
Chapter 5

Partial Differential Equations

Definition 5.1. Any differential equation containing partial derivatives with respect to at
least two different variables is called a partial differential equation (PDE).

Note. The unknown function in any PDE must be a function of at least two variables,
otherwise partial derivatives would not arise.

5.1 Classification of Partial Differential Equations

Definition 5.2 (as for ODEs). (a) The order of a PDE is equal to the order of the
highest partial differential coefficient occurring in it.

(b) A PDE is linear, if the unknown function and its partial derivatives occur only to the
first degree and if no products of the function and its derivatives occur.

(c) A PDE is homogeneous, if each term contains either the function or one of its partial
derivatives.

Example 5.3. (a)

(b)

We will only study linear homogeneous 2nd-order PDEs of functions in two variables,
i.e.

a
∂2u

∂x2
+ 2h

∂2u

∂x∂y
+ b

∂2u

∂y2
+ c

∂u

∂x
+ d

∂u

∂y
+ e u = 0 (5.1)

where a, b, c, d, e, and h are either constants or functions of x and y. They

• are very important in the description of many physical phenomena,

• contain many of the important features of typical PDEs in applications.

For other PDEs see [MA30044].
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Theorem 5.4 (superposition principle). If u1, u2, . . ., un are solutions of (5.1) and
c1, c2, . . ., cn are constants, then c1u1 + c2u2 + . . .+ cnun is also a solution of (5.1).

Proof. Follows directly from the linearity of (5.1). [Exercise].

The form of (5.1) resembles that of a general conic section, i.e.

a x2 + 2h xy + b y2 + c x + d y + e = 0.

In analogy to conic sections we have

Definition 5.5. The PDE is of elliptic

parabolic

hyperbolic











type when











ab− h2 > 0,

ab− h2 = 0,

ab− h2 < 0.

In the following, we will look at one important representative for each of these types and solve
them by separation of variables, varying the domain D ∈ R

2 and the boundary conditions.

5.2 Separation of Variables – Fourier’s Method

5.2.1 Elliptic PDEs – Laplace’s Equation

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0 . (5.2)

Laplace’s equation (5.2) takes the general form (5.1) with a = b = 1 and h = 0. Therefore
ab− h2 = 1 > 0 and (5.2) is elliptic.

Recall Example 2.16.

Other applications: fluid mechanics, elasticity, etc.

Let D := {(x, y) ∈ R
2 : 0 < x < a and 0 < y < b}, i.e. a rectangular domain in R

2.

BVP1: Find a solution u : D → R of (5.2) on D which satisfies the (Dirichlet) boun-

dary conditions:
PSfrag replacements

x

y

a

b

u = 0 u = 0

u = 0

u = g(x)

∇2u = 0

u(0, y) = 0

u(a, y) = 0

}

for 0 < y < b

u(x, 0) = 0

u(x, b) = g(x)

}

for 0 < x < a























(5.3)

where g : (0, a) → R is a given function of x.
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Step 1: Separation of variables.

Assume that u(x, y) = X(x)Y (y) is a solution of (5.2). Then (5.2) becomes

Therefore

−X
′′(x)

X(x)
=

Y ′′(y)

Y (y)
= λ (= const), for all (x, y) ∈ D (5.4)

The zero BCs in (5.3) lead to

(5.5)

(5.6)

Step 2: Solve X–problem. (Important: two zero BCs!)

It follows from (5.4) that
−X ′′(x) = λX(x) (5.7)

X(x) also satisfies the Dirichlet conditions (5.5).

λn =
n2π2

a2
, Xn(x) = sin

(nπx

a

)

, n ∈ N (5.8)

Step 3: Solve Y –problem. (Important: λn known from Step 2!)

Let n ∈ N. It follows from (5.4) with λ = λn that

Y ′′
n (y) = λnYn(y) (5.9)

Yn(y) also satisfies (5.6), i.e. Yn(0) = 0.
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and so
Yn(y) = An

(

e
√

λny − e−
√

λny
)

= An sinh
(

√

λny
)

(5.10)

Step 4: Build up general solution.

u(x, y) =
∞
∑

n=1

An sin
(nπx

a

)

sinh
(nπy

a

)

(5.11)

Step 5: Satisfy non-zero BC u(x, b) = g(x).

u(x, b) =
∞
∑

n=1

[

An sinh

(

nπb

a

)]

sin
(nπx

a

)

, 0 < x < a (5.12)

Develop g(x) in a half-range Fourier sine series on (0, a):

(5.13)

and so

u(x, y) =
∞
∑

n=1

[

2

a sinh
(

nπb
a

)

∫ a

0

g(x̃) sin

(

nπx̃

a

)

dx̃

]

sin
(nπx

a

)

sinh
(nπy

a

)

is the solution of BVP1.
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BVP2: Find a solution u : D → R of (5.2) on D which satisfies the (Dirichlet) boun-

dary conditions:PSfrag replacements

x

y

a

b

u = 0

u = 0

u = g(x)

u = h(y) ∇2u = 0

u(0, y) = h(y)

u(a, y) = 0

}

for 0 < y < b

u(x, 0) = 0

u(x, b) = g(x)

}

for 0 < x < a























(5.14)

where g : (0, a) → R is a given function of x and
h : (0, b) → R is a given function of y.

Use the superposition principle (Theorem 5.4):

Find v : D → R s.t. ∇2v = 0 on D and

v(0, y) = 0

v(a, y) = 0

}

for 0 < y < b

v(x, 0) = 0

v(x, b) = g(x)

}

for 0 < x < a

Find w : D → R s.t. ∇2w = 0 on D and

w(0, y) = h(y)

w(a, y) = 0

}

for 0 < y < b

w(x, 0) = 0

w(x, b) = 0

}

for 0 < x < a

Then u := v + w satisfies ∇2u = 0 by Theorem 5.4 and

Solve v–problem ⇐⇒ BVP1.

Hence

v(x, y) =
∞
∑

n=1

[

2

a sinh
(

nπb
a

)

∫ a

0

g(x̃) sin

(

nπx̃

a

)

dx̃

]

sin
(nπx

a

)

sinh
(nπy

a

)

. (5.15)

Solve w–problem.

Step 0: Substitute x̃ := a− x and w̃(x̃, y) := w(x, y).

Obviously ∇2w̃ = 0 and
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This is BVP1 with the roles of x and y and a and b interchanged. Hence

w̃(x̃, y) =

∞
∑

n=1

[

2

b sinh
(

nπa
b

)

∫ b

0

h(ỹ) sin

(

nπỹ

b

)

dỹ

]

sin
(nπy

b

)

sinh

(

nπx̃

b

)

.

Resubstituting we get

w(x, y) =
∞
∑

n=1

[

2

b sinh
(

nπa
b

)

∫ b

0

h(ỹ) sin

(

nπỹ

b

)

dỹ

]

sinh

(

nπ(a− x)

b

)

sin
(nπy

b

)

(5.16)

and adding (5.15) and (5.16) we get the solution u(x, y) of BVP2.

Remark 5.6. (a) Obviously this procedure can be extended to the case of three/four non-
zero (Dirichlet) boundary conditions by superposing the solutions of three/four problems
with only one non-zero BC.

(b) For Neumann boundary conditions use the solutions to Case (b) of the eigenproblem in
Section 4.5.

5.2.2 Circular Geometry

Consider now the annulus D := {(x, y) : 1 < x2 + y2 < b2}. Using planar polar coordinates,
i.e. R . . . distance from origin, φ . . . polar angle, we get

D := {(R, φ) : 1 < R < b, 0 ≤ φ < 2π} and u ≡ u(R, φ). (5.17)

(Note. This is the same as using cylindrical polar coordinates with u independent of z.)

From Proposition 2.22(d) (see also Problem Sheet 6, Question 4), the Laplacian in cylindrical
polar coordinates is

∇2u =
1

R

[

∂

∂R

(

R
∂u

∂R

)

+
∂

∂φ

(

1

R

∂u

∂φ

)

+
∂

∂z

(

R
∂u

∂z

)]

Since u = u(R, φ) does not depend on z (in 2D-case):

∇2u =
1

R

∂

∂R

(

R
∂u

∂R

)

+
1

R2

∂2u

∂φ2
(5.18)

BVP3: Find a solution u : D → R of (5.2) on D which satisfies (Dirichlet) boundary

conditions for R and periodic boundary conditions for φ, i.e.

PSfrag replacements

x

y

1 b
u = 0

u = f(φ)∇2u = 0

u(1, φ) = 0

u(b, φ) = f(φ)

}

for 0 ≤ φ < 2π

u(R, 0) = u(R, 2π)
∂u
∂φ

(R, 0) = ∂u
∂φ

(R, 2π)

}

for 1 < R < b



























(5.19)

where f(φ) = sin2 φ.
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Step 1: Separation of variables.

Assume that u(R, φ) = F (R)G(φ). Then using (5.18) ∇2u = 0 is equivalent to

1

R
(RF ′G)′ +

1

R2
FG′′ =

1

R

∂

∂R

(

R
∂u

∂R

)

+
1

R2

∂2u

∂φ2
= ∇2u = 0

⇔ GR(RF ′)′ + FG′′ = 0

⇔ R2F ′′(R) +RF ′(R)

F (R)
= −G

′′(φ)

G(φ)
= λ (= const), for all (R, φ) ∈ D. (5.20)

The zero & periodic boundary conditions in (5.19) lead to

0 = u(1, φ) = F (1)G(φ), 0 ≤ φ < 2π ⇔ F (1) = 0 (5.21)

F (R)G(0) = F (R)G(2π),

F (R)G′(0) = F (R)G′(2π),

}

1 < R < b ⇔
{

G(0) = G(2π),

G′(0) = G′(2π).

}

(5.22)

Step 2: Solve the G-problem.

−G′′(φ) = λG(φ), for all 0 ≤ φ < 2π. (5.23)

This is an eigenproblem of the form studied in Section 4.5 with periodic boundary conditions
(5.22), i.e. equivalent to Case (d) in Section 4.5 (see also Problem Sheet 10, Question 1(ii)).
Equation (5.23) has general solution

G(φ) = A sin
(√

λφ
)

+B cos
(√

λφ
)

again. However, using the boundary conditions (5.22) we have

B = A sin 0 + B cos 0 = A sin
(

2π
√
λ
)

+ B cos
(

2π
√
λ
)

A
√
λ = A

√
λ cos 0 − B

√
λ sin 0 = A

√
λ cos

(

2π
√
λ
)

− B
√
λ sin

(

2π
√
λ
)











⇔





sin(2π
√
λ)

(

cos(2π
√
λ) − 1

)

√
λ
(

1 − cos(2π
√
λ)
) √

λ sin(2π
√
λ)





(

A

B

)

=

(

0

0

)

(5.24)

The linear system (5.24) has a non-trivial solution (A,B) 6= (0, 0) only if the matrix has zero
determinant, i.e. √

λ sin2(2π
√
λ) +

√
λ
(

cos(2π
√
λ) − 1

)2

= 0

⇔
√
λ
(

sin2(2π
√
λ) + cos2(2π

√
λ) − 2 cos(2π

√
λ) + 1

)

= 0

⇔
√
λ
(

1 − cos(2π
√
λ)
)

= 0
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Therefore, either λ = 0 or cos(2π
√
λ) = 1 (i.e.

√
λ = n, n ∈ Z) and the solutions to

the G-problem are

λn = n2,

Gn(φ) = An cos (nφ) +Bn sin (nφ) ,

}

n ∈ N ∪ {0}. (5.25)

Step 3: Solve the F-problem. (with λn given)

Case n = 0: R2F ′′
0 (R) +RF ′

0(R) = 0, 1 < R < b,

which has general solution F0(R) = C0 lnR + D0. However, it follows from (5.21) that
D0 = F0(1) = 0 and so

F0(R) = C0 lnR. (5.26)

Case n ≥ 1: R2F ′′
n (R) +RF ′

n(R) − n2Fn(R) = 0, 1 < R < b,

Try Rµ:

R2 µ(µ− 1)Rµ−2 +R µRµ−1 − n2Rµ = 0

⇔ Rµ(µ2 − µ+ µ− n2) = 0 ⇔ µ = ±n.

Hence, Fn(R) = CnR
n + DnR

−n. However, it follows from (5.21) again that Cn + Dn =
Fn(1) = 0 and therefore

Fn(R) = Cn

(

Rn −R−n
)

. (5.27)

Step 4: Building up the general solution.

Putting Steps 2 & 3 together and using the superposition principle (Theorem 5.4) we get

u(R, φ) = Ã0 lnR +

∞
∑

n=1

(

Rn −R−n
)

(

Ãn cos (nφ) + B̃n sin (nφ)
)

(5.28)

for all (R, φ) ∈ D (where Ãn := CnAn and B̃n := CnBn).

Step 5: Satisfy the non-zero boundary condition u(b, φ) = sin2 φ.

u(b, φ) = [Ã0 ln b] +

∞
∑

n=1

[

Ãn(bn − b−n)
]

cos (nφ) +
[

B̃n(bn − b−n)
]

sin (nφ) ,

but

u(b, φ) = sin2 φ =
1

2
(1 − cos 2φ)

and so by comparing coefficients we get

Ã0 =
1

2 ln b
, Ã2 = − 1

2(b2 − b−2)
, Ãn = B̃n = 0 otherwise.

Therefore the solution of BVP3 is

u(R, φ) =
ln(R− b)

2
− R2 − R−2

2(b2 − b−2)
cos 2φ .
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5.2.3 Hyperbolic PDEs – Wave Equation

Let us now look at the wave equation

∂2u

∂x2
=

1

c2
∂2u

∂t2
(5.29)

where c is a given constant and let

D := {(x, t) ∈ R
2 : 0 < x < a, t > 0}.

Equation (5.29) takes the general form (5.1) with a = 1, b = −1/c2 and h = 0. Therefore
ab− h2 = −1/c2 < 0 and (5.29) is hyperbolic.

Applications. Wave propagation (e.g. vibrating string, water waves, electromagnetic waves)

IMPORTANT. Usually x is the spatial variable and t is the time variable, and the choice
of initial/boundary conditions is very important (not uniquely solvable for every choice!)

IBVP1: Find a solution u : D → R of (5.29) on D which satisfies the initial conditions

PSfrag replacements

x

t

a

∂u

∂x
= 0

∂u

∂x
= 0

u = 0, ∂u
∂t

= f(x)

∂2u

∂x2
=

1

c2
∂2u

∂t2

u(x, 0) = 0

∂u

∂t
(x, 0) = f(x)







for 0 < x < a (5.30)

and the (Neumann) boundary conditions

∂u

∂x
(0, t) = 0

∂u

∂x
(a, t) = 0















for t > 0 (5.31)

where f : (0, a) → R is a given function of x.

Step 1: Separation of variables.

Assume that u(x, y) = X(x)T (t)) is a solution of (5.29). Then (5.29) becomes

X ′′(x)T (t) =
1

c2
X(x)T ′′(t)

Therefore

−X
′′(x)

X(x)
= − 1

c2
T ′′(t)

T (t)
= λ (= const), for all (x, t) ∈ D. (5.32)

The zero initial and boundary conditions in (5.30) and (5.31) lead to

0 = u(x, 0) = X(x)T (0), 0 < x < a ⇔ T (0) = 0 (5.33)

0 =
∂u

∂x
(0, t) = X ′(0)T (t),

0 =
∂u

∂x
(a, t) = X ′(a)T (t),











t > 0 ⇔
{

X ′(0) = 0,

X ′(a) = 0.
(5.34)
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Step 2: Solve X–problem.

It follows from (5.32) that
−X ′′(x) = λX(x) (5.35)

X(x) also satisfies the Neumann conditions (5.34). This is Case (b) of the eigenproblem in
Section 4.5 and has solutions

λn =
n2π2

a2
, Xn(x) = cos

(nπx

a

)

, n ∈ N ∪ {0}. (5.36)

Step 3: Solve T–problem. (with λn from Step 2)

Case n ∈ N. It follows from (5.32) with λ = λn that

−T ′′
n (t) = λnc

2Tn(t) (5.37)

which has general solution

Tn(t) = An sin(
√

λnct) + Bn cos(
√

λnct).

However, Tn(t) also satisfies (5.33) and so

0 = Tn(0) = An sin 0 + Bn cos 0 = Bn

and

Tn(t) = An sin

(

nπct

a

)

. (5.38)

Case n = 0. In this case we have again from (5.32) that

−T ′′
0 (t) = 0

which has general solution T0(t) = A0t +B0 but since 0 = T0(0) = B0 we get

T0(t) = A0t . (5.39)

Step 4: Build up general solution.

Putting Steps 2 and 3 together and using the superposition principle (Theorem 5.4) we get

u(x, t) = A0t +

∞
∑

n=1

An cos
(nπx

a

)

sin

(

nπct

a

)

(5.40)

Step 5: Satisfy non-zero BC
∂u

∂t
(x, 0) = f(x).

∂u

∂t
(x, 0) = A0 +

∞
∑

n=1

An cos
(nπx

a

) nπc

a
cos 0 = A0 +

∞
∑

n=1

[

nπcAn

a

]

cos
(nπx

a

)

(5.41)

for 0 < x < a. Develop f(x) in a half-range Fourier cosine series on (0, a):

f(x) =

[

1

a

∫ a

0

f(x̃) dx̃

]

+
∞
∑

n=1

[

2

a

∫ a

0

f(x̃) cos

(

nπx̃

a

)

dx̃

]

cos
(nπx

a

)

. (5.42)

Comparing coefficients in (5.41) and (5.42) we finally get that the coefficients of the solution
to IBVP1 in (5.40) are

A0 =
1

a

∫ a

0

f(x̃) dx̃, and An =
2

nπc

∫ a

0

f(x̃) cos

(

nπx̃

a

)

dx̃.
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5.2.4 Parabolic PDEs – Diffusion Equation

Finally for an example of a parabolic PDE let us look at the diffusion equation

∂2u

∂x2
=

1

k

∂u

∂t
(5.43)

where again k is a given constant and

D := {(x, t) ∈ R
2 : 0 < x < a, t > 0}.

Equation (5.43) takes the general form (5.1) with a = 1 and b = h = 0. Therefore ab− h2 = 0
and (5.43) is parabolic.

Applications. Flow of heat (unsteady!), flow in porous media (e.g. groundwater flow), per-
meation of gases in polymers, etc.

IBVP2: Find a solution u : D → R of (5.43) on D which satisfies the initial condition

PSfrag replacements

x

t

a

u = 0 u = 0

u = g(x)

∂2u

∂x2
=

1

k

∂u

∂t

u(x, 0) = g(x), 0 < x < a (5.44)

and the (Dirichlet) boundary conditions

u(0, t) = 0

u(a, t) = 0

}

for t > 0 (5.45)

where g(x) = x2.

See Problem Sheet 10, Question 3.

5.3 Other Solution Methods for PDEs (not examinable!)

5.3.1 The Laplace Transform Method

Question: In IBVP1 and IBVP2, what can we do when the boundary conditions are not
homogeneous? E.g. in IBVP2 let

u(x, 0) = 0, for 0 < x < a,

u(0, t) = 0,

u(a, t) = U, for t > 0.

Answer: We can take a Laplace transform with respect to time (recall from MA20009).

Example 5.7. (Diffusion Equation). Let

D := {(x, t) ∈ R
2 : 0 < x < a, t > 0}.
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IBVP3: Find a solution u : D → R of the diffusion equation (5.43) on D which satisfies
the initial condition

u(x, 0) = 0, 0 < x < a (5.46)

and the boundary conditions

u(0, t) = 0

u(a, t) = U

}

for t > 0 (5.47)

where U is constant.

Let û denote the Laplace transform of u with respect to t (for fixed x), i.e.

û(x, s) := L
{

t 7→ u(x, t)
}

(s) =

∫ ∞

0

u(x, t)e−stdt.

Step 1: Apply Laplace transform w.r.t. time to (5.43)

∫ ∞

0

∂2u

∂x2
(x, t)e−st dt =

∫ ∞

0

1

k

∂u

∂t
(x, t)e−st dt

⇔ ∂2

∂x2

∫ ∞

0

u(x, t)e−st dt =
1

k

[

(

u(x, t) e−st
∣

∣

∣

∞

t=0

+ s

∫ ∞

0

u(x, t)e−st dt

]

Therefore, using the initial condition (5.46) we get

∂2û

∂x2
(x, s) =

s

k
û(x, s). (5.48)

[So rather than an algebraic equation (as in MA20009) we get an ODE in x.]

Step 2: Apply Laplace transform to the BCs (5.47)

û(0, s) =

∫ ∞

0

u(0, t)e−st dt = 0,

û(a, s) =

∫ ∞

0

u(a, t)e−st dt =

∫ ∞

0

U e−st dt =
U

s
.















(5.49)

Step 3: Solve the ODE (5.48) & (5.49)

The general solution of (5.48) is

û(x, s) = Ae
√

s/k x +Be−
√

s/k x

However, it follows from (5.49) that

0 = û(0, s) = A+B ⇒ B = −A ⇒ û(x, s) = 2A sinh

(
√

s

k
x

)

and
U

s
= û(a, s) = 2A sinh

(
√

s

k
a

)

.

57



Hence,

û(x, s) =
U sinh(

√

s/k x)

s sinh(
√

s/k a)
. (5.50)

Step 4: Invert the Laplace transform (not always easy!)

Finally, using the inverse transformation or a Laplace transform table (e.g. see [Constanda,
pp. 167]) we get

u(x, t) = U

(

x

a
+

2

π

∞
∑

n=1

(−1)n

n
sin
(nπx

a

)

e−n2π2kt/a2

)

. (5.51)

Remark 5.8. A related method to the Laplace Transform Method is the Fourier Transform
Method. Fourier transforms can be used for example for the diffusion equation to eliminate
space dependency, if the partial differential equation is posed on the entire real line x ∈ R.
For more details see e.g. [Constanda, Chapter 8] or [MA30044].

5.3.2 D’Alembert’s Solution of the Wave Equation

We will finish with the solution for the wave equation posed on the entire real line with
sufficiently smooth initial data. This problem can be solved explicitly and the solution is
called D’Alembert’s solution of the wave equation (see [MA30044] for details):

IBVP4: Find u : R × R+ → R such that u(x, t) satisfies the wave equation (5.29) and
the initial conditions

u(x, 0) = φ(x)

∂u

∂t
(x, 0) = ψ(x)







for all x ∈ R, (5.52)

where φ is twice continuously differentiable and ψ is once continuously differentiable.

First we show that any solution of the wave equation

∂2u

∂x2
=

1

c2
∂2u

∂t2

can be written as
u(x, t) = f(x− ct) + g(x+ ct) (5.53)

where f and g are arbitrary twice continuously differentiable functions. To do this let us
introduce

ξ = x − ct and η = x + ct

and
U(ξ, η) = u(x, t) .

It is an easy exercise to verify that

∂2u

∂x2
=

∂2U

∂ξ2
+ 2

∂2U

∂ξ ∂η
+

∂2U

∂η2
and

∂2u

∂t2
= c2

(

∂2U

∂ξ2
− 2

∂2U

∂ξ ∂η
+

∂2U

∂η2

)

.
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Hence the wave equation (5.29) reduces to

∂2U

∂ξ ∂η
= 0 .

Integrating with respect to ξ we get

∂U

∂η
= g′(η),

i.e. the derivative of an arbitrary function of η. Now integrating with respect to η we get

U(ξ, η) = g(η) + f(ξ)

where f is an arbitrary function of ξ. Resubstituting ξ and η we have established (5.53).

Now using the initial conditions (5.52) we have

g(x) + f(x) = φ(x)

cg′(x) − cf ′(x) = ψ(x)

Integrating the last equation from and arbitrary point x0 ∈ R to x we get

g(x) − f(x) =
1

c

∫ x

x0

ψ(ξ)dξ .

Hence we can solve for f(x) and g(x) to obtain

f(x) =
1

2

(

φ(x) − 1

c

∫ x

x0

ψ(ξ)dξ

)

and g(x) =
1

2

(

φ(x) +
1

c

∫ x

x0

ψ(ξ)dξ

)

Finally, substituting back into (5.53) we obtain

u(x, t) =
1

2

(

φ(x− ct) − 1

c

∫ x−ct

x0

ψ(ξ)dξ + φ(x+ ct) +
1

c

∫ x+ct

x0

ψ(ξ)dξ

)

=
φ(x− ct) + φ(x + ct)

2
+

1

2c

∫ x+ct

x−ct

ψ(ξ)dξ (5.54)

which is the so-called D’Alembert solution of the wave equation.
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