Chapter 4

Fourier Series [Constanda, pp. 11-27]

Motivation. Suppose f is a smooth function (all derivatives exist). Set

f(x) = ag + ez + agx® + ...

Therefore
[e.e] 1
_ (YL) n . .
flx) = f(0) + E_l ] f(0) x (McLaurin series)

Instead of expanding f(x) as a polynomial we now expand it as a trigonometric polynomial.

Definition 4.1. Let L > 0. A continuous function f : (—L, L) — R has a Fourier series, if
there are coefficients {a, } and {b,} such that f(z) can be written as

= nmx nmx
flz) = ao + Z ay cos | —— | + bypsin | —— for all z € (—L, L) (4.1)
e S () + (5]
=: S(x)
Lemma 4.2 (orthogonality relations). Let m,n € Ny. The following identities hold:
L mnx nmx 0 if m 7 n
/ Ccos (T) Cos (T) dr = L if m=n=#0 (4.2)
—L 2L ifm=n=0
L :
. /mmx\ . [/nmx B 0 iftm#n, orm=n=20
/_Lsm< L ) Sm(T) de = {L ifm=n=#0 (4.3)

/L sin (?) cos (?) de = 0 (4.4)
L



1 L
Proposition 4.3. The Fourier coefficients in (4.1) are ay = 5] / f(z) dx,
~L
1 [* 1 [*
@ = /_L f(z) cos (n_zx) dx and by, 17 /_L f(z) sin <@> de  (4.5)

Proof. Integrate (4.1) over (=L, L). Then

Multiply (4.1) by cos (n_zx» integrate over (—L, L) and then use Lemma 4.2.

Multiply (4.1) by sin (n_zx» integrate over (—L, L) and use Lemma 4.2.
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Example 4.4. f(z) = 2°, z€(-1,1) (ie. L=1).

ag —

To calculate a,, use integration by parts (twice):

Similarly,

Therefore

1 4 K (=1)”
x2:§+ﬁ;(n2> cosSNTL |

By fixing = we can derive some useful results.

(a) z=0:

Example 4.5. f(z) = z, v €(-1,1) (ie. L=1).

ag =

38

re(—1,1).



Therefore
2 0 (_1 n+1 ) . ( 1 1)
r = — E sin nwx x — )
’ﬂ— n ) )

n=1

4.1 Periodicity of Fourier Series

In Definition 4.1 we have defined the Fourier series

S(z) = ap + i [ancos (n_zx) + b, sin <n_7gx>]
n=1

for x € (=L, L). Let S (above) also be defined at x = L. We can extend S(z) to all z € R.

Proposition 4.6.
S(x+2L) = S(x) for all x € R. (4.6)

Proof.

Hence, S : R — R is a 2L-periodic function that coincides with f on (-L,L).
Recall Example 4.4:
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4.2 Fourier Convergence

So far we have only looked at Fourier series for continuous functions. Let us now look at the
general Fourier convergence theory.
Recall Example 4.5:

Note. Although f is continuous, the Fourier series is discontinuous. To see this, let € > 0.

The Fourier series is discontinuous either when

(a) f has a discontinuity in (-L,L), or

(b) f(=L) # f(L).
Definition 4.7. Let € > 0.

(a) A bounded function f : (a,b) — R is piecewise continuous on (a,b), if we can subdi-
vide (a,b) into finitely many (sub)intervals in each of which f is continuous, e.g.

NN

(b) [MA20007, to come] The left- and right-hand limit of f at z, are defined as

a

f(xo—0) = ?L%f(ﬂ?o—@ and f(xo+0) = l%f(x0+5),

left 7~ right
‘/7\
e—0 e—0

I

respectively.

To—E X Ty + €
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Note. If f is continuous at zg, then f(zg—0) = f(zo+0) = f(xo).

(c) The left- and right-hand derivatives of f at z( are defined as
f(zo+¢) = flzo+0)

lim f(wo = 0) = fzo — &) and lim ,

e—0 £ e—0 €

respectively.

Theorem 4.8. Suppose f : (—L,L) — R is bounded and piecewise continuous on (—L, L),
and suppose the left- and right-hand derivatives of f exist for all xy € [-L, L]. Then f has a
Fourier series S(z) and

%[f(x—O)—i—f(x—i—O)}, it we(~L, L),
S(z) = 1 | (4.7)
§[f(L—O)—|—f(—L+O)}, if =L or x=—L.

Proof. See for example [Churchill, R.V., “Fourier Series and Boundary Value Problems”]. 0

4.3 Gibbs’ Phenomenon

Let us look at the partial sums

Sy(z) == ay + ZN: [ancos <?) + b, sin <$)] (4.8)

for Examples 4.4 and 4.5.

Comparing the plots of Sy(x) for various N in both examples (see handout) we see that
e if S(x) is continuous at L (e.g. Example 4.4), we have very fast convergence;

e if S(x) is discontinuous at L (e.g. Example 4.5), we have very slow convergence and
“overshoots” near the discontinuity. This is “Gibbs’ phenomenon”:

1.2

1.1f

0.9}

0.8f

0.7}

-1 05 0 05 1 ‘0.5 0.6 0.7 0.8 0.9 1
Si6(z) for Example 4.5. Sy(x) to Sos6(x) for Example 4.5.
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In fact,

()

(i)

This is no contradiction. Both (i) and (ii) can be true together, because z gets closer and
closer to 1 as N increases, leaving a convergent region behind (see the figure above). This is
called non-uniform convergence.

4.4 Half-range Series
Definition 4.9. (a) A function f(z) is called even, if f(—x) = f(x).
(b) A function f(x) is called odd, if f(—z) = —f(z).

Examples.

Proposition 4.10. (a) If f(x) is even, then b, = 0, foralln >1,
1 [r 2 [*
ag = z/o f(z)dx and a, = z/o f(z) cos <$) dr, foralln>0. (4.9)

(b) If f(z) is odd, then a, = 0, for alln >0 and

9 L
b, = —/ f(x) sin <@> dx | for all n > 1. (4.10)
L J, L
Proof. [Problem Sheet 9, Question 4]. O

Definition 4.11. Let f: (0, L) — R. Over the half-range (0, L) we can expand f(z) in a

(a) half-range Fourier cosine series:

Sc(z) = Ay + f:An COS (?) , r €R, (4.11)

i=1

1

L 2 [t nwr
where A := E/o f(z)dx and A, = E/o f(z) cos (T) dx .
2
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(b) half-range Fourier sine series:

Se(z) = iB” sin <?> , xr € R, (4.12)
i=1

9 L
where B, := E/o f(z) sin (n_zx) dx .

Remark 4.12. S.(x) and Ss(z) are both 2L-periodic and coincide with f(z) on (0,L), but
Se(z) is even and Sg(x) is odd.

Example 4.13. Let f(z) =1—x for x € (0,1) (i.e. L =1):

4.5 Application: Eigenproblems for 2nd-order ODEs
[Constanda, pp. 29—47]

Consider the following eigenproblem (special case of a Sturm-Liouville problem):

Find y:(0,L) — C and A € C such that
—y"(z) = Ny(z), for all z € (0, L) (4.13)

and such that y satisfies
(a) homogeneous Dirichlet boundary conditions:

y(0) = y(L) =0 (4.14)

y'(0) = y'(L) =0 (4.15)
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Case (a):

Therefore the non-trivial, linearly independent solutions of (4.13), (4.14) are

. /nTx
yn(z) = sin <—L>
5 o n € N. (4.16)

n°m
12
The y, are called eigenfunctions of (4.13), (4.14). The A, are called eigenvalues.

An =

Note. For n=0: yo(z)=0 (i.e. trivial),
n<0: y,(r)=—y_n(x) (i.e. linearly dependent),

and all the eigenvalues and eigenfunctions are real-valued.

Remark 4.14 (link to Fourier series).

(i) The half-range Fourier sine series
= nmx
= B,, si (—), 0<z<L,
f(x) ; sin ( — x
expresses f in terms of eigenfunctions of (4.13), (4.14).
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(ii) It follows from Lemma 4.2 that the eigenfunctions y,(z), n € N, of (4.13), (4.14) are
orthogonal on (0, L), i.e. for m,n € N

L : =-n
[ ot = { g

Case (b):

Therefore the non-trivial, linearly independent solutions of (4.13), (4.15) are

yn(x) = cos (?)

TL27T2
L2

n e NU{0}, (4.17)
N, =

i.e. the half-range Fourier cosine series on (0, L) expresses a function in terms of eigen-
functions of (4.13), (4.15), and the eigenfunctions y,(z), n € NU {0}, of (4.13), (4.15) are
orthogonal on (0, L) again.

Cases (c) and (d): [Problem Sheet 9, Question 5].
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