Chapter 3

Integral Theorems

[Anton, pp. 1124 – 1130, pp. 1145 – 1160] & [Bourne, pp. 195 – 224]

First of all some definitions which we will need in the following:

Definition 3.1. (a) A domain (region) Ω is an open connected subset of \mathbb{R}^n .

- (b) A domain $\Omega \subset \mathbb{R}^3$ is **bounded**, if there exists an R > 0 such that $\Omega \subset \mathcal{B}_R$, where \mathcal{B}_R is the ball with radius R and centre **0**.
- (c) A surface $S \subset \mathbb{R}^3$ is **<u>open</u>**, if for all $x_1, x_2 \notin S$ there exists a continuous curve from x_1 to x_2 which does not cross S. A surface $S \subset \mathbb{R}^3$ is <u>**closed**</u>, if it is not open.
- (d) A closed surface $S \subset \mathbb{R}^3$ is <u>convex</u>, if every straight line intersects (meets) S at two points at most. Examples.

(e) A closed surface $S \subset \mathbb{R}^3$ is <u>semi-convex</u>, if we can choose a coordinate system 0xyz so that every straight line *parallel to the coordinate axes* intersects S at two points at most. Examples.

Note. Recall also (Remark 1.24) that a surface S is smooth, if its parametrisation is continuously differentiable. S is piecewise smooth, if $S = \bigcup_{i=1}^{n} S_i$ and S_i smooth.

3.1 The Divergence Theorem of Gauss

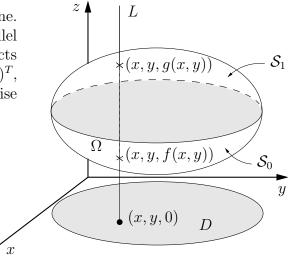
Theorem 3.2 (Divergence Theorem). Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with piecewise smooth, closed boundary (surface) S. Suppose also that $\mathbf{F} : \Omega \to \mathbb{R}^3$ is a continuously differentiable vector field. Then

$$\iiint_{\Omega} \nabla \cdot \boldsymbol{F} \, dV = \iint_{\mathcal{S}} \boldsymbol{F} \cdot \boldsymbol{dS} \; . \tag{3.1}$$

Proof. (Only for \mathcal{S} smooth and semi-convex).

Let D be the projection of Ω onto the (x, y)-plane. Consider the line L through $\underbrace{\text{Biggareplayeopts}}_{T \to \infty}$ allel to the z-axis. Since S is semi-convex, L intersects S at two points $(x, y, f(x, y))^T$ and $(x, y, g(x, y))^T$, where $f(x, y) \leq g(x, y)$ for all $(x, y) \in D$ (otherwise change the coordinate system).

Hence,



(i) Let us first show that

$$\iint_{\mathcal{S}} F_3 \boldsymbol{k} \cdot \boldsymbol{dS} = \iint_{D} \left\{ F_3(x, y, g(x, y)) - F_3(x, y, f(x, y)) \right\} dx \, dy \;. \tag{3.2}$$

(ii) Now we show that

$$\iiint_{\Omega} \frac{\partial F_3}{\partial z} dV = \iint_{\mathcal{S}} F_3 \mathbf{k} \cdot d\mathbf{S} .$$
(3.3)

(iii) Similarly, by projecting onto the (x, z)-plane and onto the (y, z)-plane we can establish

$$\iiint_{\Omega} \frac{\partial F_2}{\partial y} \, dV = \iint_{\mathcal{S}} F_2 \boldsymbol{j} \cdot \boldsymbol{dS} \;, \tag{3.4}$$

$$\iiint_{\Omega} \frac{\partial F_1}{\partial x} dV = \iint_{\mathcal{S}} F_1 \boldsymbol{i} \cdot \boldsymbol{dS} , \qquad (3.5)$$

and

Remark 3.3. This proof can be extended in a straightforward way to domains Ω with piecewise smooth and non-semi-convex boundary S, if $\Omega = \bigcup_{i=1}^{n} \Omega_i$, where each of the Ω_i has a smooth, semi-convex boundary S_i , e.g. torus.

Example 3.4. Find $\iint_{\mathcal{S}} \boldsymbol{F} \cdot \boldsymbol{dS}$ where \mathcal{S} is the surface of the unit cube and $\boldsymbol{F} := (x^2, y^2, z^2)^T$.

Corollary 3.5. Let Ω and S be as in Theorem 3.2. Suppose $f : \Omega \to \mathbb{R}$ and $F : \Omega \to \mathbb{R}^3$ are continuously differentiable. Then

$$\iiint_{\Omega} \nabla f \, dV = \iint_{\mathcal{S}} f \, d\mathbf{S}$$
(3.6)

$$\iiint_{\Omega} \nabla \wedge \boldsymbol{F} \, dV = - \iint_{\mathcal{S}} \boldsymbol{F} \wedge \boldsymbol{dS}$$
(3.7)

Proof. Let $\boldsymbol{a} \in \mathbb{R}^3$ be constant.

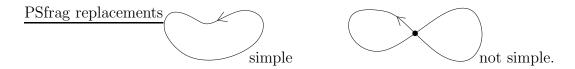
(i) Apply the Divergence Theorem to G := f a:

(ii) Apply the Divergence Theorem to $G := a \wedge F$:

3.2 Green's Theorem in the Plane

Note. In this section we work in \mathbb{R}^2 not in \mathbb{R}^3 !

Definition 3.6. (a) A closed curve $\mathcal{C} \subset \mathbb{R}^2$, is **simple**, if it does not intersect itself, e.g.



- (b) A closed curve $\mathcal{C} \subset \mathbb{R}^2$ is **convex**, if every straight line intersects \mathcal{C} at 2 points at most.
- (c) A closed curve $\mathcal{C} \subset \mathbb{R}^2$ is <u>semi-convex</u>, if we can choose a coordinate system 0xy so that every straight line *parallel to the coordinate axes* intersects \mathcal{C} at 2 points at most.

Theorem 3.7 (Green's Theorem in the Plane). Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with simple, piecewise smooth boundary (curve) $\mathcal{C} \subset \mathbb{R}^2$ described in the anticlockwise sense. Suppose that $\Phi : \Omega \to \mathbb{R}^2$ is a continuously differentiable vector field in \mathbb{R}^2 , i.e. $\Phi = \Phi_1 \mathbf{i} + \Phi_2 \mathbf{j}$. Then

$$\iint_{\Omega} \left(\frac{\partial \Phi_2}{\partial x} - \frac{\partial \Phi_1}{\partial y} \right) \, dx \, dy = \oint_{\mathcal{C}} \mathbf{\Phi} \cdot d\mathbf{r} \, . \tag{3.8}$$

Proof. See Handout or [Bourne, pp.210–213].

Remark 3.8. Green's Theorem in the plane is sometimes also referred to as <u>Stokes' Theorem</u> in the plane (e.g. in [Bourne, pp. 210–213]).

Corollary 3.9. The area bounded by a simple, closed, piecewise smooth curve $\mathcal{C} \subset \mathbb{R}^2$ is given by

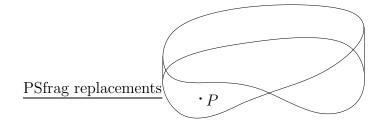
$$\frac{1}{2} \left| \oint_{\mathcal{C}} (-y\boldsymbol{i} + x\boldsymbol{j}) \cdot d\boldsymbol{r} \right| \, .$$

Proof. Apply Green's Theorem in the plane with $\Phi_1(x, y) = -y$ and $\Phi_2(x, y) = x$.

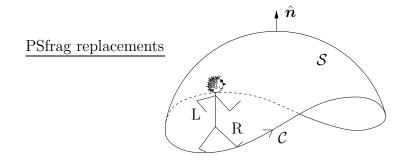
3.3 Stokes' Theorem

Definition 3.10. (a) A closed curve $\mathcal{C} \subset \mathbb{R}^3$, is **simple**, if it does not intersect itself.

(b) A surface $S \subset \mathbb{R}^3$ is <u>orientable</u>, if a unique normal can be assigned at each point $x \in S$. Example. A Möbius strip for example is **not** orientable:



(c) Let \mathcal{S} be an open, orientable surface with simple boundary (curve) \mathcal{C} . Let \hat{n} be the unit normal on \mathcal{S} . Imagine a person walking along the curve \mathcal{C} (in the positive direction) with its head pointing in the direction of \hat{n} .



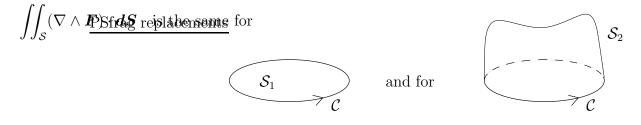
Then S and C are said to be **correspondingly orientated**, if the surface is to the left of the person. [Anton, p. 1154], [Bourne, p. 210].

Theorem 3.11 (Stokes' Theorem). Let $S \subset \mathbb{R}^3$ be an open, orientable, piecewise smooth surface with correspondingly orientated, simple, piecewise smooth boundary (curve) $C \subset \mathbb{R}^3$. Suppose that the vector field \mathbf{F} is continuously differentiable (in a neighbourhood of S). Then

$$\iint_{\mathcal{S}} (\nabla \wedge F) \cdot dS = \oint_{\mathcal{C}} F \cdot dr . \qquad (3.9)$$

Proof. See Handout or [Bourne, pp.213–216].

Remark 3.12. (a) Stokes' Theorem implies that the flux of $\nabla \wedge F$ through a surface S depends only on the boundary C of S and is therefore independent of its shape. In other words,



(b) Note that Theorem 3.7 is a special case of Theorem 3.11. To see this, assume that S in Theorem 3.11 is flat, i.e. $S \subset \mathbb{R}^2 \times \{0\}$. Then