
Chapter 4

Fourier Series [Constanda, pp. 11–27]

Motivation. Suppose f is a smooth function (all derivatives exist). Set

f(x) = a0 + a1x + a2x
2 + . . .

Therefore

f(x) = f(0) +

∞∑

n=1

1

n!
f (n)(0) xn (McLaurin series)

Instead of expanding f(x) as a polynomial we now expand it as a trigonometric polynomial.

Definition 4.1. Let L > 0. A continuous function f : (−L, L) → R has a Fourier series, if
there are coefficients {an} and {bn} such that f(x) can be written as

f(x) = a0 +
∞∑

n=1

[

an cos
(nπx

L

)

+ bn sin
(nπx

L

)]

︸ ︷︷ ︸

=: S(x)

for all x ∈ (−L, L) (4.1)

Lemma 4.2 (orthogonality relations). Let m, n ∈ N0. The following identities hold:

∫
L

−L

cos
(mπx

L

)

cos
(nπx

L

)

dx =







0 if m 6= n
L if m = n 6= 0
2L if m = n = 0

(4.2)

∫
L

−L

sin
(mπx

L

)

sin
(nπx

L

)

dx =

{
0 if m 6= n, or m = n = 0
L if m = n 6= 0

(4.3)

∫
L

−L

sin
(mπx

L

)

cos
(nπx

L

)

dx = 0 (4.4)
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Proof.

I =

∫
L

−L

cos
(mπx

L

)

cos
(nπx

L

)

dx =

Proposition 4.3. The Fourier coefficients in (4.1) are a0 =
1

2L

∫
L

−L

f(x) dx,

an =
1

L

∫
L

−L

f(x) cos
(nπx

L

)

dx and bn =
1

L

∫
L

−L

f(x) sin
(nπx

L

)

dx (4.5)

Proof. a0: Integrate (4.1) over (−L, L). Then

am, m ≥ 1: Multiply (4.1) by cos
(nπx

L

)

, integrate over (−L, L) and then use Lemma 4.2.

bm, m ≥ 1: Multiply (4.1) by sin
(nπx

L

)

, integrate over (−L, L) and use Lemma 4.2.
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Example 4.4. f(x) = x2, x ∈ (−1, 1) (i.e. L = 1).

a0 =

To calculate an use integration by parts (twice):

Similarly,

bn =

Therefore

x2 =
1

3
+

4

π2

∞∑

n=1

(−1)n

n2
cos nπx , x ∈ (−1, 1).

By fixing x we can derive some useful results.

(a) x = 0:

(b) x = 1:

Example 4.5. f(x) = x, x ∈ (−1, 1) (i.e. L = 1).

a0 =
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an =

bn =

Therefore

x =
2

π

∞∑

n=1

(−1)n+1

n
sin nπx , x ∈ (−1, 1).

4.1 Periodicity of Fourier Series

In Definition 4.1 we have defined the Fourier series

S(x) := a0 +

∞∑

n=1

[

an cos
(nπx

L

)

+ bn sin
(nπx

L

)]

for x ∈ (−L, L). Let S (above) also be defined at x = L. We can extend S(x) to all x ∈ R.

Proposition 4.6.
S(x + 2L) = S(x) for all x ∈ R. (4.6)

Proof.

Hence, S : R → R is a 2L-periodic function that coincides with f on (-L,L).

Recall Example 4.4:

PSfrag replacements

0 1 2 3−1−2−3 x

S(x)
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4.2 Fourier Convergence

So far we have only looked at Fourier series for continuous functions. Let us now look at the
general Fourier convergence theory.
Recall Example 4.5:

PSfrag replacements

0 1 2 3−1−2−3 x

S(x)

Note. Although f is continuous, the Fourier series is discontinuous. To see this, let ε > 0.

The Fourier series is discontinuous either when

(a) f has a discontinuity in (-L,L), or

(b) f(−L) 6= f(L).

Definition 4.7. Let ε > 0.

(a) A bounded function f : (a, b) → R is piecewise continuous on (a, b), if we can subdi-
vide (a, b) into finitely many (sub)intervals in each of which f is continuous, e.g.

PSfrag replacements

a b

(b) [MA20007, to come] The left- and right-hand limit of f at x0 are defined as

f(x0 − 0) := lim
ε→0

f(x0 − ε) and f(x0 + 0) := lim
ε→0

f(x0 + ε) ,

respectively.

PSfrag replacements

x0x0 − ε x0 + ε

ε→0ε→0

left right
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Note. If f is continuous at x0, then f(x0 − 0) = f(x0 + 0) = f(x0).

(c) The left- and right-hand derivatives of f at x0 are defined as

lim
ε→0

f(x0 − 0) − f(x0 − ε)

ε
and lim

ε→0

f(x0 + ε) − f(x0 + 0)

ε
,

respectively.

Theorem 4.8. Suppose f : (−L, L) → R is bounded and piecewise continuous on (−L, L),
and suppose the left- and right-hand derivatives of f exist for all x0 ∈ [−L, L]. Then f has a
Fourier series S(x) and

S(x) =







1

2

[

f(x − 0) + f(x + 0)
]

, if x ∈ (−L, L),

1

2

[

f(L − 0) + f(−L + 0)
]

, if x = L or x = −L.

(4.7)

Proof. See for example [Churchill, R.V., “Fourier Series and Boundary Value Problems”].

4.3 Gibbs’ Phenomenon

Let us look at the partial sums

SN (x) := a0 +

N∑

n=1

[

an cos
(nπx

L

)

+ bn sin
(nπx

L

)]

(4.8)

for Examples 4.4 and 4.5.

Comparing the plots of SN(x) for various N in both examples (see handout) we see that

• if S(x) is continuous at L (e.g. Example 4.4), we have very fast convergence;

• if S(x) is discontinuous at L (e.g. Example 4.5), we have very slow convergence and
“overshoots” near the discontinuity. This is “Gibbs’ phenomenon”:
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S16(x) for Example 4.5.
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S2(x) to S256(x) for Example 4.5.
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In fact,

(i)

(ii)

This is no contradiction. Both (i) and (ii) can be true together, because xN gets closer and
closer to 1 as N increases, leaving a convergent region behind (see the figure above). This is
called non-uniform convergence.

4.4 Half-range Series

Definition 4.9. (a) A function f(x) is called even, if f(−x) = f(x).

(b) A function f(x) is called odd, if f(−x) = −f(x).

Examples.

Proposition 4.10. (a) If f(x) is even, then bn = 0, for all n ≥ 1,

a0 =
1

L

∫
L

0

f(x) dx and an =
2

L

∫
L

0

f(x) cos
(nπx

L

)

dx , for all n ≥ 0. (4.9)

(b) If f(x) is odd, then an = 0, for all n ≥ 0 and

bn =
2

L

∫
L

0

f(x) sin
(nπx

L

)

dx , for all n ≥ 1. (4.10)

Proof. [Problem Sheet 9, Question 4].

Definition 4.11. Let f : (0, L) → R. Over the half-range (0, L) we can expand f(x) in a

(a) half-range Fourier cosine series:

Sc(x) := A0 +
∞∑

i=1

An cos
(nπx

L

)

, x ∈ R, (4.11)

where A0 :=
1

L

∫
L

0

f(x) dx and An :=
2

L

∫
L

0

f(x) cos
(nπx

L

)

dx .
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(b) half-range Fourier sine series:

Ss(x) :=

∞∑

i=1

Bn sin
(nπx

L

)

, x ∈ R, (4.12)

where Bn :=
2

L

∫
L

0

f(x) sin
(nπx

L

)

dx .

Remark 4.12. Sc(x) and Ss(x) are both 2L–periodic and coincide with f(x) on (0, L), but
Sc(x) is even and Ss(x) is odd.

Example 4.13. Let f(x) = 1 − x for x ∈ (0, 1) (i.e. L = 1):

4.5 Application: Eigenproblems for 2nd-order ODEs

[Constanda, pp. 29–47]

Consider the following eigenproblem (special case of a Sturm-Liouville problem):

Find y : (0, L) → C and λ ∈ C such that

−y′′(x) = λ y(x) , for all x ∈ (0, L) (4.13)

and such that y satisfies

(a) homogeneous Dirichlet boundary conditions:

y(0) = y(L) = 0 (4.14)

(b) homogeneous Neumann boundary conditions:

y′(0) = y′(L) = 0 (4.15)

(c) mixed boundary conditions:

y(0) = 0 and y′(L) = 0

(d) periodic boundary conditions:

y(0) = y(L) and y′(0) = y′(L)
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Case (a):

Therefore the non-trivial, linearly independent solutions of (4.13), (4.14) are

yn(x) = sin
(nπx

L

)

λn =
n2π2

L2







n ∈ N. (4.16)

The yn are called eigenfunctions of (4.13), (4.14). The λn are called eigenvalues.

Note. For n = 0: y0(x) = 0 (i.e. trivial),

n < 0: yn(x) = −y−n(x) (i.e. linearly dependent),

and all the eigenvalues and eigenfunctions are real-valued.

Remark 4.14 (link to Fourier series).

(i) The half-range Fourier sine series

f(x) =
∞∑

n=1

Bn sin
(nπx

L

)

, 0 < x < L,

expresses f in terms of eigenfunctions of (4.13), (4.14).
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(ii) It follows from Lemma 4.2 that the eigenfunctions yn(x), n ∈ N, of (4.13), (4.14) are
orthogonal on (0, L), i.e. for m, n ∈ N

∫
L

0

ym(x) yn(x)dx =

{
L/2 if m = n,
0 if m 6= n.

Case (b):

Therefore the non-trivial, linearly independent solutions of (4.13), (4.15) are

yn(x) = cos
(nπx

L

)

λn =
n2π2

L2







n ∈ N ∪ {0}, (4.17)

i.e. the half-range Fourier cosine series on (0, L) expresses a function in terms of eigen-
functions of (4.13), (4.15), and the eigenfunctions yn(x), n ∈ N ∪ {0}, of (4.13), (4.15) are
orthogonal on (0, L) again.

Cases (c) and (d): [Problem Sheet 9, Question 5].
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