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1 Introduction

In this short note, we present new weighted Poincaré inequalities (WPIs) with
weighted averages that allow a robustness analysis of dual-primal finite element
tearing and interconnecting (FETI-DP) methods in certain cases where jumps of
coefficients are not aligned with the subdomain partition.

Let Ω be a bounded Lipschitz domain in R2 or R3. We consider the weak form
of the scalar elliptic PDE

−div(α ∇u) = f in Ω ,

with a uniformly positive diffusion coefficient α ∈ L∞(Ω) that is piecewise con-
stant with respect to a (possibly rather fine) partitioning of Ω . The discretization by
continuous and piecewise linear finite elements (FEs) on a mesh T (Ω) leads to the
sparse (but in general large) linear system

Ku = f.

We consider FETI-DP solvers (see Farhat et al. [2001], Mandel and Tezaur
[2001], Klawonn et al. [2002]) for the fast (and parallel) solution of this system, and
we follow the structure described in [Toselli and Widlund, 2005, Sect 6.4]. To this
end, we partition the domain Ω into non-overlapping subdomains Ωi, i = 1, . . . ,N
such that the global mesh T (Ω) resolves the interface

⋃
i 6= j ∂Ωi∩ ∂Ω j. The inter-
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(a) (b) (c)

Fig. 1 Different types of coefficient jumps along an edge between two subdomains: (a) across (b)
along (c) both across and along.

face itself can be divided into subdomain vertices, edges, and faces (for d = 3), cf.
[Toselli and Widlund, 2005, Sect. 4.2].

Without loss of generality, we assume that α is constant on each element of
T (Ω). Crucially, we do not assume that α is constant on each subdomain. However,
we need assumptions on the kind of jumps. Let αi denote the restriction of α to Ωi
and note that it has a well-defined trace in L2(∂Ωi). For each subdomain edge (face)
E on Ωi, we define the weighted average

vE,αi :=
∫
E αi v∫
E αi

. (1)

Assumption A1. Whenever two Ωi and Ω j share an edge (face) E , the weighted
averages of any function v ∈V h(E ) coincide: vE,αi = vE,α j .

A sufficient condition for Assumption A1 is that the coefficient jumps either
across or along, but not both at the same time. For an illustration see Figure 1. Our
assumptions rules out situations of type (c).

Following [Toselli and Widlund, 2005, Algorithm B], we define the primal space
ŴΠ spanned by the vertex nodal basis functions at subdomain vertices, the subdo-
main edge cut-off functions and subdomain face cut-off functions (all of them ex-
tended discrete α-harmonically from the interface to the subdomain interiors). The
dual space W∆ contains FE functions that are discontinuous across the subdomain
interfaces with vanishing α-weighted averages over the subdomain faces, edges,
and vertices. We formally perform a change of basis, such that we have a splitting
of the degrees of freedom (DOFs) into primal and dual ones, and work in the space
W̃ = ŴΠ ⊕W∆ .

Let B be the usual jump operator which acts on the non-primal DOFs. The FETI-
DP system

BK̂−1B>λ = BK̂−1 f̂

is solved by preconditinioned conjugate gradients, where K̂ and f̂ denote the stiff-
ness matrix and load vector partially assembled at the primal DOFs. The overall
solution is then given by

u = K̂−1( f̂ −B>λ ).

Next, we define a FETI-DP preconditioner that is slightly modified to allow
for certain coefficient jumps (cf. Klawonn and Rheinbach [2007], Pechstein and
Scheichl [2009]). Let i = 1, . . . ,N be fixed and let T (Ωi) denote the mesh restricted
to subdomain Ωi. For each mesh node xh on Ω i, we set
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α̂i(xh) := max
T∈T (Ωi):xh∈T

α|T . (2)

Furthermore, if Nxh denotes the index set of subdomains sharing the mesh node xh,
we define the weighted counting function

δ
†
i (xh) :=


α̂i(xh)

∑ j∈Nxh
α̂ j(xh)

, if xh lies on Ω i ,

0, otherwise.

Using these counting functions we define the scaled jump operator BD according to
[Toselli and Widlund, 2005, Sect. 6.4.1] (for details see also Pechstein and Scheichl
[2011] where the same scaled jump operator was used to define a one-level FETI
preconditioner). The FETI-DP preconditioner is finally given by

M−1 := BD S∆ B>D ,

where S∆ is the block-diagonal Schur complement on the non-primal interface
DOFs, eliminating the interior DOFs.

2 Weighted Poincaré inequalities with weighted averages

Let D be a bounded Lipschitz polytope and let {Y`}n
`=1 be a subdivision of D into

open Lipschitz polytopes such that

α|Y`
= α` = const. (3)

Furthermore, let X ⊂ ∂D be a manifold of dimension 0 ≤ dX ≤ d− 1 (usually a
vertex, an open subdomain edge or an open face, or a union of these). We define

X` := Y`∩X .

Some of these sets may be empty or have lower dimension than X . However, with
the index set IX := {` : measdX

(X`) > 0} we can write

X =
⋃

k∈IX
X k .

In general, for different indices k, ` ∈ IX , the manifolds Xk and X` may have a
non-trivial intersection or even coincide. For simplicity, we assume that

k 6= ` ∈ IX =⇒ measdX
(Xk ∩X`) = 0.

The general case needs more formalism and will be treated in an upcoming paper
(Pechstein et al. [2011]). Finally, we can define a meaningful trace αtr ∈ L∞(X ) of
α by
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αtr(x) = αk for x ∈Xk .

Let {V h(D)}h be a family of H1-conforming FE spaces associated with a quasi-
uniform family of triangulations of D. For v ∈ V h(D), we define the weighted
(semi)norms and the weighted average on X by

‖v‖2
L2(D),α :=

∫
D

α v2 , |v|2H1(D),α :=
∫

D
α |∇v|2 and vX ,αtr :=

∫
X αtr v∫
X αtr

.

We are interested in the following WPI with weighted average:

‖u−uX ,αtr‖2
L2(D),α ≤ CP,α(D,X ;h)diam(D)2 |u|2H1(D),α ∀u ∈V h(D). (4)

In particular, we are interested under which assumptions the parameter CP,α(D,X ;h)
is independent of the values {α`}.

Sufficient conditions for robustness. We need two crucial assumptions for (4) to
be independent of the values {α`}. The first assumption is a quasi-monotonicity
assumption on α . It has been introduced in Dryja et al. [1996] and generalized in
Klawonn et al. [2002], Pechstein and Scheichl [2010]. The second assumption states
that X “sees” the largest coefficient.

Definition 1. Let 0≤ m < d and let `∗ := argmax
1≤`≤s

α` denote the index of the largest

coefficient.1

(a) We call the region P̀ 1,`s := (Y`1 ∪ . . .∪Y`s)
◦, 1 ≤ `1, . . . , `s ≤ n a type-m quasi-

monotone path from Y`1 to Y`s (with respect to α), if

(i) the regions Y`i and Y`i+1 share a common m-dimensional manifold, and
(ii) α`1 ≤ α`2 ≤ . . .≤ α`s .

(b) We say that α is type-m quasi-monotone on D, if for all k = 1, . . . ,n there exists
a quasi-monotone type-m path from Yk to Y`∗ .

Assumption A2. α is type-m quasi-monotone on D for some 0≤ m < d.

Assumption A3. measdX
(X ∩Y`∗) > 0.

In order to formulate our main theorem, we first need some definitions of gener-
alized Poincaré constants/parameters.

Definition 2. (i) For any bounded Lipschitz domain Y ⊂Rd let CP(Y ) be the small-
est constant such that

‖v− vY‖2
L2(Y ) ≤ CP(Y )diam(Y )2 |v|2H1(Y ) ∀v ∈ H1(Y ).

1 We can assume without loss of generality that `∗ is unique. By definition, type-m quasi-
monotonicity implies that otherwise all maximal subregions can be combined into a single sub-
region.
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(ii) Let Z be the finite union of bounded Lipschitz polytopes such that Z is con-
nected, and let {T h(Z)}h be a quasi-uniform family of triangulations of Z with
the associated continuous piecewise linear FE spaces {V h(Z)}h. Let X , W ⊂ Z
be manifolds/subdomains of (possibly different) dimension ∈ {0, . . . ,d}. Let
CP(Z,X ,W ;h) be the best parameter such that

‖v− vX‖2
L2(W ) ≤ CP(Z,X ,W ;h)

|W |
|Z|

diam(Z)2 |u|2H1(Z) ∀v ∈V h(Z).

|W | and |Z| denote the measures of W and Z (in the respective dimension).

If Z is connected and if the dimensions of X and W are ≥ d − 1, we can define
a constant CP(Z,X ,W ) independent of the discretization parameter h such that the
inequality in Definition 2(ii) holds for all functions in H1(Z).

Theorem 1. Let Assumptions A2 and A3 be satisfied. Then the parameter CP,α(D,X ;h)
in formula (4) is independent of the values {α`}n

`=1 and

CP,α(D,X ;h) ≤ 2
[
C∗,1(h)+C∗,2(h)

]
(5)

with

C∗,1(h) :=
n

∑
`=1

|Y`|diam(P̀ ,`∗)2

|P̀ ,`∗ |diam(D)2 CP(P̀ ,`∗ ,X`∗ ,Y`;h),

C∗,2(h) :=
|D|
|X`∗ | ∑

k∈IX

|Xk|diam(Pk,`∗)2

|Pk,`∗ |diam(D)2 CP(Pk,`∗ ,X`∗ ,Xk;h).

Proof. Without loss of generality, we may assume that uX ,αtr = 0. For each index
` = 1, . . . ,n,

1
2 ‖u‖

2
L2(Y`)

≤ ‖u−uX`∗ ‖2
L2(Y`)

+ |Y`|
(
uX`∗ )2 .

Due to Assumption A2, there is a quasi-monotone path from Y` to Y`∗ . With c`,`∗ :=
CP(P̀ ,`∗ ,X`∗ ,Y`;h), summation over ` = 1, . . . ,n yields

1
2 ‖u‖

2
L2(D),α ≤

n

∑
`=1

c`,`∗
|Y`|
|P̀ ,`∗ |

diam(P̀ ,`∗)2
α`|u|2H1(P̀ ,`∗ )︸ ︷︷ ︸
≤ |u|2H1(D),α

+
n

∑
`=1

α` |Y`|︸ ︷︷ ︸
≤ α`∗ |D|

(
uX`∗ )2,

where we have used Definition 2(ii) and the quasi-monotonicity of P̀ ,`∗ . The first
sum is bounded by C∗,1(h)diam(D)2 |u|2H1(D),α . To bound the remaining term, we
use Cauchy’s inequality and the definition of αtr:

α`∗ |D|
(
uX`∗

)2 ≤ |D|
|X`∗ |

α`∗‖u‖2
L2(X`∗ )

≤ |D|
|X`∗ |

‖u‖2
L2(X ),αtr

.
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A variational argument yields

‖u‖2
L2(X ),αtr

≤ ‖u−uX ,αtr︸ ︷︷ ︸
=0

‖2
L2(X ),αtr

= inf
c∈R
‖u− c‖2

L2(X ),αtr

≤ ‖u−uX`∗‖2
L2(X ),αtr

= ∑
k∈IX

αk ‖u−uX`∗‖2
L2(Xk)

.

Now, we have

αk ‖u−uX`∗‖2
L2(Xk)

≤ CP(Pk,`∗ ,X`∗ ,Xk;h)
|Xk|
|Pk,`∗ |

diam(Pk,`∗)2
αk |u|2H1(Pk,`∗ )

.

Using the quasi-monotonicity of α on Pk,`∗ finally leads to (5).

Necessity of the conditions. It was shown in [Pechstein and Scheichl, 2010,
Prop. 2.11] that Assumption A2 is necessary to ensure that CP,α(D,X ;h) is in-
dependent of the values {α`}.

To see that A3 is necessary as well, assume that measdX
(X ∩Y`∗) = 0. We

choose a function u which is one on Y`∗ . Since the average functional v 7→ vX ,αtr

is independent of α`∗ , we can prescribe values of u on X such that uX ,αtr = 0
and continuously extend u into D ⊂ Y`∗ . The whole construction of u is inde-
pendent of α`∗ , Since ∇u = 0 on Y`∗ , the seminorm |u|H1(D),α is independent of
α`∗ as well. However, ‖u‖2

L2(D),α ≥ α`∗ |Y`∗ |. Therefore, if α ≤ αk on D\Y`∗ , then

CP,α(D,X ;h) = O
(

α`∗
αk

)
for α`∗/αk→ ∞.

This means that Assumptions A2 and A3 in some sense characterize the robust-
ness of the WPI with weighted average.

3 Robustness proof of FETI-DP

To analyze the robustness of FETI-DP, we need the following assumption.

Assumption A4. For each subdomain Ωi and for each subdomain edge (face) E of
Ωi, there is a Lipschitz domain Di,E ⊂Ωi, such that E ⊂ ∂Di,E and Assumptions A2
and A3 are satisfied for D = Di,E and X = E . The union of all the regions Di,E
covers a boundary layer Ωi,ηi of width ηi≥ h of Ωi (see e.g. [Pechstein and Scheichl,
2008, Def. 2.6]).

Theorem 2. Let Assumptions A1 and A4 hold. Then the condition number κ(M−1 F)
for the FETI-DP method is independent of the values of the coefficient α , in partic-
ular of any non-resolved jumps.

Due to space limitations we only give a sketch of the proof. A detailed proof will
be given in Pechstein et al. [2011], together with a more detailed statement of The-
orem 2 that makes precise the dependence of κ(M−1 F) on geometric parameters,
such as the ratios diam(Ωi)/h and diam(Ωi)/ηi.
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Let Hi denote the discrete α-harmonic extension from ∂Ωi to Ωi and let

|w|2S :=
N

∑
i=1
|Hiw|2H1(Ωi),α

.

Then, following [Toselli and Widlund, 2005, Sect. 6.4.3], a bound of the kind

|PD w|2S ≤ ω |w|2S, where PD := B>D B, (6)

implies κ(M−1 F)≤ ω .
As in the proof of [Pechstein and Scheichl, 2011, Lemma 5.6; formula (5.24)], we

can introduce a set of cut-off functions associated with each subdomain edge (face)
E whose support is contained in Di,E . It then follows that, for any w ∈ ŴΠ ⊕W∆ ,

|PD w|2S ≤ C
N

∑
i=1

[
|Hiwi|2H1(Ωi),α

+∑
E

1
diam(Ωi)2 ‖Hiwi−wi

E ‖2
L2(Di,E ),α

]
,

where C depends on diam(Ωi)/h and diam(Ωi)/ηi, but it is independent of the
values {α`}. By Theorem 1, we can bound each of the weighted L2 norms by the
weighted H1 seminorm of Hiwi, and thus obtain (6).

4 Numerical results

We provide results for the three examples shown in Figure 2. Note that in the last
example, the coefficient is not quasi-monotone on one of the subdomains, but satis-
fies Assumptions A1 and A4. The estimated condition numbers and the number of
PCG iterations are displayed in Table 1. They clearly confirm Theorem 2.

α1

α1

1 α

−1

α

α
2

−1

Fig. 2 Edge-island (left), cross-point island (middle), complicated coefficient (right).
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α condition #iterations
1 1.58 10

101 1.57 10
103 1.56 10
105 1.56 10
107 1.56 10

10−1 1.70 10
10−3 1.74 10
10−5 1.74 10
10−7 1.74 11

α condition #iterations
1 1.58 10

101 1.59 10
103 1.59 10
105 1.59 10
107 1.59 10

10−1 1.57 10
10−3 1.57 10
10−5 1.57 10
10−7 1.57 10

α condition #iterations
1 1.58 10

101 1.61 11
102 1.62 11
103 1.62 11
104 1.62 11

10−1 1.62 11
10−2 1.60 11
10−3 1.59 11
10−4 1.59 11

Table 1 Edge-island (left), crosspoint-island (middle), complicated coefficient (right), H/h = 32.
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