
Chapter 3

Integral Theorems
[Anton, pp. 1124–1130, pp. 1145–1160] & [Bourne, pp. 195–224]

First of all some definitions which we will need in the following:

Definition 3.1. (a) A domain (region) Ω is an open connected subset of R
n.

(b) A domain Ω ⊂ R
3 is bounded, if there exists an R > 0 such that Ω ⊂ BR, where BR is

the ball with radius R and centre 0.

(c) A surface S ⊂ R
3 is open, if for all x1, x2 6∈ S there exists a continuous curve from x1

to x2 which does not cross S. A surface S ⊂ R
3 is closed, if it is not open.

(d) A closed surface S ⊂ R
3 is convex, if every straight line intersects (meets) S at two

points at most. Examples.

(e) A closed surface S ⊂ R
3 is semi–convex, if we can choose a coordinate system 0xyz

so that every straight line parallel to the coordinate axes intersects S at two points at
most. Examples.

Note. Recall also (Remark 1.24) that a surface S is smooth, if its parametrisation is contin-
uously differentiable. S is piecewise smooth, if S =

⋃

n

i=1
Si and Si smooth.
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3.1 The Divergence Theorem of Gauss

Theorem 3.2 (Divergence Theorem). Let Ω ⊂ R
3 be a bounded domain with piecewise

smooth, closed boundary (surface) S. Suppose also that F : Ω → R
3 is a continuously differ-

entiable vector field. Then

∫∫∫

Ω

∇ · F dV =

∫∫

S

F · dS . (3.1)

Proof. (Only for S smooth and semi–convex).

Let D be the projection of Ω onto the (x, y)–plane.
Consider the line L through the point (x, y, 0) parallel
to the z–axis. Since S is semi-convex, L intersects
S at two points (x, y, f(x, y))T and (x, y, g(x, y))T ,
where f(x, y) ≤ g(x, y) for all (x, y) ∈ D (otherwise
change the coordinate system).

Hence,
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(i) Let us first show that

∫∫

S

F3k · dS =

∫∫

D

{

F3(x, y, g(x, y))− F3(x, y, f(x, y))
}

dx dy . (3.2)
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(ii) Now we show that
∫∫∫

Ω

∂F3

∂z
dV =

∫∫

S

F3k · dS . (3.3)

(iii) Similarly, by projecting onto the (x, z)-plane and onto the (y, z)-plane we can establish
∫∫∫

Ω

∂F2

∂y
dV =

∫∫

S

F2j · dS , (3.4)

∫∫∫

Ω

∂F1

∂x
dV =

∫∫

S

F1i · dS , (3.5)

and

Remark 3.3. This proof can be extended in a straightforward way to domains Ω with piecewise
smooth and non-semi-convex boundary S, if Ω =

⋃

n

i=1
Ωi, where each of the Ωi has a smooth,

semi-convex boundary Si, e.g. torus.

Example 3.4. Find
∫∫

S
F ·dS where S is the surface of the unit cube and F := (x2, y2, z2)T .

Corollary 3.5. Let Ω and S be as in Theorem 3.2. Suppose f : Ω → R and F : Ω → R
3 are

continuously differentiable. Then
∫∫∫

Ω

∇f dV =

∫∫

S

f dS (3.6)

∫∫∫

Ω

∇∧ F dV = −

∫∫

S

F ∧ dS (3.7)
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Proof. Let a ∈ R
3 be constant.

(i) Apply the Divergence Theorem to G := f a:

(ii) Apply the Divergence Theorem to G := a ∧ F :

3.2 Green’s Theorem in the Plane

Note. In this section we work in R
2 not in R

3!

Definition 3.6. (a) A closed curve C ⊂ R
2, is simple, if it does not intersect itself, e.g.

PSfrag replacements

simple not simple.

(b) A closed curve C ⊂ R
2 is convex, if every straight line intersects C at 2 points at most.

(c) A closed curve C ⊂ R
2 is semi–convex, if we can choose a coordinate system 0xy so

that every straight line parallel to the coordinate axes intersects C at 2 points at most.
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Theorem 3.7 (Green’s Theorem in the Plane). Let Ω ⊂ R
2 be a bounded domain with

simple, piecewise smooth boundary (curve) C ⊂ R
2 described in the anticlockwise sense. Sup-

pose that Φ : Ω → R
2 is a continuously differentiable vector field in R

2, i.e. Φ = Φ1i + Φ2j.
Then

∫∫

Ω

(

∂Φ2

∂x
−

∂Φ1

∂y

)

dx dy =

∮

C

Φ · dr . (3.8)

Proof. See Handout or [Bourne, pp.210–213].

Remark 3.8. Green’s Theorem in the plane is sometimes also referred to as Stokes’ Theorem
in the plane (e.g. in [Bourne, pp. 210–213]).

Corollary 3.9. The area bounded by a simple, closed, piecewise smooth curve C ⊂ R
2 is given

by
1

2

∣

∣

∣

∣

∮

C

(−yi + xj) · dr

∣

∣

∣

∣

.

Proof. Apply Green’s Theorem in the plane with Φ1(x, y) = −y and Φ2(x, y) = x.

3.3 Stokes’ Theorem

Definition 3.10. (a) A closed curve C ⊂ R
3, is simple, if it does not intersect itself.

(b) A surface S ⊂ R
3 is orientable, if a unique normal can be assigned at each point x ∈ S.

Example. A Möbius strip for example is not orientable:

PSfrag replacements
P

(c) Let S be an open, orientable surface with simple boundary (curve) C. Let n̂ be the unit
normal on S. Imagine a person walking along the curve C (in the positive direction)
with its head pointing in the direction of n̂.
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Then S and C are said to be correspondingly orientated, if the surface is to the left
of the person. [Anton, p. 1154], [Bourne, p. 210].

Theorem 3.11 (Stokes’ Theorem). Let S ⊂ R
3 be an open, orientable, piecewise smooth

surface with correspondingly orientated, simple, piecewise smooth boundary (curve) C ⊂ R
3.

Suppose that the vector field F is continuously differentiable (in a neighbourhood of S). Then

∫∫

S

(∇∧ F ) · dS =

∮

C

F · dr . (3.9)

Proof. See Handout or [Bourne, pp.213–216].

Remark 3.12. (a) Stokes’ Theorem implies that the flux of ∇ ∧ F through a surface S
depends only on the boundary C of S and is therefore independent of its shape. In other
words,
∫∫

S

(∇ ∧ F ) · dS is the same forPSfrag replacements

CC

S1

S2

and for

(b) Note that Theorem 3.7 is a special case of Theorem 3.11. To see this, assume that S in
Theorem 3.11 is flat, i.e. S ⊂ R

2 × {0}. Then
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