Chapter 3

Integral Theorems

[Anton, pp. 1124-1130, pp. 1145-1160] & [Bourne, pp. 195-224]

First of all some definitions which we will need in the following:
Definition 3.1. (a) A domain (region) € is an open connected subset of R"™.

(b) A domain Q C R? is bounded, if there exists an R > 0 such that Q C Bg, where Bg is
the ball with radius R and centre 0.

(c) A surface S C R3 is open, if for all &1,y ¢ S there exists a continuous curve from x;
to x5 which does not cross S. A surface S C R? is closed, if it is not open.

(d) A closed surface S C R? is convex, if every straight line intersects (meets) S at two
points at most. Examples.

(e) A closed surface S C R? is semi—convex, if we can choose a coordinate system 0zyz
so that every straight line parallel to the coordinate axes intersects S at two points at

most. Examples.

Note. Recall also (Remark 1.24) that a surface S is smooth, if its parametrisation is contin-
uously differentiable. S is piecewise smooth, if S = [J;_, S; and S; smooth.
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3.1 The Divergence Theorem of Gauss

Theorem 3.2 (Divergence Theorem). Let QO C R? be a bounded domain with piecewise
smooth, closed boundary (surface) S. Suppose also that F : Q — R3 is a continuously differ-

entiable vector field. Then
// V-FdV://F-dS. (3.1)
Q S

Proof. (Only for & smooth and semi—convex).

Let D be the projection of Q onto the (x,y)-plane.
Consider the line L through the point (z,y, 0) parallel
to the z—axis. Since § is semi-convex, L intersects

S
§ at two points (2., f(z.y))” and (z,y.g(r,v))" (v 9o y) 1
where f(z,y) < g(x,y) for all (z,y) € D (otherwise
change the coordinate system).
Hence,
So
Y

(i) Let us first show that

//SF?"‘"dS - //D {F3(93>?/>9(937y))—F3(£E,y,f(m,y))}dardy. (3.2)
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(ii)) Now we show that

JJ[ 52 - || Fik-as. (33

(iii) Similarly, by projecting onto the (z, z)-plane and onto the (y, z)-plane we can establish

// @d\/ = //Sng-dS, (3.4)
///@dv — //SFli-dS, (3.5)

and

O

Remark 3.3. This proof can be extended in a straightforward way to domains {2 with piecewise
smooth and non-semi-convex boundary S, if Q = (', €;, where each of the €; has a smooth,
semi-convex boundary §;, e.g. torus.

Example 3.4. Find [[; F'-dS where S is the surface of the unit cube and F := (22, y?, 2%)".

Corollary 3.5. Let Q and S be as in Theorem 3.2. Suppose f:Q — R and F : Q — R? are
continuously differentiable. Then

///dev _ //Sde (3.6)
//QV/\FdV - —/SF/\dS (3.7)
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Proof. Let a € R? be constant.

(i) Apply the Divergence Theorem to G := f a:

(ii) Apply the Divergence Theorem to G := a A F":

3.2 Green’s Theorem in the Plane

Note. In this section we work in R? not in R3!

Definition 3.6. (a) A closed curve C C R?, is simple, if it does not intersect itself, e.g.

@mple j not simple.

(b) A closed curve C C R? is convex, if every straight line intersects C at 2 points at most.

(c) A closed curve C C R? is semi—convex, if we can choose a coordinate system 0xy so
that every straight line parallel to the coordinate azes intersects C at 2 points at most.
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Theorem 3.7 (Green’s Theorem in the Plane). Let Q C R? be a bounded domain with
simple, piecewise smooth boundary (curve) C C R? described in the anticlockwise sense. Sup-
pose that ® : Q@ — R? is a continuously differentiable vector field in R?, i.e. ® = &1 + Pyj.

Hhen 0B, 0P
2 1 o .

Proof. See Handout or [Bourne, pp.210-213]. O

Remark 3.8. Green’s Theorem in the plane is sometimes also referred to as Stokes’ Theorem
in the plane (e.g. in [Bourne, pp. 210-213]).

Corollary 3.9. The area bounded by a simple, closed, piecewise smooth curve C C R? is given

by
1

2

j{(—yi +ag) - dr

c

Proof. Apply Green’s Theorem in the plane with ®(x,y) = —y and ®y(x,y) = =.

3.3 Stokes’ Theorem

Definition 3.10. (a) A closed curve C C R3, is simple, if it does not intersect itself.

(b) A surface S C R3 is orientable, if a unique normal can be assigned at each point © € S.

Example. A Maobius strip for example is not orientable:
o

(c¢) Let S be an open, orientable surface with simple boundary (curve) C. Let n be the unit
normal on §. Imagine a person walking along the curve C (in the positive direction)
with its head pointing in the direction of n.
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Then S and C are said to be correspondingly orientated, if the surface is to the left
of the person. [Anton, p. 1154], [Bourne, p. 210].

Theorem 3.11 (Stokes’ Theorem). Let S C R3 be an open, orientable, piecewise smooth
surface with correspondingly orientated, simple, piecewise smooth boundary (curve) C C R3.
Suppose that the vector field F' is continuously differentiable (in a neighbourhood of S). Then

//S(V/\F)-dS:ng-dr. (3.9)

Proof. See Handout or [Bourne, pp.213-216]. O

Remark 3.12. (a) Stokes’” Theorem implies that the flux of V A F' through a surface S
depends only on the boundary C of S and is therefore independent of its shape. In other
words,

// (VAF)-dS is the same for
S

@ and for
C C

(b) Note that Theorem 3.7 is a special case of Theorem 3.11. To see this, assume that S in
Theorem 3.11 is flat, i.e. & C R? x {0}. Then

S
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