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This course deals with

basic concepts and results in vector integration and vector calculus, Fourier series, and
the solution of partial differential equations by separation of variables.

It is

fundamental to most areas of applied Maths and many areas of pure Maths,

a prerequisite for a large number (11!!) of courses in Semester 2 and in Year 3/4.

There will be two class tests:

Tuesday, 31st October, 5.15pm (Line, surface, volume integrals)

Tuesday, 28th November, 5.15pm (Vector calculus and integral theorems)

Questions will be similar to the questions on the problem sheets!

Please take this course seriously and do not fall behind with the problem
sheets. The syllabus for this course is very dense and only through constant practice
will you be able to grasp the multitude of methods and concepts.

Please revise

MA10005 Sect. 6-8 Multivariate Calculus
MA10006 Sect. 1 Vector Algebra

The first AIM quiz is designed to help you focus on the relevant material in those courses.
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Chapter 1

Vector Integration

In this course we will be dealing with functions in more than one unknown whose function
value might be vector—valued as well.

Definition 1.1. A function F' : R®* — R" is called a vector field on R". A function
f:R" — R is called a scalar field on R™. (Usually n will be 2 or 3.)

Example 1.2. Typical examples of vector fields are

e gravitational field G(x)
e clectrical field E(x)
e magnetic field B(x)

e velocity field V(x)
Example 1.3. Typical examples of scalar fields are
e speed |V (z)]
e kinetic energy 3 m |V (x)?
e clectrical potential g(x)

We will now learn how to integrate such fields in R".

1.1 Line Integrals [Bourne, pp 147-156] & [Anton, pp. 1100-1123]

Example 1.4. (Motivating Problem). What is the perimeter of the unit circle?

Y
B

Perimeter = 4 x length s of arc AB

Let us divide the interval [—1,0] into N elements of length Ax; =1/N,i=0,...,N — 1:
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Moreover



5 = /j ﬁdw (1.1)

Use the substitution x = — cos # to evaluate (1.1):

Hence, the perimeteris ...............

1.1.1 Parametric Representation — Arclength

Let C be a curve in R" with parametric representation (), i.e.

C = {r(t) : to<t<t} (1.2)

where 7 : [ty,t.] — R" is continuously differentiable.

/ As t increases 7(t) traces out the curve C.
7(t
Va0

Note. In Ex. 1.4 ¢ was chosen to be x. In general, ¢t can be any parameter (e.g. angle 6).
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Example 1.5. Give a parametric representation of the elhpse — + ‘ZQ =1.

As in Example 1.4 we can now calculate the arclength s(t) of C from r(ty) to r(t) for every

t € [to,te]. Let At := — % for some N € N and let t; := to + iAt, fori =0,...,N — 1.

Therefore
(1.3)
and
(1.4)
Letting N — oo (which also means that At — 0), the arclength is
"ldr I 2\ 2 .
to
Also, in the limit as At — 0 equation (1.3) becomes
dr
ds = |—| dt. 1.6
s = | (1.6)
The length of the entire curve C is given by
te | dr
Le = s(t.) = —| dt . 1.7
e =t = |5 (1.7




1.1.2 Line Integrals of Scalar Fields

Now assume we want to calculate the integral of a scalar field f : R™ — R along the curve C.
Geometrically this means, to calculate the following area A:

ASi

r(to)

te—t
As in (L4) with At = = % we get

(i.e. we approximate the area by the sum of the strips.)

Hence for N — oo
A —/tef(r(t)) Tl
\ dt

(an ordinary integral of a scalar valued function of t).

Definition 1.6. The line integral of a scalar field f : R — R along the curve C in (1.2)
is defined as

dr

dt . 1.8
pm (1.8)

[as = Fr()

Remark 1.7.

(a) The value of fc f ds does not depend on the choice of parametrisation, even if the orien-
tation of C is reversed [Bourne, p. 148|, [Anton, pp. 1108-1109].

(b) The length of the curve C in (1.6) is a special line integral, i.e. Le = [, Lds.

Example 1.8. Integrate f(x,y) = 2zy around the first quadrant of a circle with radius a as
shown:




Step 1. Parametrise circle:

Step 2. Calculate the line element ds :

Step 3. Apply formula (1.8) for the line integral:

1.1.3 Line Integrals of Vector Fields

Definition 1.9. The work integral of a vector field F : R* — R” along the curve C in
(1.2) is defined as

fe dr
/cF ~dr = /to F(r(t)) - Edt . (1.9)

(dot product!)

Theorem 1.10. IfT is the unit tangent vector to C in (1.2) that points in the direction in
which t is increasing, then

/F-dr = /(F-T)ds, (1.10)
c c
i.e. the work integral of F' = the line integral of the component of F' parallel to C.

Proof.



Remark 1.11.

(a) It follows directly from Theorem 1.10 that a reversal of the orientation of C does change
the sign of the work integral (in contrast to the line integral of a scalar field, cf. Remark
1.7(a)) [Bourne, p. 153], [Anton, p. 1109].

(b) If F is a force field then [, F - dr is the work done by moving a particle from r(ty) to
r(t.) along the curve C; hence the term work integral.

Example 1.12. (in tutorial). Evaluate the integral [, F-dr where F(z,y) = (2y,2%)" and
2,2

C is the ellipse :U_2 + Z—Q =1 in the upper half plane as shown:
a
Yy
C
AN
a

Step 1. Parametrise the curve (Example 1.5):
r(t) = (acost,bsint)’, t €0, n].

d
Step 2. Calculate the vector line element dr = d_: dt :

Step 3. Apply formula (1.9) for the work integral:



Definition 1.13. (in tutorial). Let F' be a vector field such that F' = Fyi+ Fyj + F3k. The
(vector valued) integrals [, F'ds and [, F' A dr are defined as

T
Fds = (/ I ds,/Fg ds,/F3ds)
c c c c

FAdr = / F(r /\—dt

Definition 1.14. A vector field F' : R — R" is called conservative, if
F.-dr = F -dr (1.11)
C1 CQ

for any two curves C; and Cy connecting two points @y and x, in R”

Le

Co

o

1.1.4 Application to Particle Motion

Suppose F' : R" — R" is a force field and suppose that a particle of mass m moves along a
curve C through this field. Suppose further that »(¢) is the position of the particle at time
t € [to,te] (i.e. r(t) is a parametric representation of C where the parameter ¢ is time).

Recall:
dr

e particle velocity V' (t) = =

e kinetic energy K(t) = %m‘v(t)‘Q

Newton’s Second Law states

d2
Force applied = mass * acceleration == F(r(t)) = md—g
Therefore
te d2 d
/F-dr - / F(r —dt - / (m—g)-—rdt
c to dt dt
1 te'd (dr dr 1 fe d
= = — dt = = — |V (t)|? dt
2m/t0 dt(dt dt) 2 ) @Vl
and so by the Fundamental Theorem of Calculus
1 1
[Feir = SmlVE)P - GmlVeP. (1.12)
c

or in other words



‘ Work done = Change in kinetic energy from ¢, to t.

(“conservation of energy principle”).

1.2 Surface Integrals [Bourne, pp. 172-189] & [Anton, pp. 1130-1145]

In the previous section we discussed integrals along “one-dimensional” curves in R™. Now we
want to look at integrals on two-dimensional surfaces in R".

You have already done the case n = 2 in MA10005, i.e. (flat) surfaces in R%. Now we will
consider surfaces in R3, i.e. n = 3.

Recall (for curves): parametric representation

1 1 C
t() te

Now, let S be a (two-dimensional) surface in R* with parametric representation r(u,v), i.e.
S = {r(u,v) : (u,v) € D} (1.13)

where  : D — R? is continuously differentiable and D C R2.

Example 1.15. (Step 1). A cylindrical shell of height b and radius a

/-\ r(u,v)
N

can be parametrised by



1.2.1 The Surface Elements dS and dS

Recall: the equation of a plane in R3 is
T = o+ N +pum, ApeR

(where I, m are two arbitrary non-parallel vectors on the plane).

The unit normal to this plane is n m
. IlAnm
n = .
‘G

Now, let S = {r(u,v) : (u,v) € D} asin (1.13) and let (ug,vp) € D. Fixing vy, we get

Similarly,

Definition 1.16. (a) The tangent plane of S in (1.13) at the point 7(ug,v9) € S is

T = {:1: €R?: x = r(up,vo) + )\a—r(uo,vo) +u@(uo,vo) D WIRS R} )
ou ov
(b) The unit normal to S at 7(ug, vg) is
no— (9_7“ A @ a_’l“ A @ ( )
=\ o ou’ ou| 00

Note (on orientation). Reversing the roles of u and v, changes the sign of n. This is
a matter of convention. For closed surfaces (e.g. sphere, cylinder, torus) it is common to
define n to be the normal that points outward. (If it is not clear we will always specify the

orientation of the normal/surface.)

10



We will now define a surface element dS for the surface S = {r(u,v): (u,v) € D} in (1.13):

dr

Recall the line element ds := . dt which we defined in (1.6) for a

(one-dimensional) curve C.

ds C

Let Py be a point on the surface, such that OP, = r(u,v), let P; be a neighbouring point with

OP, = v(u + Au,v). Similarly, let P, and P; be the points with OP, = r(u,v + Av) and
OP; = r(u+ Au,v + Av).

v+Av S A

B D

v
v+ Av
v
0 U u u+ Au

u 4+ Ay

Y

For Au and Aw sufficiently small

dudv . (1.16)

dS is called the (scalar) surface element.

Example 1.17. (Step 2). Calculate dS and find the outward unit normal of the cylindrical
shell of height b and radius a.

11



(Recall Step 1 (i.e. Example 1.15):  7(u,v) := (acosu,asinu,v)’.)

The vector surface element dS is defined as

ds = dSn, (1.17)
or using (1.15) and (1.16)
or Or

1.2.2 Surface Integrals of Scalar Fields
Definition 1.18. The surface integral of a scalar field f : R" — R on § in (1.13) is

defined as
//Sde _ //Df<r<u,v>>

Example 1.19. (Step 3). Find the surface area of a cylindrical shell of height b, radius a.

or Or
_/\_

AR dudv . (1.19)

[Recall: Step 1 (i.e. Example 1.15: 7(u,v) := (acosu,asinu,v)?, 0 <u <27, 0<v <D,
Step 2 (i.e. Example 1.17: dS = adudv . |

( surface integral — 2D—integral — repeated integral. )

Note. Try always to parametrise a surface S in such
a way that either D is rectangular or

D = {(u,v) : u € [ug, ue] and v € [vo(u),ve(u)]} .

This makes the transition from the 2D-integral to the
repeated integral easier (compare MA10005).

12



vA

Remark 1.20.

(a) Another way to define the surface integral would be to
use a subdivision of S into (little) surface elements AS;
with centre x; (as for line integrals), i.e.

N-1
//de = lim > fla) AS; (1.20)
S Iy

See [Anton, p. 1130].

(b) The area of a surface S is a special surface integral, i.e. Ag = // dS (cf. Remark 1.7(b)).
S

1.2.3 Flux — Surface Integrals of Vector Fields

Definition 1.21. The flux (or surface integral) of a vector field F : R"™ — R" across a
surface § is defined as

//SF'dS = //DF(T(U>U))' (%/\2—2) dudv . (1.21)

Remark 1.22.  (a) It follows from (1.17) that

J[F-as = [[-aas.

i.e. the flux of F across & = surface integral of the normal component of F on S.

(b) (physical interpretation) If F is for example the velocity field of some fluid then the flux
across S is the net volume of fluid that passes through the surface per unit of time. For
more details:

Please study [Anton, pp. 1137-1140] until the next lecture.

Example 1.23. Find // x -dS , where § is the sphere with radius a, i.e.
S

S:={xeR’:2*+y°+2° =a’}.
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Step 1. Parametrise S: spherical polar coordinates

Step 2. Calculate % A g—; :

Step 3. Apply formula (1.21) for the surface integral:

Remark 1.24. (a) So far we have only considered smooth surfaces, i.e. surfaces S with
continuously differentiable parametric representation r. However, the notion of surface
integrals can be extended to surface integrals on piecewise smooth surfaces:

If S=5USU...US, , where S; is smooth for each : = 1,...,n, then we define

o= Il Il Ik

14



For example: Let S be the surface of the unit cube
and let Sy, . .., Sg be the six faces (obviously each one 3
of the S;, i =1,...,6 is smooth), and so 0

[L:/L+/Xf"“+fé‘ %/i%/x/%%~\54

S

(b) Analagously, for piecewise smooth curves C:=C,UCyU...UC,, , we define

L=f ]

1.3 Volume Integrals [Bourne, pp. 189-194] & [Anton, pp. 1048-1090]

Let f : 2 — R be a scalar field defined on a bounded region Q C R?. As in R? (recall
MA10005) we can subdivide €2 into little volume elements AV; with centre @; and define the
volume integral

z
N-1 O
J[[sav =t 3 f@)av
Q —o0 4 !
=0 E A‘/l
(where AV; — 0 as N — o0). In rectan- | ‘Az
gular Cartesian coordinates one might choose ! /
AV; = Ax Ay Az and hence obtain in the limit LTy Ay Az
the volume element dV = dz dydz. 4'/_ ________ g

T

//Qfd‘/ = ///Qf(:c,y,z)dxdydz. (1.22)

If f is continuous, the right hand side can be evaluated as a repeated integral again (in any
order you want). However the limits of these repeated integrals might be very akward.

Thus

Example 1.25. Find the volume of the ball of radius a in the first octant, i.e.

Q= {zeR¥: 2?4 y* + 22 <d? a,y,2 >0}

15



Things may become even nastier if we want to integrate over the entire ball.

1.3.1 Change of Variables — Reparametrisation

Let
Q = {r(u,v,w): (u,v,w) € D} (1.23)

where D C R?® and 7 : D —  is continuously differentiable. This will be particularly uesful,
if D is box-shaped:

D : Q

(u,v,w)

Example 1.26. The parametrisation
r(p,0,¢) = (psinfcos¢, psinfsing, pcosh)”
maps the (box-shaped) region
D = {(p0,0) eR*:0<p<a,0<0<m, 0<¢p<2r}

to the ball with radius a. (p, 0, ¢) are called spherical polar coordinates (p... radial dis-

tance, 6 ... polar angle, ¢ ... azimuthal angle). ‘See handout! ‘

Please study the handouts on spherical and cylindrical polar coordinates until the
next lecture.

Motivation. Let OP, = r(u, v, w), oP, = r(u + Au, v, w), OP, = r(u,v + Av,w), oOP, =
r(u,v,w+ Aw).

' AV

16



For Au, Av, Aw sufficiently small AV will be approximately a parallelepiped.
Recall (MA10006):

and in the limit as Au, Av, Aw — 0

iV = '(87"/\87") or

the so-called volume element.

Definition 1.27. The volume integral of a scalar field f : Q2 — R over the region 2 C R3
in (1.23) is defined as

[ = Jff, renon | (G 50) 5

17

du dv dw . (1.25)




Note. Definition 1.27 is no contradiction to the change of variables formula which you
have learnt in MA10005, since

ou Ou Ou

or Or\ Or| _ ary Ory Ors | O(x,y,2)

'(au/\av) ow| det v v v 0 O(u,v,w) (1.26)
Ory Ory Oy
ow oJw Ow

i.e. the Jacobian determinant.

[ Proof. (recall MA10006)

Remark 1.28.

(a) w,v,w can be regarded as curvilinear coordinates on 2. (See the figure at the begin-
ning of Section 1.3.1.)

(b) The integral (1.22) in Cartesian coordinates is just a special case with r(x,y,2) =

(z,y,2)T, and so ’(g—g A 66—7;) LI =1,

(c) The volume of © in (1.23) is a special volume integral, i.e. Vo = [[[, dV .

Example 1.29. Redo Example 1.25 using spherical polar coordinates.

Step 1. Parametrise (see handout):

Step 2. Calculate the volume element dV = ‘(g—z A %—C) . g—m dudvdw :

18



Step 3. Evaluate Formula (1.25) for the volume integral:
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