Proof of Stokes’ Theorem (not examinable)

Lemma. Let r: D C R? — R3? be a continuously differentiable parametrisation of a smooth
surface S C R3. Suppose that the vector field F is continuously differentiable (in a neighbour-
hood of S). Then

curl F'(r(u,v)) - (% A %) = aa—f(r(u,v)) : % — aa—lj(r(u,v)) : g—z . (1)

Proof. Expanding the left hand side of (1) we find that
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Collecting all terms in this expansion that contain F} we get
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where the last identity follows from the chain rule by adding and subtracting a—la—xa—x
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Similarly, collecting all terms that contain Fy and Fj3 in the above expansion and proceeding
in the same way, it follows that
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which is equal to the right hand side of (1). O

With the help of this lemma and Theorem 3.7 we can now prove Stokes’ Theorem.

Proof of Theorem 3.11.

(Only for the case where the parametrisation  : D — R3 of S is twice continuously differen-
tiable and where the domain D C R? satisfies the assumptions of Theorem 3.7.)
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Furthermore, let 71 : [to, t.] — R? be a parametrisation of the boundary T' of D (described in

the anticlockwise sense) with components u(t) and v(t), i.e. rp(t) = (u(t),v(t))?.

The composition 7 := 7 o rr of the parametrisation of S with the parametrisation of I" gives
a parametrisation of C, i.e.

C = {#(t):tetot]), where #(t) == r(ro(t) = r(u(t),v(t)).
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Furthermore, S and C are correspondingly orientated. (No proof. Left as exercise!)

Also, using the chain rule
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and therefore using Green’s Theorem in the plane with

Qy(u,v) = F(r(u,v))- % and  Po(u,v) = F(r(u,v))- or

//curlF-dS = // (@ - @) dudv = j{(éli + $oj) - dr =
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And finally using (2) and the fact that #(t) = r(u(t), v(t))
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