
Proof of Stokes’ Theorem (not examinable)

Lemma. Let r : D ⊂ R
2 → R

3 be a continuously differentiable parametrisation of a smooth
surface S ⊂ R

3. Suppose that the vector field F is continuously differentiable (in a neighbour-
hood of S). Then
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Proof. Expanding the left hand side of (1) we find that
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Collecting all terms in this expansion that contain F1 we get
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where the last identity follows from the chain rule by adding and subtracting
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Similarly, collecting all terms that contain F2 and F3 in the above expansion and proceeding
in the same way, it follows that
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which is equal to the right hand side of (1).

With the help of this lemma and Theorem 3.7 we can now prove Stokes’ Theorem.

Proof of Theorem 3.11.

(Only for the case where the parametrisation r : D → R
3 of S is twice continuously differen-

tiable and where the domain D ⊂ R
2 satisfies the assumptions of Theorem 3.7.)

Let
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Furthermore, let rΓ : [t0, te] → R
2 be a parametrisation of the boundary Γ of D (described in

the anticlockwise sense) with components u(t) and v(t), i.e. rΓ(t) = (u(t), v(t))T .

The composition r̂ := r ◦ rΓ of the parametrisation of S with the parametrisation of Γ gives
a parametrisation of C, i.e.

C = {r̂(t) : t ∈ [t0, te]}, where r̂(t) := r(rΓ(t)) = r(u(t), v(t)) .
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Furthermore, S and C are correspondingly orientated. (No proof. Left as exercise!)

Also, using the chain rule
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By (1)
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and therefore using Green’s Theorem in the plane with
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And finally using (2) and the fact that r̂(t) = r(u(t), v(t))
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