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EIGENVALUES IN SPECTRAL GAPS OF DIFFERENTIAL
OPERATORS

MARCO MARLETTA AND ROB SCHEICHL

Abstract. Spectral problems with band-gap spectral structure arise in numerous
applications, including the study of crystalline structure and the determination of
transmitted frequencies in photonic waveguides. Numerical discretization of these
problems can result in spurious results, a phenomenon known as spectral pollution.
We present a method for calculating eigenvalues in the gaps of self-adjoint operators
which avoids spectral pollution. The method perturbs the problem into a dissipative
problem in which the eigenvalues to be calculated are lifted out of the convex hull of
the essential spectrum, away from the spectral pollution. The method is analysed
here in the context of one-dimensional Schrödinger equations on the half line, but
is applicable in a much wider variety of contexts, including PDEs, block operator
matrices, multiplication operators, and others.

Keywords: eigenvalue, spectral pollution, self-adjoint, dissipative, Schrödinger, spec-
tral gap, spectral band, essential spectrum, discretization, variational method.

1. Introduction

In the numerical calculation of the spectrum of a self-adjoint operator, one of the
most difficult cases to treat arises when the spectrum has band-gap structure and one
wishes to calculate eigenvalues in the spectral gaps above the infimum of the essential
spectrum. The reason for this difficulty is that variational methods will generally
result in spectral pollution (see, e.g., Rappaz , Sanchez Hubert, Sanchez Palencia and
Vassiliev [15]): following discretization, the spectral gaps fill up with eigenvalues of
the discrete problem which are so closely spaced that it is impossible to distinguish
the spectral bands from the spectral gaps. A number of different strategies have been
proposed to deal with this problem: see Mertins and Zimmermann [19], Davies and
Plum [10] for variants of the classical variational methods, and Boulton and Levitin
[7], Levitin and Shargorodsky [12] and the references therein for an approach based
on quadratic relative spectrum. All of these methods work for general abstract self-
adjoint operators in a Hilbert space. There is also a lot of work in the mathematical
physics literature on choosing special bases which do not result in pollution for certain
classes of operators: see, e.g., Lewin and Séré [12] and the references therein.

For differential operators on infinite domains or with singularities, spectral pollution
caused by domain truncation is also well studied: see, e.g., [4], [18], [8]. Pollution can
always be avoided by the choice of appropriate boundary conditions on the boundary
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of the truncated domain; in practice, however, devising such ‘non-reflecting’ boundary
conditions can be just as difficult and problem-specific as devising non-polluting bases.

In [14], Marletta considered the calculation of eigenvalues for Schrödinger equations

−∆u+ q(x)u = λu,

in infinite domains in Rd, with band-gap spectral structure. A different trick was
proposed: exploiting the fact that for many such problems the eigenfunctions are
rapidly decaying, the author proposed changing the problem by replacing the potential
q, making the change

q(x) −→ q(x) + iγs(x), (1)

where s is a compactly supported ‘cutoff function’ which takes the value 1 everywhere
inside a ball of large radius. The parameter γ is a nonzero real. The fact that s is
compactly supported means that the essential spectrum of the problem is unchanged.
On the other hand, an eigenfunction belonging to an eigenvalue in a spectral gap,
being exponentially decaying, will see the function s almost as if it took the value 1
everywhere, and so the corresponding eigenvalue λ will be perturbed according to

λ −→ λγ ∼ λ+ iγ. (2)

In particular, λ ≈ <(λγ). Numerical results in [14] indicate that the quality of this
approximation for many problems is surprisingly good, the error due to the pertur-
bation being several orders of magnitude smaller than the error due to discretization,
and that this does not require that γ be small. However no error bounds are presented
in [14], which is concerned mainly with proving that spectral pollution remains close
to the real axis for a wide class of potentials.

At this point, we make a brief historical digression. The use of complex function
methods for apparently self-adjoint problems in computational science has a long
history. In his PhD thesis in 1967, Tamás Vertse proposed a method for finding reso-
nances which was independently discovered subsequently by several different authors
and which is usually now called dilation analyticity or complex scaling: see, e.g., the
1971 paper of Aguilar and Combes [2], or the 1981 paper of Ritby et al. [16]. Nu-
merical analysts discovered this technique somewhat later and call it the perfectly
matched layer method, generally citing the 1994 paper of Berenger [5]. All of these
techniques are designed to solve resonance or scattering problems by deforming them
into eigenvalue problems for non-self-adjoint operators. Another well known tech-
nique is the limiting absorption principle, which also turns a scattering problem into
a non-self-adjoint problem. The method which we analyse here has some flavour of
both approaches but is actually quite different, and is designed for the problem of
calculating eigenvalues when spectral pollution is an issue.

In the remainder of this paper we carry out an extensive analysis of this perturba-
tion technique for an ODE problem on the half-line [0,∞). In particular we establish
the following results for an eigenvalue λγ of the shifted problem:

1. We obtain rigorous error bounds on |λ − <(λγ)| and |=(λγ) − iγ| in the case
in which q is a compact perturbation of a real periodic function. In particular,
we show that if s(x) = 0 for x ≥ R and s(x) = 1 for x ≤ cR, where c ∈ (0, 1)
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is a fixed positive constant, then

|λ+ iγ − λγ| ≤ C1 exp(−cC2R), (3)

for positive constants C1 and C2. We also obtain an a-posteriori error bound
which replaces (3) in the case where q is any real-valued potential, locally L1

at every point in [0,∞), for which the Schrödinger equation has exponentially
decaying solutions for λ outside the essential spectrum.

2. We show that if the shifted problem is truncated to some interval [0, X], X > R,
so that λγ is perturbed to λγ,X,good then, regardless of the artificial boundary
condition imposed at x = X, an error bound of the form

|λγ − λγ,X,good| ≤ C3 exp(−C4(X −R)) (4)

holds, where C3 and C4 are further positive constants.
3. If an eigenvalue λγ,X,bad of the truncated, shifted problem converges, asX →∞,

to a point which is neither an eigenvalue λγ nor a point of essential spectrum
— in other words, if λγ,X,bad is responsible for spectral pollution – then

|=(λγ,X,bad)| ≤ C5 exp(−C6(X −R)), (5)

for further positive constants C5 and C6. In particular, combining (3,4,5), for
all sufficiently large X,

|=(λγ,X,good)| ≥ 3γ/4, |=(λγ,X,bad)| ≤ γ/4,

which allows one to avoid calculating polluting eigenvalues, simply by concen-
trating on eigenvalues whose imaginary part exceeds (say) γ/2.

4. In addition to ‘good’ eigenvalues λγ,X,good and polluting eigenvalues λγ,X,bad, the
truncated, shifted problems will also possess eigenvalues λγ,X,ess which converge
to the essential spectrum. We prove that for fixed γ > 0 and large X these
satisfy

=(λγ,X,ess) = O(X−1). (6)

These results are not exhaustive. The ‘compact shift’ trick (1) may generate further
eigenvalues. In fact we shall consider the behaviour of such eigenvalues as functions
of γ and show that the only possible behaviours are as follows:

1. λγ converges to an eigenvalue λ of the unperturbed problem as γ ↘ 0.
2. λγ converges to an endpoint of a spectral band as γ ↘ 0.
3. There exists γcrit > 0 such that, as γ ↘ γcrit, λγ converges to a point of a

spectral band.

Numerical results will be presented to indicate that the second and third possibilities
do appear to be realized in practice. It is worth observing that the critical con-
stant γcrit is strictly positive, something which is not true in the case of self-adjoint
perturbations.

2. Problem statement and background theory

We consider on the half-line [0,∞) the Schrödinger equation

− u′′ + (q(x) + iγs(x))u = λu, (7)
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with boundary condition

cos(α)u(0)− sin(α)u′(0) = 0. (8)

defined by choosing some α ∈ [0, π). Here q is real-valued, locally L1 and integrable
near 0; the function s is positive, bounded and compactly supported.

We assume that the operator L0 given by

D(L0) = {u ∈ L2(0,∞) | − u′′ + qu ∈ L2(0,∞), cos(α)u(0)− sin(α)u′(0) = 0} (9)

L0u = −u′′ + qu, (10)

is self-adjoint1. It is known that the multiplication operator S given by

(Su)(x) = s(x)u(x), u ∈ L2(0,∞) (11)

is compact relative to L0 and hence, for any γ ∈ R,

σess(L0 + iγS) = σess(L0) ⊆ R
In order to describe the spectrum of L0 + iγS we use a technique called Glazman

decomposition [2, §130], which is equivalent to a two-sided shooting method. Fix
λ ∈ C; fix any non-zero constant h and consider the following two boundary value
problems:

Pleft :

 −v
′′ + (q + iγs)v = λv, x ∈ (0, R);
cos(α)v(0)− sin(α)v′(0) = 0;

v(R) = h.
(12)

Pright :

 −w
′′ + (q + iγs)w = λw x ∈ (R,∞);

w(R) = h;
w ∈ L2(R,∞).

(13)

If these problems can be solved then we may define

mleft(λ) = v′(R)/v(R); mright(λ) = −w′(R)/w(R). (14)

The functions mleft and mright are one-dimensional Dirichlet to Neumann maps. They
are analytic functions; mleft is meromorphic and mright is Nevanlinna.

Suppose there exists µ ∈ C such that for λ = µ we have

mleft(µ) +mright(µ) = 0. (15)

Then we can define a nontrivial function u by

u(x) =

{
v(x)/v(R), x ≤ R,
w(x)/w(R), x ≥ R.

Now u solves the differential equation −u′′ + (q + iγs)u = µu both on (0, R) and on
(R,∞), is continuous at x = R and, thanks to (15), has continuous first derivative
at x = R. This implies that u is an eigenfunction with eigenvalue µ. The converse
reasoning is equally straightforward, and we obtain the following result.

Lemma 1. Suppose that mleft(λ) and mright(λ) are well defined at λ = µ. Then µ is
an eigenvalue of L0 + iγS if and only if µ is a zero of mleft +mright.

1This is equivalent to assuming that the associated differential equation is in the so called limit-
point case at infinity, see [9].
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In the remainder of this section we make the following assumptions:

(A1): q is real-valued, locally L1, and there exists R0 ≥ 0 such that q is periodic
with period a > 0 on [R0,∞):

q(x+ a) = q(x) ∀x ≥ R0. (16)

(A2): s is a cutoff function with support in [0, R] for some R ≥ R0:

s(x) =

{
1 (x < cR);
0 (x ≥ R).

(17)

Here 0 < c ≤ 1 is a fixed positive constant. For x ∈ (cR,R) we simply assume
that s is measurable and takes values in [0, 1].

We now consider how to find mright by using Floquet theory [11]. Since q(x) is
periodic for x ≥ R0 ≥ R and s(x) = 0 for x ≥ R it is known that for each λ ∈ C
there exist solutions ψ(x, λ) and φ(x, λ) of (7), and constants ρ1(λ), ρ2(λ) such that(

ψ(x+ a, λ)
ψ′(x+ a, λ)

)
= ρ1(λ)

(
ψ(x, λ)
ψ′(x, λ)

)
,

(
φ(x+ a, λ)
φ′(x+ a, λ)

)
= ρ2(λ)

(
φ(x, λ)
φ′(x, λ)

)
, x ≥ R;

(18)
moreover we may write ρ1(λ) = exp(ik(λ)a), ρ2(λ) = exp(−ik(λ)a), where =(k(λ)) >
0 precisely when λ does not lie in σess(L0). Thus for each λ 6∈ σess(L0) the differential
equation −u′′+(q+iγs)u = λu has a unique (up to scalar multiples) solution ψ(·, λ) ∈
L2(0,∞). This solution decays exponentially while φ(·, λ) grows exponentially.

Now consider the solution w of the boundary value problem Pright in (13). By direct
verification, the solution exists if and only if ψ(R;λ) 6= 0 and is given by

w(x) = hψ(x, λ)/ψ(R, λ).

Thus

mright(λ) = −ψ′(R, λ)/ψ(R, λ), (19)

and we deduce from Lemma 1 the following.

Corollary 1. Suppose that mleft(λ) is well defined and that ψ(R, λ) is nonzero. Then
λ is an eigenvalue of L0 + iγS if and only if

mleft(λ)− ψ′(R, λ)/ψ(R, λ) = 0. (20)

Now suppose that we truncate our problem over [0,∞) to a problem on [0, X] for
some X > R. At x = X we impose, for some β ∈ R, a selfadjoint artificial boundary
condition

cos(β)u(X)− sin(β)u′(X) = 0. (21)

The operator L0 is thus replaced by L0,X defined by

D(L0,X) = {u ∈ L2(0, X) | − u′′ + qu ∈ L2(0, X),
cos(α)u(0)− sin(α)u′(0) = 0 = cos(β)u(X)− sin(β)u′(X)}, (22)

L0,Xu = −u′′ + qu. (23)
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The spectra of L0,X and L0,X + iγS are now purely discrete. We can characterize the
eigenvalues of L0,X + iγS by replacing problem Pright in the Glazman decomposition
(13,14) by

Pright,X :

 −w
′′ + (q + iγs)w = λw x ∈ (R,X);

w(R) = h;
cos(β)w(X)− sin(β)w′(X) = 0.

(24)

Let ψ and φ be the functions determined (up to scalar multiples) by (18) and let

ψX(x, λ) = ψ(x, λ)− CX(λ)φ(x, λ), (25)

where

CX(λ) =
cos(β)ψ(X,λ)− sin(β)ψ′(X,λ)

cos(β)φ(X,λ)− sin(β)φ′(X,λ)
. (26)

Then a direct calculation shows that the solution of (24), if it exists, is given by

w(x) = hψX(x, λ)/ψX(R, λ).

Defining
mright,X(λ) = −w′(R)/w(R) = −ψ′X(R, λ)/ψX(R, λ), (27)

we obtain the following analogue of Lemma 1 and Corollary 1.

Lemma 2. Suppose that mleft(λ) is well defined and that mright,X(λ) is well defined.
Then λ is an eigenvalue of L0,X + iγS if and only if

mleft(λ) +mright,X(λ) = 0; (28)

equivalently, if and only if

mleft(λ)− ψ′X(R, λ)/ψX(R, λ) = 0. (29)

3. The effect of interval truncation: convergence rate estimates

Theorem 1. Suppose that assumptions (A1) and (A2) hold — see (16,17). For γ > 0
let λγ be an eigenvalue of the non-selfadjoint Schrödinger operator L0 + iγS defined
in (9,10,11) and let λγ,X,good be the approximation to this eigenvalue obtained as an
eigenvalue of the operator L0,X + iγS defined in (22,23). Then

|λγ − λγ,X,good| ≤ C3 exp(−C4(X −R)) (30)

holds, where C3 and C4 are positive constants.

Proof. Without loss of generality it is sufficient to check the cases X = R+Na where
N ∈ N is sufficiently large; the other cases follow by interpolation, with possible
adjustment of the constants C3 and C4.

First we observe that λγ has strictly positive imaginary part for γ > 0; in fact if uγ
is the corresponding normalized eigenfunction then a standard integration by parts
yields

=(λγ) = γ

∫ R

0

s(x)|uγ(x)|2dx > 0.

Next we observe that as a consequence, neither ψ(R, ·) nor ψX(R, ·) can be zero in
a neighbourhood of λ = λγ. If we had ψ(R, λγ) = 0 then from the Floquet equation
(18) we would also have ψ(R + a, λγ) = 0. Since the cutoff function s is zero on
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[R,R + a], this would mean that the strictly complex number λγ was an eigenvalue
of a self-adjoint Dirichlet problem over [R,R + a], which is impossible. If we had
ψX(R, λγ) = 0 a similar argument would immediately apply since ψX satisfies the
self-adjoint boundary condition (21). Since ψ(R, ·) and ψX(R, ·) are both nonzero in
a neighbourhood of λγ it follows that mright(·) and mright,X(·) are well defined in a
neighbourhood of λγ.

If mleft(λγ) is well defined, then we can use Lemmata 1 and 2. We know that

mleft(λγ) +mright(λγ) = 0, (31)

mleft(λγ,X,good) +mright,X(λγ,X,good) = 0; (32)

using (25) and the definitions of mright and mright,X it follows that for each fixed λ,

mright(λ)−mright,X(λ) = O(CX(λ)).

Now we exploit the Floquet equation (18) together with the fact that X = R + Na
to deduce that

CX(λ) =

(
ρ1(λ)

ρ2(λ)

)N
CR(λ); (33)

since |ρ1| < 1 and |ρ2| = |ρ1|−1 > 1, this is exponentially small in N . Thus, in
addition to (31), we have from (32) and (33) that

mleft(λγ,X,good) +mright(λγ,X,good) = O

((
ρ1(λγ,X,good)

ρ2(λγ,X,good)

)N)
. (34)

It follows by a standard extension of the implicit function theorem that

|λγ − λγ,X,good| = O

(
ρ1(λγ)

ρ2(λγ)

)N/ν
,

where ν is the algebraic multiplicity of λγ (i.e. the order of the zero ofmleft(·)+mright(·)
at λγ).

This proves the result for the case when mleft(λγ) is well defined. When mleft has
a pole at λ, then λ cannot be an eigenvalue of L0 + iγS because mright and mright,X

cannot have poles off the real axis: as already shown, ψ(R, λ) and ψX(R, λ) cannot
have zeros off the real axis. �

Theorem 2. Suppose that assumptions (A1) and (A2) hold — see (16,17). For γ > 0
let λγ,X,bad be an eigenvalue of the non-selfadjoint Schrödinger operator L0,X + iγS
defined in (22,23) which converges, as X → +∞, to a point which is not in the
spectrum of L0 + iγS. If X = R+Na, where N ∈ N, then for some positive constants
C5 and C6,

=(λγ,X,bad) ≤ C5 exp(−C6X).

Proof. Let µ = limX→∞ λγ,X,bad. We shall use the fact that λγ,X,bad satisfies

mleft(λγ,X,bad) +mright,X(λγ,X,bad) = 0. (35)
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From (25,26,27), and from eqn. (33) in the proof of Theorem 1, we deduce that

mright,X(λ) = mright(λ)

1−
(
ρ1(λ)
ρ2(λ)

)N
CR(λ)f(λ)

1−
(
ρ1(λ)
ρ2(λ)

)N
CR(λ)g(λ)

 (36)

where

f(λ) =
φ(R, λ)

ψ(R, λ)
, g(λ) =

φ′(R, λ)

ψ′(R, λ)
. (37)

Both of these functions are analytic off the real axis as it is only on the real axis that
ψ(R, ·) and φ(R, ·) can have zeros.

The Floquet multipliers ρ1 and ρ2 are also continuous functions of λ with |ρ1(λ)| < 1
and |ρ2(λ)| = |ρ1(λ)|−1 > 1 for λ outside the essential spectrum. There are two cases
to consider.

Case 1, =(µ) 6= 0: Then µ lies off the essential spectrum, and so from (36) we
can deduce that mright,X(·) converges locally uniformly to mright(·) as X → ∞ (this
fact also follows even for more general problems from the classical Titchmarsh-Weyl
nesting circle analysis; see, e.g., Coddington and Levinson [9, Chapter 9]). From this
locally uniform convergence, together with the fact that λγ,X,bad → µ, we obtain, for
large X,

mright,X(λγ,X,bad) ∼ mright(µ) +O

(
ρ1(µ)

ρ2(µ)

)N
,

and so mright,X(λγ,X,bad)→ mright(µ) as X →∞. But from (35) this yields

mleft(µ) +mright(µ) = 0.

From Lemma 1 this means that µ is an eigenvalue of L0 + iγS, a contradiction. Thus
µ must be real; but recall that by assumption we also know that µ must not lie in
one of the spectral bands.

Case 2, µ is real but does not lie in a spectral band: Again µ lies off the
essential spectrum so we still have(

ρ1(λγ,X,bad)

ρ2(λγ,X,bad)

)N
∼
(
ρ1(µ)

ρ2(µ)

)N
,

which is exponentially small. From eqns. (36,37) we have

mright,X(λ) = mright(λ)

 ψ(R, λ)−
(
ρ1(λ)
ρ2(λ)

)N
CR(λ)φ(R, λ)

ψ′(R, λ)−
(
ρ1(λ)
ρ2(λ)

)N
CR(λ)φ′(R, λ)

 ψ′(R, λ)

ψ(R, λ)

and so the only way that we can fail to have mright,X(λγ,X,bad)→ mright(µ) as X →∞
is if either CR(λγ,X,bad) is exponentially large or if one of ψ(R, λ), ψ′(R, λγ,X,bad) is
exponentially small; equivalently, if and only if at least one of the following functions
of λ,

ψ(R, λ), ψ′(R, λ), cos(β)φ(R, λ)− sin(β)φ′(R, λ) (38)
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is exponentially small when evaluated at λ = λγ,X,bad. But the functions of λ defined
in (38) have no zeroes off the real axis and have non-zero derivatives with respect to λ
on the real axis (otherwise certain selfadoint problems over one period [R,R+a] would
have eigenvalues with algebraic multiplicity exceeding 1, which is impossible). Thus
λγ,X,bad must be exponentially close to the real axis, which completes the proof. �

Finally we obtain an estimate on =(λγ,X,ess) which deals with rate of convergence
of points approximating the essential spectrum.

Theorem 3. Under the hypotheses (A1) and (A2), there exists a constant C inde-
pendent of X such that =(λγ,X,ess) ≤ CX−1 for all sufficiently large X.

Proof. Let u be the eigenfunction of L0,X + iS whose eigenvalue is λγ,X,ess. A simple
calculation yields

=(λγ,X,ess) =

∫ R
0
s|u|2∫ R

0
|u|2 +

∫ X
R
|u|2

=

∫ R
0
|u|2 −

∫ R
R−r(1− s)|u|

2∫ R
0
|u|2 +

∫ X
R
|u|2

. (39)

In order to obtain an upper bound on =(λγ,X,ess) we need to consider the worst case

scenario in which
∫ X
R
|u|2 is as small as possible. This will occur when u is a multiple

of the exponentially decaying solution ψ(·, ·) introduced in (18). For simplicity we
restrict our attention to the case X = R +Na, in which case∫ X

R

|u|2 = (1 + |ρ1|2 + · · ·+ |ρ1|2(N−1))

∫ R+a

R

|u|2. (40)

Here ρ1 denotes the Floquet multiplier ρ1(λγ,X,ess) with |ρ1| < 1. Combining (39,40)
we obtain

=(λγ,X,ess) ≤
1− Q̃

1 +Q(1 + |ρ1|2 + · · ·+ |ρ1|2N−2)
=

(1− Q̃)(1− |ρ1|2)
(1− |ρ1|2) +Q(1− |ρ1|2N)

, (41)

in which

Q =

∫ R+a

R
|u|2∫ R

0
|u|2

,

Q̃ =

∫ R
R−r(1− s)|u|

2∫ R
0
|u|2

< 1.

Suppose now that there exist positive exponents p and ν such that

|ρ1|2 ∼ 1− α=(λγ,X,ess)
ν and =(λγ,X,ess) = O(1/Np).

(In fact it is known that ν = 1 except near endpoints of spectral bands, where
ν = 1/2.) Then for some constant c,

|ρ1|2 ≤ 1− c

Npν
.

The cases 0 < pν < 1, pν = 1 and pν > 1 must be considered separately.
In the case 0 < pν < 1, we have |ρ1|2N ∼ exp(−cN1−pν) which tends to zero faster

than any inverse power of N . From (41) we find that the terms 1− |ρ1|2 = O(1/Npν)
are the dominant terms in both numerator and denominator, giving =(λγ,X,ess) ∼
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1 − Q̃ > 0. This is impossible as λγ,X,ess is meant to approximate the essential
spectrum, which lies on the real axis.

In the case pν = 1 we have |ρ1|2N ∼ exp(−c), which is a nonzero constant. Thus
from (41), =(λγ,X,ess) = O(1− |ρ1|2) = O(1/Npν) = O(1/N), as required.

Finally, in the case pν > 1, we have |ρ1|2N ∼ 1 and from (41) we again get
=(λγ,X,ess) = O(1− |ρ1|2) = O(1/Npν) ≤ O(1/N). �

4. When the potential is not perturbed-periodic

In this section we consider problems on half-lines without truncation and examine
the evolution of spectral points as functions of the ‘coupling constant’ γ. We maintain
the assumption (A2) on the cutoff function s but drop the assumption of eventual
periodicity in (A1). First we consider the behaviour of eigenvalues λγ of L + iγS
whose real parts approximate eigenvalues of L, for small γ; then we consider the
behaviour of those λγ which do not converge to eigenvalues of L with decreasing γ.

Theorem 4. Suppose that assumption (A2) holds — see (17). For γ > 0 let λγ be an
eigenvalue of the non-selfadjoint Schrödinger operator L0 + iγS defined in (9,10,11)
with eigenfunction uγ; suppose that λγ → λ, ‖uγ − u‖ → 0 uniformly with respect to
R, as γ ↘ 0. Suppose also that the following assumption holds:

(A1’): |u(x)| ≤ C exp(−C2x) for some positive constants C and C2.

Then there exists C1 > 0, independent of R, such that for all R > 0,

|λ+ iγ − λγ| ≤ C1 exp(−cC2R), (42)

where c ∈ (0, 1) is the constant appearing in assumption (A2).

Proof. We know that (L+ iγS)uγ = λγuγ and that (L− iγI)u = (λ− iγ)u. Take the
inner product of the first of these equations with u to obtain

〈(L+ iγS)uγ, u〉 = λγ〈uγ, u〉 (43)

and take the inner product of the second equation with uγ to obtain

〈(L− iγI)u, uγ〉 = (λ− iγ)〈u, uγ〉; (44)

use the fact that L and S are self-adjoint and that u and uγ both lie in the domain
of L, which is contained in the domain of S, to rearrange (44) as

〈(L+ iγI)uγ, u〉 = (λ+ iγ)〈uγ, u〉. (45)

Now subtract (43) from (45) to obtain

[(λ+ iγ)− λγ] 〈uγ, u〉 = iγ〈(I − S)uγ, u〉 = iγ〈uγ, (I − S)u〉.

Because uγ tends to u as γ tends to zero, the inner product on the left hand side is
bounded away from zero. At the same time, using hypotheses (A1’) and (A2),

‖(I − S)u‖ ≤ C exp(−cC2R)

for some positive constants C and C2. This proves the result. �
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Remark 1. There are many potentials for which eigenfunctions u exhibit exponential
or super-exponential decay: potentials satisfying (A1), for instance, as well as poten-
tials for which q(x) → +∞ as x → +∞. Suitable results can be found in any good
textbook on asymptotics of solutions of differential equations.

Theorem 5. Suppose that q is real valued and locally L1; that the cutoff function s
is a step function taking the value 1 on [0, R) and 0 on (R,∞), as in (17) with c = 1;
and that the operator L0 given by (9,10) is self-adoint and that its essential spectrum
is purely absolutely continuous. Let λγ be an eigenvalue of L0 + iγS which converges,
as γ ↘ γcrit ≥ 0, to a point µ of the essential spectrum of L0. Then γcrit > 0.

Remark 2. Borisov and Gadyl’shin [6] consider an abstract perturbation H0 +Lγ of
a periodic Schrödinger operator H0, in which Lγ is bounded but not necessarily self-
adjoint. They prove that, given a compact set K intersecting the essential spectrum
of H0, there exists a constant γcrit > 0 such that for 0 ≤ γ < γcrit there are no
eigenvalues of H0 + Lγ in K ∩ σess(H0). The present result is stronger and implies
that there are no eigenvalues in K. This depends heavily on the fact that our operator
Lγ = iγS is dissipative. In the case where iS is replaced by just S, the result is false,
in general, as eigenvalues may immediately emerge from the top of spectral bands as
soon as γ > 0.

Proof. Referring back to eqn. (13), denote by ψ(x, λ) the solution of Pright for the
particular choice h = 1. The solvability of Pright is guaranteed for any non-real λ
since the underlying operator is self-adjoint and hence has a resolvent which is well
defined for non-real λ. The existence of mright(λ) = −ψ′(R, λ) is thus guaranteed for
=(λ) 6= 0, and we have, as in eqn. (15),

mleft(λγ; γ) +mright(λγ) = 0, (46)

where we make the dependence of mleft on γ explicit in the notation. It will also be
convenient to denote λγ by λ(γ) throughout the rest of this proof. Note that λ(γ) is
differentiable with respect to γ as long as γ > γcrit (to keep λ(γ) off the real axis)
and, by a standard calculation,

λ′(γ) =

∫ R
0
ψ(x, λ(γ))2dx∫ R

0
ψ(x, λ(γ))2dx+

∫∞
R
ψ(x, λ(γ))2dx

. (47)

Now consider what happens as γ ↘ γcrit. We know that µ is an interior point of
the essential spectrum and that the operator has purely a.c. essential spectrum, so
ψ(x, µ) cannot lie in L2. Thus

lim
γ↘γcrit

<
(∫ ∞

R

ψ(x, λ(γ))2dx

)
= +∞,

and hence from (47) we deduce that

lim
γ↘γcrit

λ′(γ) = 0. (48)

Now we return to (46) and observe that in view of the fact that s is a step-function
satisfying the hypothesis (A2), we have mleft(λ; γ) = mleft(λ − iγ; 0). Substituting
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into (46) and differentiating with respect to γ now yields

m′left(λ(γ)− iγ; 0)(λ′(γ)− i) +m′right(λ(γ))λ′(γ) = 0. (49)

Now since the essential spectrum is assumed purely a.c., mright remains bounded as
the essential spectrum on the real axis is approached from above. Thus we obtain, in
view of (48),

m′left(µ− iγcrit; 0) = 0. (50)

However the Titchmarsh-Weyl functions for Sturm-Liouville problems cannot have
zero derivatives with respect to λ on the real axis: if they did, it would contradict
the well known fact that they are Nevanlinna functions. Thus (50) implies that
γcrit > 0. �

Remark 3. For the case of a trivial periodic backround — q ≡ 0 — the proof of The-
orem 5 becomes particularly straightforward. The solution of the differential equation
which is in L2(0,∞) is given by

ψ(x) =

{
cos(
√
λ− iγ(x−R)) + i

√
λ

λ−iγ sin(
√
λ− iγ(x−R)), x < R,

exp(i
√
λ(x−R)), x > R.

Here
√
λ is chosen to have positive imaginary part when =(λ) > 0. Imposing the

boundary condition ψ(0) = 0 yields, for λ, the transcendental equation

i
√
λ

tan(
√
λ− iγR)√
λ− iγ

= 1. (51)

If we suppose that λγ is a family of solutions of this equation with =(λγ) → 0 as
γ → γcrit, then we can deduce that γcrit > 0: otherwise, with λγ → µ ≥ 0, and
γ → γcrit = 0, we would obtain

i tan(R
√
µ) = 1,

which is impossible for µ ≥ 0.
It should also be mentioned that there is a uniform γcrit > 0 for this problem: there

exists γcrit > 0 such that for 0 ≤ γ < γcrit the problem has no eigenvalues at all.
Some simple asymptotic expansions for large λ and small γ, namely

√
λ− iγ ≈

√
λ

(
1− iγ

2λ

)
, tan(

√
λ− iγR) ≈

tan(R
√
λ) + i tanh

(
Rγ

2
√
λ

)
1− i tan(R

√
λ) tanh

(
Rγ

2
√
λ

) ,
show that (51) becomes

tan(R
√
λ) + i tanh

(
Rγ

2
√
λ

)
≈ −i−

(
1 + i

γ

2λ

)
tan(R

√
λ) tanh

(
Rγ

2
√
λ

)
.

Comparing real and imaginary parts shows that this equation has no solutions for
large λ.
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5. Spectral concentrations

In view of Theorem 5 it is useful to understand which points µ in σess(L) will be
first to give rise to eigenvalues when γ is ‘turned on’. Eqn. (50) tells us that we
should seek those values of µ for which there exists a zero of m′left(λ, 0) on the line
<(λ) = µ as close as possible to the real axis, since it is the distance to the real axis
which is precisely γcrit.

Consider the case in which mleft has a pole and a zero at two close points on the
real axis; we shall call these points µ − ε/2 and µ + ε/2. The point µ − ε/2 will be
the zero of mleft, and is an eigenvalue of the self-adjoint problem

−v′′ + qv = λv, x ∈ (0, R),

cos(α)v(0)− sin(α)v′(0) = 0 = v′(R);

the point µ + ε/2 is a pole of mleft and is an eigenvalue for the case of a Dirichlet
boundary condition v(R) = 0. We can write

mleft(λ) =

(
λ− µ+ ε/2

λ− µ− ε/2

)
M(λ), (52)

where M is non-zero at λ = µ− ε/2 and is analytic at λ = µ+ ε/2. In fact M will be
the mleft for the case when q is replaced by some different L2-function: q 7→ Q. This
follows from standard results in the theory of inverse Sturm-Liouville problems, and
means in particular that just as mleft has the Nevanlinna property =(mleft(ζ+iν)) > 0
for =(ν) > 0, so M will satisfy

=(M(ζ + iν)) > 0 for =ν > 0. (53)

Now M will have a Taylor expansion about λ = µ+ ε/2:

M(λ) = a+ b(λ− µ− ε/2) + c(λ− µ− ε/2)2 + · · · ,
and in particular

M(µ+ ε+ iν) = a+ ibν − cν2 + · · · . (54)

The Nevanlinna property of M means that b > 0.
But from (52) we also have the expansion

mleft(µ+ ε/2 + iν) =
(

1 +
ε

iν

)
(a+ ibν − cν2 + · · · ) = −iaε

ν
+ a+ bε+O(ν);

using the Nevanlinna property of mleft it follows, considering small ν > 0, that aε < 0.
Now an elementary calculation shows that in a neighbourhood of λ = µ+ ε/2,

m′left(λ) = − aε

(λ− µ− ε/2)2
+ b+ 2εc+O(λ− µ− ε/2).

It follows that m′left will have a zero at a point in C+ given approximately by

λ ∼ µ+ ε/2 + i

√
−aε
b− εc

; (55)

note that the fact that b > 0 and aε < 0 is important here.
In view of eqn. (50), formula (55) gives an approximation to the value of γcrit at

which an eigenvalue of the problem with the dissipative perturbation q 7→ q + iγs,
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for s = χ[0,R], can be expected to emerge from the essential spectrum into the upper
half plane.

6. Examples and numerics

Example 1. For our first example we take

− u′′ +
(
−40

1 + x2
+ sin(x)

)
u = λu, u(0) = 0. (56)

The first three spectral bands for this problem are

[−0.378489,−0.347669], [0.594800, 0.918058], [1.293166, 2.285157].

There are infinitely many eigenvalues in the gaps between the spectral bands, accu-
mulating at the lower ends of the bands, and their spacing is exponentially small (see
Schmidt [17]). This makes it impossible to distinguish most of them from the band
end.

We made the perturbation

q(x) 7→ q(x) + iγχ[0,R](x)

and examined the resulting eigenvalues. For γ = 1
4
, Fig. 1 shows a plot of |λ+iγ−λγ|

against R for one of the eigenvalues in the spectral gap (−0.347669, 0.594800), with
the vertical axis on a logarithmic scale. This appears to indicate that our formula (3)
is a tight estimate, with C1 ≈ 8.72 and C2 ≈ 0.2006.

30 35 40 45 50 55 60 65
10−5

10−4

10−3

10−2

10−1

Figure 1. Logarithmic plot of |λ+ iγ − λγ| against R.

With R = 48 fixed, Fig. 2 shows the effect of truncating the problem to a fixed
interval [0, X], X > R. The horizontal axis is X − R. This plot indicates that our
estimate (4) is tight, with C3 ≈ 0.00087 and C4 ≈ 0.5431.

Examining the behaviour of spurious eigenvalues predicted by eqn. (5) is rather
more difficult because, for second order ODEs with one regular and one singular end-
point, there is at most one spurious eigenvalue in each spectral gap. The approach
taken was to fix X at a value which gives a spurious eigenvalue following the approach
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2 4 6 8 10 12 14 16
10−7

10−6

10−5

10−4

10−3

Figure 2. Logarithmic plot of |λγ − λγ,X,good| against X −R.

in [14, §6.1, Table 1], and then vary R rather than X. The results in Fig. 3 appear
to show that (5) is tight, with C5 ≈ 0.019, C6 ≈ 0.1376.

12 14 16 18 20 22 24 26 28 30 32
10−4

10−3

10−2

Figure 3. Logarithmic plot of =(λγ,X,bad) against X −R; X = 64 was fixed.

Finally, we attempted to verify whether or not the O(X−1) error estimate in eqn.
(6) for approximation of the essential spectrum is correct. This is a little more difficult
again: if the eigenvalues are indexed so as to behave as continuous functions of X,
then all but finitely many eigenvalues will converge to the bottom of the essential
spectrum. However by fixing a value µ in the middle of a spectral band and always
choosing, for each X, the eigenvalue λγ,X,ess closest to µ, we were able to produce Fig.
4, which gives very convincing numerical evidence that it is impossible to achieve
better than O(X−1) convergence.

Example 2. Continuing with eqn. (56), we examined the behaviour of eigenvalues
as functions of γ under the perturation

q(x) 7→ q(x) + iγχ[0,50](x).



16 MARCO MARLETTA AND ROB SCHEICHL

101 102 103
10−4

10−3

10−2

10−1

Figure 4. Plot of =(λγ,X,ess) against X

Figure 5 shows the trajectories of six eigenvalues for γ ∈ [0.025, 0.1]. The essential
spectrum is marked by dense asterisks along a part of the real axis. The leftmost eigen-
value (real part approximately 0.56) emerges from an eigenvalue in a spectral gap for
γ = 0. The second eigenvalue, real part approximately 0.59, appears to emerge from
the lower endpoint of a spectral band; recall, however, that there are infinitely many
eigenvalues in the gap, accumulating at the lower end of the band, with exponentially
small spacing. The remaining eigenvalues all appear to arise from interior points

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Re(λ)

Im
(λ)

Figure 5. One gap eigenvalue and five points of essential spectrum
giving rise to six eigenvalues for a dissipative perturbation of the orig-
inal selfadjoint operator.

of the spectral band, some of which may correspond to spectral concentrations. The
slowest to emerge is the one giving rise to the eigenvalue with real part approximately
0.78. At the level of resolution shown in this graph it looks as if γcrit ≈ 0.025 for this
eigenvalue, because with γ = 0.025 we see that the other eigenvalues have already lifted
off, while this particular one appears still to be stuck on the real axis. However since
=(λ) does not change sign as γ passes through γcrit it is actually almost impossible to
determine γcrit accurately by numerical means.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6. Computed spectrum of perturbed periodic Schrödinger
equation. The genuine eigenvalue has been shifted into the upper half
plane. Spectral pollution stays close to the real axis, as one would guess
by Theorem 2.

Example 3. As mentioned in Remark 3, in the case of a zero periodic background
we can find the critical value(s) of γ at which eigenvalues emerge from the essential
spectrum of the free Laplacian under perturbation,

−d
2u

dx2
+ iγχ[0,R](x)u = λu, u(0) = 0,

by solving, for real λ ≥ 0 and γ > 0, the transcendental equation

Φ(λ, γ) = iR
√
λ

tan(
√
λ− iγR)√

λ− iγR
− 1 = 0.

We solved this equation numerically with R = 50 by minimizing |Φ|, obtaining

γcrit ≈ 0.0379727, λ ≈ 0.3003689.

Example 4. This example falls slightly outside the scope of the ODE theory of this
paper; however the methods used to prove Theorem 4 are not specific to ordinary differ-
ential equations, and apply equally to partial differential equations with exponentially
decaying eigenfunctions.

Our problem is to compute an eigenvalue of the Schrödinger equation

−∆u+ q(x)u = λu, x ∈ R2,

in which q describes a perturbed periodic medium:

q(x, y) = cos(x) + cos(y)− 5 exp(−x2 − y2).

This problem has band-gap spectral structure, and we treated it with the perturbation

q(x, y) 7→ q(x, y) +
i

4
(1− tanh(|x| − 30))(1− tanh(|y| − 30)).

The resulting problem was solved on the rectangle [−60, 60]2 using Dirichlet boundary
conditions, solved using MATLAB PDETool with a user-adapted mesh. Figure 6
shows an eigenvalue lifted into the upper half plane by the dissipative perturbation.
The eigenvalue calculated was
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Genuine trapped wave computed by dissipative compact shift
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Figure 7. Genuine and polluting eigenfunction: it is clear which is which.

λγ = −0.09698 + (1− 10−9)i;

Boulton and Levitin [7] obtained the enclosure λ ∈ [−0.09697− ε,−0.09697 + ε] with
ε = 3.39×10−4; the real part of our computed λγ therefore agrees with the result in [7]
with accuracy 30 times smaller than the error bound in [7]. Note the spectral pollution
on the real axis below λγ, caused by domain truncation. In fact this pollution will fill
the whole spectral gap if the domain is large enough. One can also see in Figure 7
the qualitative difference between the contour plot of a genuine eigenfunction and a
polluting eigenfunction.

Example 5. We consider for δ ≥ 0, x ∈ [0,∞) the problem

− u′′ + x2 exp(−δx2)u = λu, u(0) = 0. (57)

For δ = 0 this is the harmonic oscillator problem and its eigenvalues are well known
to be the integers 4k − 1, k ∈ N. For δ > 0, however small, the problem has no
eigenvalues at all, and the spectrum is purely absolutely continuous. The problem
with small δ > 0 exhibits spectral concentrations near the integers 4k − 1: - see
Aslanyan and Davies [3].

Table 1 shows numerical results for the case δ = 10−2. Taking R = 5 for this prob-
lem results in an mleft(λ) which has some very close (pole,zero) pairs – the Dirichlet
and Neumann eigenvalues in the first two columns of the table. The eigenvalues of
the dissipative problem which emerge upon adding a perturbation iγχ[0,5](x) do in-
deed emerge with real parts in the intervals between the corresponding Neumann and
Dirichlet eigenvalues.

7. Conclusions

The technique of relatively compact dissipative perturbation appears to be a com-
putationally attractive tool for avoiding spectral pollution. Eigenvalues of interest are
moved into a part of the complex plane where they are well isolated from spurious
points, giving numerical methods which are much quicker and more efficient. There is
no evidence of problems with pseudospectra, even though the resulting problems are
non-normal. The approach can easily be implemented as an add-on to legacy codes
and requires very few additional lines of programming.
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Pole of mleft Zero of mleft Dissipative,
(Dirichlet eigenvalue) (Neumann eigenvalue) γ = 0.2

2.9621125 2.9621124 2.9621125 + 0.2000000i
6.8083144 6.8082846 6.8083001 + 0.1999999i

10.5272610 10.5247488 10.5260768 + 0.1999939i
14.1401140 14.0178056 14.1095773 + 0.1997539i
17.8348945 17.2277815 17.5519026+0.1959618i

Table 1. Dirichlet and Neumann eigenvalues for problem on [0, 5]
compared with eigenvalues in upper half plane for dissipatively per-
turbed problem on [0,∞). Note that the un-perturbed problem on
[0,∞) has no eigenvalues.
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