD
missing

Nonsymmetric EVD Schur form
Vectors also

xGEES / X
xGEEV / X

missing (driver)
missing 

SVD QR
D&C
MR3

Jacobi

xGESVD
xGESDD
missing
missing

PxGESVD
missing (ok?)
missing
missing

Generalized Symmetric 
EVD

QR / Bisection+Invit
D&C
MR3

xSYGV / X
xSYGVD
missing

PxSYGV / X
missing (ok?)
missing

Generalized 
Nonsymmetric EVD

Schur form
Vectors also

xGGES / X
xGGEV / X

missing
missing

Generalized SVD Kogbetliantz
MR3

xGGSVD
missing

missing (ok)
missing



Automatic Tuning



Optimizing Blocksizes for Matmul

Finding a Needle in a Haystack – So Automate



ScaLAPACK Data Layouts

1D  Cyclic1D Block

2D Block 
Cyclic1D Block 

Cyclic
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Community Involvement
• To help identify priorities

– more interesting tasks than are funded
– see www.netlib.org/lapack-dev for list

• To help identify promising algorithms
– what have we missed?

• To help do the work
– bug reports, provide fixes
– again, more tasks than we are funded to do
– already happening: thank you!

• Contributors Guide:
www.netlib.org/lapack-dev/lapack-coding/program-style.html

http://www.netlib.org/lapack-dev
http://www.netlib.org/lapack-dev/lapack-coding/program-style.html


Conclusions
• Lots to do in dense linear algebra

– new and improved numerical algorithms
– continuing architectural challenges

• Parallelism, performance tuning
– ease of use, software engineering

• Some grant support, but success depends also 
on contributions from community
– Contributors’ guide drafted

www.netlib.org/lapack

http://www.netlib.org/lapack
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