Chapter 2

Vector Calculus

2.1 Directional Derivatives and Gradients
[Bourne, pp. 97-104] & [Anton, pp. 974-991]

Definition 2.1. Let f : 2 — R be a continuously differentiable scalar field on a region

Q C R3. Then o of o
grad f = Vf = %z + a_yj + Ek (2.1)

is the gradient of f on 2, which is itself a vector field on €.

Definition 2.2. Let f : © — R be a continuously differentiable scalar field on Q C R? and
let @ be a unit vector in R3. Then

hé) —
Dy f(xo) = }Lli% f(xo + C;L) f (o)

is the directional derivative of f in the direction a at xy € €, i.e. the rate of change of f
in the direction of a. Moreover, for any a € R* we define Dq f := Dg4f where a = a/lal.

Proposition 2.3. Let a € R®. Then

Daf = Vf-

(2.2)

%' . (2.3)

Proof.

(2.4)

(2.5)
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Example 2.4. Find Dg f () for f(x) := 222 +3y*+2%, a := (1,0, -2)", and =, := (2, 1, 3)T.

Step 1: Find V:

Step 2: Normalise a:

Step 3: Evaluate (2.3) at xo:

Proposition 2.5.
max |Daf| = |Vf] (2.6)
acR?

and it is attained in the direction a = V f.

Proof.

Remark 2.6. (geometric interpretation of grad).

(a) Proposition 2.5 shows that V f(x) gives the direction and magnitude of the largest
directional derivative of f at xg, i.e. the largest rate of change of f. For a picture
ilustrating this in 2D see [Anton, Figure 14.6.5, p. 978].

(b) A point xg € Q where V f(x¢) = 0 is called a stationary point (since Proposition 2.5
shows that Dq f(xo) = 0 for all @ € R3).

For work integrals the Fundamental Theorem of Calculus takes the following form.

Theorem 2.7. Let ¢ : 0 — R be a continuously differentiable scalar field, and let C be a curve
mn Q from xqy to x.. Then

/C Vo dr = olx.) — dlao) - (2.7)

Proof. [Problem Sheet 2, Question 5]. O
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2.1.1 Application: Level Surfaces and Grad

Revise until next week Level Surfaces from MA10005 (needed on Problem Sheet 4).
See also [Anton, pp. 987-989].

Note. Please do not confuse the definition of a level surface (as done in MA10005 or
[Anton]) with our definition of a (parametric) surface in Equation (1.13).

2.2 Divergence and Curl; the V-Operator
[Bourne, pp. 104-118] & [Anton, pp. 1095-1100]

Let us consider V f again, but now think as V as an operator acting on a scalar field f.
Formally we could write

0/0x
vV = ia3 +j§ +k§ = | 0/dy | . (2.8)
v y & 9/
This is called the del-operator or nabla, and applying it to a scalar field f we get
Of . 0f of
= — — 4+ k- = )
Vi ‘or +J oy + 0z grad f

Now let us apply V to vector fields. Let F : Q — R? be a vector field on a region ) C R?,
where F' = Fii + Fy3 + F3k. (As for ordinary vectors ab does not make sense, but we can
form the dot and the cross product, i.e. a-b and a A b.)

Definition 2.8. We define the divergence of F' to be the scalar field

0F} N OF, N 0F3
Ox y 0z

divF = V- -F =

and the curl of F' to be the vector field

onp _ (OB OB, (OR ORY. (0F OR
curl FF :== VAF = <8y 6z)z+<0z 0x)]+(6aj ay)kz. (2.10)

Example 2.9. Find div and curl of F(z) = (—y,z,2)T.

Remark 2.10. In manipulating with the V-operator many rules from ordinary vector algebra
apply, but not all (don’t use vector algebra to prove them!). In particular, the order is very
important, i.e. in general
V:-(gF) # gV-F # F-Vg.
Applications. In many fields of mathematical physics, e.g. fluid flow, electromagnetic
field propagation, etc...
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2.2.1 Second order derivatives — the Laplace Operator

Applying the V—-operator twice gives five possible second derivatives:

div(grad f) = V- (Vf) = V2f (2.11)
curl(grad f) = VA (V)

div(cull F) = V- (VA F)

D] curl(curl F) = VA (VA F)

grad(divF) = V(V-F)

Note. Quantities such as grad(curlF') or curl(divF) are meaningless.

Proposition 2.11.

(a) .' curl(grad f) = O, (2.12)
) [C]: div(curl F) = 0, (2.13)
(c) —@: grad(div F) — curl(curl F) = V*F. (2.14)
Proof.  (a)

(b)

(c) [Problem Sheet 5, Question 1(vi)].

The operator

VZ=V:V=_—S+-——5+-— 2.15

0x? * oy? * 072 (2.15)

in (2.11) and (2.14) is called the Laplace—operator (also denoted A). It is very important in

mathematical physics. Many of the basic partial differential equations (PDEs) of mathematical
physics involve it, e.g. the Laplace Equation

2 2 2
8¢+0¢+0¢ B

20
Vi = Getantas = O (2.16)

We will come back to this equation in the second part of this course.
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2.2.2 Application: Potential Theory [Bourne, pp. 225-243]
Definition 2.12. A vector field F : 0 — R3 is called irrotational, if
curl F = 0.

In view of Equation (2.12) we can state the following

Proposition 2.13. Let F : Q — R3 be a vector field. The following three statements are
equivalent:

(a) F is irrotational.

(b) There exists a scalar field ¢ : @ — R such that F = V¢. ¢ is called the scalar potential
of F.

(c) F is conservative (i.e. work integral independent of path).
Proof. [Problem Sheets 2,4 & 8]. O

Remark 2.14. (Calculating scalar potentials). Let F : Q — R3 be a conservative vector field
and let C be an arbitrary curve from a to . Then

o) = /CF-dr (2.17)

is a scalar potential for F', if a is not a pole of ¢. See [Problem Sheet 4, Question 4].

Definition 2.15. A vector field F : Q — R? is called solenoidal (or divergence-free) if

divF = 0.

Example 2.16. (Application in Electrostatics). Given an electric field E and no sources,
the Maxwell’s Equations state:

Remark 2.17. Let Q be bounded and simply connected [Bourne, pp. 225-226]. As a conse-
quence of Equation (2.13) we have also (without proof):

(a) A vector field F : Q — R? is solenoidal iff there exists a vector field ¥ such that
F = curl¥. ¥ is called a vector potential of F' [Bourne, pp. 230-232].

(b) For every vector field F' : Q — R? there exist a scalar field ¢ and a vector field ¥ such
that
F = grad¢ + curl¥ (2.18)

i.e. any vector field can be resolved into the sum of an irrotational and a solenoidal part.
This is the famous Helmholtz Theorem [Bourne, pp. 238-239].
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2.3 Differentiation in Curvilinear Coordinates
[Bourne, pp. 118-136]

Motivation. So far, in this chapter, we have only looked at scalar fields and vector fields in
Cartesian coordinates (z,y, z). What if we have curvilinear coordinates (u, v, w) defined by

r(u,v,w) = z(u,v,w) e+ y(u,v,w)j+ z(u,v,w) k, (2.19)
e.g. spherical polar coordinates, etc. ?

Note. In this section we will always use the notation zt+yj+ 2k for vectors in Cartesian
coordinates rather than (z,y, z)”. T will mention later on why.

We have already seen in Chapter 1 that varying v with v and w fixed creates a curve C,
in R3 with tangent vector 7, := dr/0u. Similarly, varying v creates a curve C, with tangent
vector 1, := Jr/0v, and varying w creates a curve C, with tangent vector r,, := 0r /Ow:

2.3.1 Orthogonal Curvilinear Coordinates

Definition 2.18. A triple (u,v,w) € D together with a Cartesian map r : D — Q C R? as
defined in (2.19) is called a set of orthogonal curvilinear coordinates (OCCs) on €, if

(a) 7 is a continuously differentiable bijection with continuously differentiable inverse r—*

almost everywhere.
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(b) The vectors r,, T,, T, are mutually orthogonal, i.e.

Ty Ty = Ty Ty = Ty Ty =0.

Remark 2.19. Definition 2.18 is quite restrictive. In fact, a hard theorem in Topological
Group Theory shows that there are only 11 OCC systems (ignoring translations, reflections,
rotations and stretches).

Example 2.20. Spherical polar coordinates (p, 6, ¢):
z(p,0,¢) = psinficosd,  y(p,0,¢) = psinbsing,  2(p,0,¢) = pcost .

(a)

Note.
tan—t(y/x) for x>0, y>0
/2 for x=0,y>0
arg(z,y) = { tan"Y(y/x)+7 for <0
3m/2 for x=0, y<0
tan~!(y/z) + 27 for x>0, y<O0
(b) r, = sinfcos¢i+sinfsing j+ cosl k
r9g = pcosfcosg i+ pcostsing 3 —psind k
rey = —psinfdsing i+ psinfcose j
DIY
/r'p./r'e =
’I"p"l"(z) =
T -Ty =
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It is useful to introduce unit vectors

ru rv ,r.w
e, ‘= —, e, = —.
|7 7w

(2.20)

e, = —,
|7

Let F : Q — R3 be a vector field on €. Since e,, e,, e,, are orthonormal, we can use them as
a basis for representing F', i.e.

F = F,e,+F,e,+F, e, (2.21)

where F,, F,, F,, are the components of F' along the coordinate lines C,, C, and C,,.

Addition to previous note. This is why we do not use the notation F = (F, F», F3)T here.
It does not carry any information on the coordinate system we work in.

How do we find F,, F, and F,,? Note that since e,, e, and e, are orthonormal,
F'eu:Fueu'eu+Fvev'eu+Fwew'eu:FU' (222)
Similarly, F-e,=F, and F -e, = F,.

Example 2.21. Express the vector field F' = 2z in spherical polar coordinate form.

r,| = \/sin2 0(cos? ¢ + sin? ¢) + cos? 0 - 1 )
lrg] = \/p2{cos2 f(cos? ¢ +sin? ¢) +sin?f} = p —_—
ry| = \/p2 sin? f(sin? ¢ + cos? ¢) = psing |
(
e, =
— < ey =
( €o =
Thus
and
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2.3.2 Grad, div, curl, V? in Orthogonal Curvilinear Coordinates

of 1 of 1 of
Proposition 2.22. (a) grad f = ‘ru|%eu+‘rv‘%ev+m%ew (2.23)

. 1 ) B 9
() divF = m{%(mumm) —i—%(\ru\\rw\ﬂ) +a—w<\ru||rv|Fw>} (2.24)

(c) rulen |Toles [Twlew
curlF = ——— | 9/0u  0/0v 0/0w (2.25)
TulFy 7ol By 7w By

2p _ L O (rllre| OFN | O (Irullrwl OF\ O (|rullrs| OF
(@ Vi = m||m||rw|{au el o) "o\ ey a0 ) e\ e e

(2.26)
Proof.  (a)
(b) [Problem Sheet 6, Question 1].
(c) See [Bourne, pp. 131-132].
(d)
U
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Example 2.23. For a scalar field f : Q — R find V£ and V2f in spherical polar coordinates.

Recall Example 2.21: |r,| =1, |rg| =p, |ry| = psinb.

Therefore

Exercise. Use spherical polar coordinates to show that f(x) = |z|~! satisfies the
Laplace Equation VZf = 0.

1

Example 2.24. Let F := p*cosf e, + — ey + —; e, in spherical polar coordinates.
p psin
Find curlF'.
e, peg psinfey
1
p?sinf
E, pFy psindF,
1 o) o(1) (1)  9(psinb) o(1)  9(p*cosb) _
= - - — 0
mme{(a& 26 )\ o, 26 )P\, o6 ) romees
= psind ey
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