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Abstract We consider the numerical solution of

elliptic partial differential equations with random

coefficients. Such problems arise, for example, in

uncertainty quantification for groundwater flow.
We describe a novel variance reduction technique

for the standard Monte Carlo method, called the

multilevel Monte Carlo method, and demonstrate

numerically its superiority. The asymptotic cost
of solving the stochastic problem with the mul-

tilevel method is always significantly lower than

that of the standard method and grows only pro-

portionally to the cost of solving the determinis-

tic problem in certain circumstances. Numerical
calculations demonstrating the effectiveness of the

method for one- and two-dimensional model prob-

lems arising in groundwater flow are presented.
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1 Introduction

There are many situations in which modelling and

computer simulation are indispensable tools and

where the mathematical models employed have been
demonstrated to give adequate representations of

reality. However, the parameters appearing in the

models often have to be estimated from measure-

ments and are, therefore, subject to uncertainty.
This uncertainty propagates through the simula-

tions and quantifying its impact on the results is

frequently of great importance.

A good example is provided by the problem
of assessing the safety of a potential deep geo-

logical repository for radioactive waste. Any ra-

dionuclides leaking from such a repository could

be transported back to the human environment
by groundwater flowing through the rocks beneath

the earth’s surface. The very long timescales in-

volved mean that modelling and simulation are es-

sential in evaluating repository performance. The

study of groundwater flow is well established and
there is general scientific consensus that in many

situations Darcy’s Law can be expected to lead to

an accurate description of the flow [18]. The main

parameter appearing in Darcy’s Law is the hy-
draulic conductivity, which characterises how eas-

ily water can flow through the rock under a given

pressure gradient. In practice it is only possible

to measure the hydraulic conductivity at a limited

number of spatial locations, but it is required at all
points of the computational domain for the simula-

tion. This fact is the primary source of uncertainty

in groundwater flow calculations. Understanding

and quantifying the impact of this uncertainty on



predictions of radionuclide transport is essential

for reliable repository safety assessments.

A widely used approach for dealing with un-
certainty in groundwater flow is to represent the

hydraulic conductivity as a random field [7,19].

The law of the field has to be estimated from the

available data, a significant undertaking in its own

right, but the major computational challenge is
solving the partial differential equations (PDEs)

that govern the pressure field. These are elliptic

PDEs with random coefficients. Realistic random

field models often need a rather large number of
stochastic degrees of freedom (> 100s) for their

accurate representation (cf. Section 3.2). Conse-

quently stochastic Galerkin and stochastic collo-

cation approaches, based for example on polyno-

mial chaos expansion [17,23], are impractical since
their cost grows exponentially with the number of

stochastic degrees of freedom, and truncating to

any feasible number leads to large systematic er-

rors (bias). To the best of our knowledge, there
are currently no results with stochastic colloca-

tion methods available in the literature that can

accurately treat the random field models consid-

ered in this paper characterised by short correla-

tion length, high variance and low regularity.

Hence, standard Monte Carlo (MC) simulation

is still the method of choice in applications. These

MC calculations are, however, very expensive be-

cause the individual realisations of the random field

have low spatial regularity and significant spatial
variation making the problem of solving for the

pressure very costly. Furthermore, the notoriously

slow rate of convergence of the standard MC method

means that many such realisations are required to
obtain accurate results. The computational cost of

solving elliptic PDEs with random coefficients is

therefore a major challenge in uncertainty quan-

tification for groundwater flow studies.

In this paper we address the problem of the
large cost of solving elliptic PDEs with random

coefficients. Our approach is based on the multi-

level Monte Carlo method (MLMC) for infinite-

dimensional integration introduced by Giles in con-
nection with stochastic differential equations aris-

ing in mathematical finance [12,11]. Similar ideas

have been introduced by Heinrich for finite-dimensional

parametric integration and to solve integral equa-

tions [15], and by Brandt and his co-workers to
accelerate statistical mechanics calculations [2,3].

In parallel to our work, Barth et al. have recently

also provided a theoretical analysis of the multi-

level Monte Carlo method in the context of elliptic

PDEs with random coefficients [1]. However, they

assume smoother coefficient fields than we consider

in this paper (see Section 5). For an analysis of the
case considered here see the recent paper [5].

In many applications, the quantity of interest

is the expected value of a functional of the PDE

solution. The MLMC method exploits the linearity

of expectation, by expressing the quantity of inter-
est on the finest spatial grid in terms of the same

quantity on a relatively coarse grid and “correc-

tion” terms. The dramatic reduction in cost asso-

ciated with the MLMC method over standard MC
is due to the fact that most of the uncertainty can

be captured on the coarse grids and so the number

of realisations needed on the finest grid is greatly

reduced. In this paper we explain how these sav-

ings in computational cost arise and demonstrate
the effectiveness of the MLMC method by a set of

numerical results for an elliptic PDE with random

coefficients.

The outline of the rest of this paper is as fol-
lows. In section 2 we describe the MLMC algo-

rithm in a general context and present a theorem

that estimates the cost of the algorithm under cer-

tain, problem-dependent, assumptions, which we

carefully explain. In section 3 we set out the equa-
tions for a model problem arising from groundwa-

ter flow, describe our stochastic model, and present

the numerical method used for spatial discretisa-

tion. We present our numerical results for one and
two dimensional problems in section 4. In section

5 we give our conclusions and make some sugges-

tions for future work.

A final comment is that the main novelty in

this paper lies in the use of the highly efficient mul-
tilevel Monte Carlo method for a particularly im-

portant scientific application. However, this is only

one example of how it may be used in connection

with stochastic PDEs; a future paper will discuss

its use for a stochastic parabolic PDE which arises
in a computational finance setting.

2 Monte Carlo Simulations

We will start in this section with a review of the

standard Monte Carlo (MC) method and then go

on to describe the Multilevel Monte Carlo (MLMC)

method. Both methods are not restricted to differ-

ential equations with random coefficients, and so
we describe them in more abstract terms.

To simplify the notation we will write a . b for

two positive quantities a and b, if a/b is uniformly

bounded independent of any parameters, in par-
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ticular independent of the number of samples N

and the number of spatial degrees of freedom M

below. Furthermore, we write a h b, if a . b and
b . a.

Let XM be a random vector over an infinite

dimensional probability space (Ω,F , P) that takes

values in R
M . Furthermore let QM = G(XM ) be

some linear or nonlinear functional of XM . This

may be a single component or a norm of XM , or
it may be a more complicated nonlinear functional

(e.g. a higher order moment). We assume that as

M → ∞ the expected value E[QM ] → E[Q], for

some (inaccessible) random variable Q : Ω → R,
and that (in mean) the order of convergence is α,

i.e.
∣∣∣E[QM − Q]

∣∣∣ . M−α.

We are interested in estimating E(Q). Thus,

given M ∈ N sufficiently large, we compute ap-

proximations (or estimators) Q̂M of E(QM ) and
quantify the accuracy of our approximations via

the root mean square error (RMSE)

e(Q̂M ) :=
(

E[(Q̂M − E(Q))2]
)1/2

.

In our PDE application, choosing M sufficiently

large corresponds to choosing a fine enough spatial

approximation. The random variable Q will in this
case typically be a functional of the solution, and

QM will be the same functional of the discretised

solution.

The computational ε-cost Cε(Q̂M ) is then quan-

tified by the number of floating point operations

that are needed to achieve a RMSE of e(Q̂M ) < ε.

2.1 Standard Monte Carlo Simulation

The standard Monte Carlo estimator for E(QM ) is

Q̂MC
M,N :=

1

N

N∑

i=1

Q
(i)
M , (1)

where Q
(i)
M is the ith sample of QM and N inde-

pendent samples are computed in total. We assume

that the cost to compute one sample Q
(i)
M of QM

is

C(Q
(i)
M ) . Mγ , for some γ > 0.

There are two sources of error in the estima-

tor (1): the approximation of Q by QM , which is

related to the spatial discretisation in the case of

our PDE application; and the sampling error due

to replacing the expected value by a finite sample

average. The contribution of both of these errors

becomes clear when we expand the mean square
error (MSE):

e(Q̂MC
M,N)2

= E

[(
Q̂MC

M,N − E[Q̂MC
M,N ] + E[Q̂MC

M,N ] − E[Q]
)2

]

= E

[
(Q̂MC

M,N − E[Q̂MC
M,N ])2

]
+

(
E[Q̂MC

M,N ] − E[Q]
)2

= V[Q̂MC
M,N ] +

(
E[Q̂MC

M,N ] − E[Q]
)2

. (2)

Since E[Q̂MC
M,N ] = E[QM ] and V[Q̂MC

M,N ] = N−1
V[QM ] ,

we get

e(Q̂MC
M,N)2 = N−1

V[QM ] +
(
E[QM − Q]

)2

, (3)

and so the first term in the MSE is the variance

of the MC estimator, which represents the sam-

pling error and decays inversely with the number
of samples. The second term is the square of the

error in mean between QM and Q.

Hence, a sufficient condition to achieve a RMSE
of ε with this estimator is that both of the terms

are less than ε2/2. Under the assumption that V[QM ]

is approximately constant, independent of M , this

can be achieved by choosing N & ε−2 and M &

ε−1/α, where the convergence rate α is as defined

previously and problem dependent. In other words,

we need to take a large enough number of samples

N , as well as a large enough value for M , so that

Q̂MC
M,N is a sufficiently accurate approximation of

our quantity of interest E[Q].

Since the cost to compute one sample of QM

was assumed to satisfy C(Q
(i)
M ) . Mγ , we have

C(Q̂MC
M,N) . NMγ and so the total computational

cost of achieving a RMSE of O(ε) is

Cε(Q̂
MC
M,N) . ε−2−γ/α.

2.2 Multilevel Monte Carlo Simulation

The main idea of multilevel Monte Carlo (MLMC)

simulation is very simple. We sample not just from

one approximation QM of Q, but from several. Let

us recall the main ideas and the main theorem from
[12].

Let {Mℓ : ℓ = 0, . . . , L} be an increasing se-
quence in N called levels, i.e. M0 < M1 < . . . <

ML =: M , and assume for simplicity that there

exists an s ∈ N\{1} such that

Mℓ = s Mℓ−1 , for all ℓ = 1, . . . , L. (4)
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As for multigrid methods applied to discretised

(deterministic) PDEs, the key is to avoid estimat-

ing E[QMℓ
] directly on level ℓ, but instead to esti-

mate the correction with respect to the next lower

level, i.e. E[Yℓ] where Yℓ := QMℓ
−QMℓ−1

. Linear-

ity of the expectation operator then implies that

E[QM ] = E[QM0 ]+

L∑

ℓ=1

E[QMℓ
−QMℓ−1

] =

L∑

ℓ=0

E[Yℓ],

(5)

where for simplicity we have set Y0 := QM0 .

Hence, the expectation on the finest level is
equal to the expectation on the coarsest level, plus

a sum of corrections adding the difference in ex-

pectation between simulations on consecutive lev-

els. The multilevel idea is now to independently

estimate each of these expectations such that the
overall variance is minimised for a fixed computa-

tional cost.

Let Ŷℓ be an unbiased estimator for E[Yℓ], e.g. the

standard MC estimator

Ŷ MC
ℓ,Nℓ

:=
1

Nℓ

Nℓ∑

i=1

(
Q

(i)
Mℓ

− Q
(i)
Mℓ−1

)
(6)

with Nℓ samples. Then the multilevel estimator is

simply defined as

Q̂ML
M :=

L∑

ℓ=0

Ŷℓ. (7)

If the individual terms are estimated using stan-

dard MC, i.e. (6) with Nℓ samples on level ℓ, this
is the multilevel Monte Carlo (MLMC) estimator

and we denote it by Q̂MLMC
M,{Nℓ}. It is important to

note that the quantity Q
(i)
Mℓ

− Q
(i)
Mℓ−1

in (6) comes

from using the same random sample ω(i) ∈ Ω on
both levels Mℓ and Mℓ−1.

For the rest of this paper, for simplicity, we will
always use standard MC to estimate the terms on

the different levels. Note however, that this could

be replaced by any other unbiased estimator, e.g.

randomised quasi-Monte Carlo (cf. [13,14]).

Since all the expectations E[Yℓ] are estimated

independently, the variance of the MLMC estima-
tor is V[Q̂ML

M ] =
∑L

ℓ=0 N−1
ℓ V[Yℓ], and expanding

as in (2-3) in the previous section leads again to

the following form for the MSE:

e(Q̂ML
M )2 := E

[(
Q̂ML

M − E[Q]
)2

]

=

L∑

ℓ=0

N−1
ℓ V[Yℓ] +

(
E[QM − Q]

)2

. (8)

As in the standard MC case before, we see that

the MSE consists of two terms, the variance of the

estimator and the approximation error. Note that
the second term is exactly the same as before in

(2), and so it is sufficient to choose M = ML &

ε−1/α again. To then achieve an overall RMSE of

ε, the first term in (8) has to be less than ε2/2 as
well. We claim that this is cheaper to achieve in

MLMC for two reasons:

– If QM converges to Q in mean square, then

V[Yℓ] = V[QMℓ
− QMℓ−1

] → 0 as ℓ → ∞, and
so fewer samples are required on finer levels to

estimate E[Yℓ];

– The coarsest level ℓ = 0 can be kept fixed for

all ε, and so the cost per sample on level ℓ = 0

does not grow as ε → 0.

In practical applications, M0 must be chosen

sufficiently large to provide a minimal level of res-

olution of the problem. In our PDE application,

this cut-off point is related to the spatial regular-
ity of the PDE solution, which in turn depends

on the regularity of the covariance function of the

conductivity field and on the correlation length.

We will return to this point in Section 4.1.
The computational cost of the multilevel Monte

Carlo estimator is

C(Q̂ML
M ) =

L∑

ℓ=0

Nℓ Cℓ.

where Cℓ := C(Y
(i)
ℓ ) represents the cost of a sin-

gle sample of Yℓ. Treating the Nℓ as continuous

variables, the variance of the MLMC estimator is

minimised for a fixed computational cost by choos-
ing

Nℓ h

√
V[Yℓ]/Cℓ , (9)

with the constant of proportionality chosen so that

the overall variance is ε2/2. The total cost on level
ℓ is proportional to

√
V[Yℓ] Cℓ and hence

C(Q̂ML
M ) .

L∑

ℓ=0

√
V[Yℓ] Cℓ.

If the variance V[Yℓ] decays faster with ℓ than Cℓ

increases, the dominant term will be on level 0.

Since N0 h ε−2, the cost savings compared to

standard MC will in this case be approximately

C0/CL h (M0/ML)γ
h εγ/α, reflecting the ratio of

the costs of samples on level 0 compared to sam-

ples on level L.

If the variance V[Yℓ] decays slower than the cost

Cℓ increases, the dominant term will be on the
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finest level L, and the cost savings compared to

standard MC will be approximately V[YL]/V[Y0]

which will be small. Hence, in both cases we have
a significant gain.

This outline analysis is made more precise in

the following theorem:

Theorem 1 Let Ŷℓ := Ŷ MC
ℓ,Nℓ

and suppose that there

are positive constants α, β, γ > 0 such that α ≥
1
2 min(β, γ) and

i)
∣∣∣E[QMℓ

− Q]
∣∣∣ . M−α

ℓ

ii) V[Yℓ] . M−β
ℓ

iii) Cℓ . Mγ
ℓ ,

Then, for any ε < e−1, there exist a value L (and

corresponding M ≡ ML)and a sequence {Nℓ}
L
ℓ=0

such that

e(Q̂ML
M )2 := E

[(
Q̂ML

M − E[Q]
)2

]
< ε2,

and

C(Q̂ML
M ) .






ε−2, if β > γ,

ε−2(log ε)2, if β = γ,

ε−2−(γ−β)/α, if β < γ.

Proof The proof, which is given in Appendix A, is

a slight generalisation of the proof in [12].

The (optimal) values of L and {Nℓ}
L
ℓ=0 can be

computed “on the fly” from the sample averages

and the (unbiased) sample variances of Yℓ. To do

this we need to assume further that there exists
an M ′ ∈ N such that the decay in |E[QM − Q]| is

actually monotonic for M ≥ M ′ and satisfies
∣∣∣E[QM − Q]

∣∣∣ h M−α.

This ensures, via the triangle inequality, that

|E[YL]| h M−α (since s > 1 in (4)), and hence

|ŶL| h M−α for NL sufficiently large, providing

us with a computable error estimator to deter-
mine whether M is sufficiently large or whether

the number of levels L needs to be increased. It

can in fact even be used to further improve the

MLMC estimate by eliminating the leading order

bias term via Richardson extrapolation (see [12,
§4.2] for details).

Putting these ideas together, the MLMC algo-

rithm can be implemented in practice as follows:

1. Start with L = 0.

2. Estimate V[YL] by the sample variance of an

initial number of samples.

3. Calculate the optimal number of samples Nℓ,

ℓ = 0, 1, . . . , L based on (9).

4. Evaluate extra samples at each level as needed
for the new Nℓ.

5. If L ≥ 1, test for convergence using ŶL h M−α.

6. If not converged, set L = L + 1 and go back to

step 2.

Note that in the above algorithm, step 3 aims
to make the variance of the MLMC estimator less

than 1
2ε2, while step 5 tries to ensure that the re-

maining bias is less than 1√
2
ε.

3 Application to PDEs – A model problem

In this section we will apply Multilevel Monte Carlo

to elliptic PDEs with random coefficients arising in
subsurface flow.

Probabilistic uncertainty quantification in sub-

surface flow is of interest in a number of situations,

as for example in risk analysis for radioactive waste
disposal or in oil reservoir simulation. The classi-

cal equations governing (steady state) single phase

subsurface flow consist of Darcy’s law coupled with

an incompressibility condition (see e.g. [18,6]):

q+k∇p = g, ∇·q = 0, in D ⊂ R
d, d = 1, 2, 3,

(10)

subject to suitable boundary conditions. In physi-

cal terms, p denotes the pressure (or more precisely

the pressure head) of the fluid, k is the hydraulic

conductivity tensor, q is the filtration velocity (or

Darcy flux) and g are the source terms.

3.1 Model problem

A typical approach to quantify uncertainty in p

and q is to model the hydraulic conductivity as a

random field k = k(x, ω) on D × Ω with a cer-

tain mean and covariance structure that has to be
inferred from the data. This means that (10) be-

comes a system of PDEs with random coefficients,

which can be written in second order form as

−∇ · (k(x, ω)∇p(x, ω)) = f(x), in D, (11)

with f := −∇·g. The solution p itself will also be a

random field on D × Ω. For simplicity we assume

that the boundary conditions and the sources g

are known (and thus deterministic), and restrict

ourselves to the case D = (0, 1)d.

In this general form solving (11) is extremely

challenging computationally and so in practice it is
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common to use relatively simple models for k(x, ω)

that are as faithful as possible to the measured

data. One model that has been studied extensively
is a lognormal distribution for k(x, ω), i.e. replac-

ing the conductivity tensor by a scalar valued field

whose log is Gaussian. It guarantees that k > 0

almost surely (a.s.) in Ω and it allows the con-
ductivity to vary over many orders of magnitude,

which is typical in subsurface flow.

When modelling a whole aquifer, a whole oil

reservoir, or a sufficiently large region around a po-

tential radioactive waste repository, the correlation
length scale for k is typically significantly smaller

than the size of the computational region. How-

ever, the correlation is typically large enough to

fall outside the domain of stochastic homogenisa-
tion techniques. In addition, typical sedimentation

processes lead to fairly irregular structures and

pore networks, and faithful models should there-

fore also only assume limited spatial regularity of

k. A covariance function that has been proposed in
the application literature (cf. [16]) is the following

exponential two-point covariance function

C(x,y) := σ2exp

(
−
‖x− y‖p

λ

)
, x,y ∈ D,

(12)

where ‖·‖p denotes the ℓp-norm in R
d and typically

p = 1 or 2; throughout this paper we use p = 1 for
simplicity. The parameters σ2 and λ denote the

variance and the correlation length, respectively,

and in subsurface flow applications typically only

σ2 ≥ 1 and λ ≤ diamD = 1 will be of interest.
This choice of covariance function implies that k

is homogeneous and it follows from Kolmogorov’s

theorem [20] that k(·, ω) ∈ C0,η(D) a.s. with η <

1/2.

In order to apply the proposed Multilevel Monte
Carlo Method to this application, we need to be

able to do two things:

– sample from the input random field k(x, ω),

– for a given sample, i.e. for fixed ω, perform a

spatial discretisation of the PDE in (11) on two

consecutive grids and solve it.

3.2 Sampling from the input random field

Several techniques exist to produce samples of k,
including circulant embedding as studied in [14]

or the Karhunen-Loève (KL) expansion [10]. We

only describe and apply the KL-expansion here.

Let Z(x, ω) := log k(x, ω). We can then expand Z

in terms of a countable set of uncorrelated, zero

mean random variables {ξn}n∈N such that

Z(x, ω) = E [Z(x, ·)] +

∞∑

n=1

√
θn ξn(ω) bn(x), (13)

where {θn}n∈N are the eigenvalues and {bn}n∈N

the normalised eigenfunctions of the covariance op-

erator with kernel function C(x,y) defined in (12).

For more details on the derivation and for proper-
ties of the KL–expansion, see e.g. [10]. However,

an important point to note is that for Gaussian

random fields Z the random variables {ξn}n∈N are

a set of independent standard Gaussian variables.

In the case of the 1-norm ‖ · ‖1, i.e. p = 1,

in (12), analytic expressions for the eigenpairs of

the covariance operator are available. Following
e.g. [10], we get for d = 1, D = (0, 1) and σ2 = 1

in (12):

θ1D
n =

2λ

λ2w2
n + 1

, n ∈ N,

bn(x)1D = An

(
sin(wnx) + λwn cos(wnx)

)
,

(14)

where {wn}n∈N are the (real) solutions of the tran-

scendental equation

tan(w) =
2λw

λ2w2 − 1
,

and the constant An is chosen so that ‖bn‖L2(0,1) =

1. For d = 2, and D = (0, 1)2 the eigenpairs can

then be expressed as

θ2D
n = θ1D

in
θ1D

jn
, b2D

n (x) = b1D
in

(x1) b1D
jn

(x2),

for some in, jn ∈ N.

For σ2 different to 1, the eigenfunctions are the

same as above and the eigenvalues (both in 1D and

2D) are simply multiplied by σ2. In the (practically
more realistic) case p = 2 and for many other co-

variance functions, efficient ways to compute KL-

expansions using multipole or matrix compression

techniques can be found in [21,8,9].

In practice we have to truncate the expansion

(13) after a finite number mKL of terms. Let ZmKL

denote the KL-expansion of Z truncated after mKL

terms. Since {ξn}n∈N is a sequence of i.i.d. stan-

dard Gaussian random variables and ‖bn‖L2(D) =

1, the accuracy of the truncated KL-expansion de-

pends directly on the decay of the eigenvalues θn.

With the kernel function C(x,y) in (12) the co-
variance operator is self-adjoint, non-negative and

compact, which implies that it has a countable se-

quence of real, non-negative eigenvalues that tend

to 0. Furthermore it is of trace class, i.e. the sum

6



10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

n

ei
ge

nv
al

ue
   

θ n

 

 

λ=0.01
λ=0.1
λ=1

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

n

R
el

at
iv

e 
er

ro
r 

in
 q

ua
nt

ity
 o

f i
nt

er
es

t

 

 

λ=0.01
λ=0.1
λ=1

Fig. 1 Left: Plot of the KL eigenvalues in decreasing order as a function of their index, for different choices of the cor-
relation length λ and for d = 1. Right: Corresponding relative error (or bias)

˛̨
E[keff(Z)]−E[keff (ZmKL

)]
˛̨
/E[keff (Z)]

in a typical quantity of interest (here the effective hydraulic conductivity keff defined in Section 4) as a function of
the number of KL modes included.

of all eigenvalues is finite. In order to decide how

many modes to include we make the following ob-

servations. (They follow easily from (14) in the

case p = 1 for our model problem; more details

on the general case can be found in [21].)

– The eigenvalues θn decay quadratically with re-

spect to n, e.g. θn . n−2.

– If λ < diam(D), then there is a pre-asymptotic

phase where the KL-eigenvalues do not decay
significantly. This is clearly visible in the left

plot in Figure 1.

– Moreover

∞∑

n=1

θn = σ2 meas(D). (15)

where meas(D) :=
∫

D
dx (see e.g. [9]).

The identity (15) can be used in practice to

ensure that a sufficient fraction of the variance is

captured by the first mKL terms. This is what we
did in our numerical experiments later. In order to

get an idea about the error resulting from truncat-

ing the KL–expansion, note first that

E

[
‖Z − ZmKL‖

2
L2(D)

]

= E

[∥∥∥
∞∑

n=mKL+1

√
θn ξn(ω) bn

∥∥∥
2

L2(D)

]

=

∞∑

n=mKL+1

θn

Since θn = O(n−2), this implies that the RMSE

of ZmKL in the L2(D)–norm is O(m
−1/2
KL ). It is

known that the error in the expected value of func-

tionals of the solution resulting from a truncation

of the KL-expansion usually decays more rapidly

(see e.g. [4]). Indeed, our numerical computations

show that the expected value of a typical quantity

of interest, i.e. the effective hydraulic conductiv-

ity keff defined in (18) in Section 4, decays like

O(m−1
KL) in 1D (cf. Figure 1, right, in which the

reference value E[keff(Z)] is evaluated using 5000

KL modes). However, in absolute terms, even in

1D and especially for short correlation lengths λ,

a very large number of KL-modes needs to be in-
cluded to achieve even just a relative error (or bias)

of 10−2.

3.3 Spatial discretisation

The particular choice of spatial discretisation scheme

is not essential to the multilevel MC approach.

However, many quantities of interest in subsurface

flow depend on an accurate and mass-conservative
representation of the flux q, and so in this context

finite volume (FV) or mixed finite elements (FEs)

are usually preferred over standard Lagrange FEs.

For a short and simple description and a fast im-

plementation of mixed FEs applied to our model
problem see eg. [6] or [14]. In this paper we will de-

scribe and use a standard cell-centred FV method

instead.

Let us briefly describe our discretisation for

d = 2. The one-dimensional case is analogous. We

start by subdividing [0, 1]2 uniformly into a mesh
of m × m square cells and denote by Di,j the cell

( i−1
m , i

m )×( j−1
m , j

m) with i, j = 1, . . .m, and by xi,j

its centre. To discretise (11) we integrate (11) over

each cell to obtain a set of m2 algebraic equations

∫

Di,j

−∇·(k∇p) =

∫

Di,j

f , for all 1 ≤ i, j ≤ m.

7



(16)

Then, using the Divergence Theorem, we trans-

form the left hand side integral into a boundary

integral
∫

∂Di,j
−k∇p · n and approximate all the

resulting integrals in (16) by quadrature.

Let ki,j and fi,j be the values of k and f at

xi,j , respectively, and let pi,j denote our approx-

imation to p at xi,j . Then the right hand side in

(16) can be approximated by the midpoint rule
as fi,j/m2. To approximate the left hand side we

treat each edge of ∂Di,j separately. The contribu-

tion from the edge between Di,j and Di+1,j can

be approximated again by the midpoint rule, and

as it is customary in subsurface flow applications,
we use the harmonic average ki+ 1

2 ,j of ki,j and

ki+1,j to approximate k on the edge. To approxi-

mate ∇p · n on the edge we use the central finite

difference (pi+1,j − pi,j)/|xi+1,j − xi,j |. The con-
tributions from the other edges are approximated

similarly, leading to the following final form of the

(i, j)th equation:

−ki,j− 1
2
pi,j−1 − ki− 1

2 ,jpi−1,j + Σi,jpi,j

−ki+ 1
2 ,jpi+1,j − ki,j+ 1

2
pi,j+1 = fi,j/m2 (17)

where Σi,j = ki,j− 1
2

+ ki− 1
2 ,j + ki+ 1

2 ,j + ki,j+ 1
2
.

A Neumann boundary condition, i.e. a prescribed

flux −k∇p · n = gN , on any part of the outer

boundary of (0, 1)2 is straightforward to incorpo-
rate. We simply replace the respective flux term

on the left hand side of (17) by gN(xm+ 1
2 ,j)/m

(again obtained via the midpoint rule). To enforce

a Dirichlet boundary condition, i.e. a prescribed
pressure p = gD, we simply replace the harmonic

average on the respective edge by ki,j and the cen-

tral difference by a one-sided difference.

The resulting linear system takes the standard

five-point stencil form. It is sparse and highly ill-
conditioned, but it can be solved efficiently and

robustly either with algebraic multigrid methods

[22] or a sparse direct solver. The solution is an

M = m2 dimensional vector XM containing ap-

proximations pi,j of the pressure p at the points
xi,j , i, j = 1, . . .m. Typical quantities of interest

QM = G(XM ) to derive from this solution vector

will be discussed in the next section.

For the MLMC method we need a sequence of

such spatial approximations to construct our lev-
els. We choose a coarsest mesh size m0 and set

mℓ = 2ℓm0, for all ℓ ∈ N. Then the mesh size on

level ℓ is hℓ = m−1
ℓ and the length of the random

vector XMℓ
is Mℓ = m2

ℓ .

4 Numerical Results

In this section we examine the performance of the

MLMC method in computing the expected values

of some quantities of interest for our model prob-

lem in 1D and 2D. In particular, we consider (11)

on D = (0, 1)2 with f ≡ 0 and subject to the
boundary conditions

p|x1=0 = 1, p|x1=1 = 0,

∂p

∂n

∣∣∣
x2=0

= 0,
∂p

∂n

∣∣∣
x2=1

= 0,

and the corresponding ODE in 1D with p(0) = 1

and p(1) = 0. To discretise our model problems in

space we use the finite volume method described
in the previous section.

The statistics of several functionals of the solu-

tion are commonly of interest, e.g. the variance of

the pressure or of the flow rate at a certain point in

the domain, or the average travel time of a particle

convected in the fluid. Here we will mainly focus
on the expected value of the cumulative outflow

from the region D on the boundary x1 = 1. This

is related to the effective (horizontal) conductivity

of the region D (see e.g. [14]) which is defined as

keff := −

∫ 1

0

k
∂p

∂x1

∣∣∣
x1=1

dx2. (18)

In addition, we will also look at the horizontal flux

−k ∂p
∂x1

at the centre of the domain.

To quantify the cost of the algorithms in the

figures below, we assume that the number of op-

erations to compute one sample on level ℓ is Cℓ =

C∗ Mγ
ℓ for some fixed constant C∗ that may de-

pend on λ and σ2 but is independent of ℓ. In the

case of 1D we have γ = 1. In 2D, for an optimal

iterative linear solver such as algebraic multigrid

we also have γ ≈ 1. A sparse direct solver on the

other hand, such as the one provided by Matlab

through the backslash operation, will usually be

slightly suboptimal in 2D, but will have at worst

γ = 1.5. In the results presented below, unless oth-

erwise stated, we always present the standardised
costs, scaled by 1/C∗, and assume γ = 1.

The relative performance of the individual meth-
ods is very similar if actual CPU times are used in-

stead (see Figure 7). However, since our code is not

optimised, we did not want to use these to assess

the performance directly.
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Fig. 2 Performance plots for λ = 0.3, σ2 = 1, mKL = 800 and m0 = 16 in 1D. The quantity of interest is the
outflow −k ∂p

∂x
at x = 1.

4.1 Results in 1D

Let us start by solving the 1D version of (11) on

D = (0, 1) with boundary conditions p(0) = 1 and

p(1) = 0, and choose as the quantity of interest
Q = −k ∂p

∂x |x=1 . We will first numerically confirm

the assumptions in Theorem 1, and estimate val-

ues of the parameters α and β . We also confirm

the predicted bound on the cost of the MLMC es-

timator.

Figure 2 shows results for the case λ = 0.3, σ2 =

1, mKL = 800 and m0 = 16. The top left plot

shows the behaviour of the variance of Qℓ and of

Yℓ = Qℓ − Qℓ−1 for each level ℓ. The slope of the
line for V[Yℓ] is approximately equal to −2, indi-

cating that V[Yℓ] . h2
ℓ h M−2

ℓ , or β ≈ 2. We

also see that V[Qℓ] is approximately constant on

all levels shown, numerically verifying the assump-

tion made in Section 2.1 for large enough values of
M . The top right plot shows the expected value of

Qℓ and of Yℓ = Qℓ−Qℓ−1. The slope of the line for

E[Qℓ −Qℓ−1] is roughly equal to −1.75, indicating

that E[Q − Qℓ] . h1.75
ℓ h M−1.75

ℓ , or α ≈ 1.75.

The bottom two plots are related to the im-

plementation of the MLMC algorithm and to its

cost. The left plot shows the number of samples
Nℓ used on each level, and the right plot shows a

comparison of the cost of standard MC with the

cost of MLMC. Note that the MLMC algorithm

does not only result in large savings in the com-
putational cost, but that the cost of the MLMC

estimator also grows more slowly than the cost of

the standard MC estimator as ε → 0.

Before moving on to 2D, we briefly return to

the point made in Section 2.2 about the choice of

the mesh size h0 = m−1
0 on the coarsest level. As

we see in the top left plot of Figure 2, for large val-
ues of hℓ, the variances of Qℓ and Yℓ are close. In-

creasing hℓ even further, the two graphs will even-

tually cross, and V [Yℓ] will be larger than V [Qℓ].

In this situation, the contributions to the cost of

the MLMC method from level ℓ will actually be
bigger than those using standard MC, rendering

any further coarsening useless. It turns out that

the two graphs cross when hℓ ≈ λ. It is in fact also

at this same point hℓ ≈ λ where V[Qℓ] ceases to be
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Fig. 3 Performance plots for λ = 0.3, σ2 = 1, mKL = 1400 and m0 = 8 in 2D. The quantity of interest is the
effective hydraulic conductivity keff defined in (18).

constant. Thus, the optimal choice for the coarsest

level is such that h0 is slightly smaller than λ.

4.2 Results in 2D

As in 1D we choose λ = 0.3 and σ2 = 1, but we
set m0 = 8 and include mKL = 1400 KL-modes.

The quantity of interest is the effective hydraulic

conductivity keff defined in (18). We start again by

numerically estimating the rates α and β for The-
orem 1 and by comparing the costs of the MLMC

method to standard MC. Figure 3 is similar to Fig-

ure 2 for 1D. The top two plots give graphs of

the variances and the expected values of Qℓ and

Yℓ. They suggest that V [Yℓ] . h2
ℓ h M−1

ℓ and
thus β ≈ 1, and E[Q − Qℓ] . h1.75

ℓ h M−0.875
ℓ , or

α ≈ 0.875. Note that in terms of Mℓ the rates are

exactly 1/2 those in 1D. In terms of hℓ they are

the same. In the bottom right plot, the savings of
the MLMC algorithm over standard MC are again

considerable.

We now take a step away from Theorem 1, and

analyse the gains of introducing different numbers

of levels in the MLMC algorithm in more detail.

First in Figure 4, we fix the standard deviation of

our multilevel estimator Q̂ML
M (i.e. the sampling

part of the error in (8)), and study how the com-

putational cost of the MLMC method grows with

grid size M = m2
L for various numbers L of levels.

It is very clearly visible that the multilevel meth-
ods outperform standard MC dramatically. Note

that the cost to estimate E[QL] to the required

accuracy on a (finest) grid of size mL = 32 with

standard MC is about the same as that of the 4–
level method on a grid of size mL = 128. In the

left plot in Figure 4 we use γ = 1 (typical for an

optimal iterative method such as AMG), whereas

in the right plot we use γ = 1.5 (worst case for a

sparse direct solver). We see that the gain is actu-
ally larger in the second case. For example, on the

finest mesh with mL = 128, the ratio of the costs

of standard MC and the MLMC method with 4

levels is 67 for γ = 1.5, whereas this ratio is only
20 for γ = 1.

In Figure 5, we keep the spatial discretisation

on the finest level mL fixed and study how the

computational cost grows as the tolerance on the
required standard deviation of the estimator is de-

creased (using γ = 1). We can see in the left plot

that for Q = keff the standard MC estimator only

achieves a standard deviation of 3.7×10−4 for ap-
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Fig. 5 Same test case as in Figure 4. Standard deviation of the MLMC estimator bQML
L versus the standardised

computational cost for fixed mL = 128. The horizontal line represents the estimated spatial discretisation error on

this grid. Quantities of interest: E [keff ] (left plot) and E
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i
at the centre of the domain (right plot).
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Fig. 7 Same plots as in Figures 4 and 5 for λ = 0.1, σ2 = 1, mKL = 500, but using actual CPU time in seconds
to quantify the cost (Matlab implementation running on a 3GHz Intel Core 2 Duo E8400 processor with 3.2GByte
of RAM). Left plot: E[keff ], with fixed maximum standard deviation 10−3. Right plot: E[k2

eff ], with mL = 256.

proximately the same cost as the MLMC estimator
with 4 levels needs to reach a standard deviation

of 7× 10−5 which is below the discretisation error

on that grid. More than 20 times more computa-

tional work is needed with standard MC to achieve

a standard deviation that is smaller than the dis-
cretisation error. Again this gain is bigger if we

assume γ = 1.5 in our cost model. In the right

plot in Figure 5 we show that a similar behaviour

is observed for other quantities of interest, such
as the horizontal flux −k ∂p

∂x1
at the centre of the

domain. Note however that there seems to be not

much gain in including a 4th level in this case. This

is related to the fact discussed at the end of Sec-

tion 4.1. In Figure 6 we see that indeed the graphs
of V[Qℓ] and V[Yℓ] are very close for mℓ = 8 in

this case. We also observe that the rate of decay

for V[Yℓ] and E[Yℓ] is smaller for this quantity of

interest, α ≈ 0.375 and β ≈ 0.5 here.

Finally in Figure 7 we give some actual CPU

times for a slightly harder test case, i.e. λ = 0.1, σ2 =

1, mKL = 500 and Q = keff . These were obtained

with our Matlab implementation on a 3GHz In-
tel Core 2 Duo E8400 processor with 3.2GByte of

RAM using the sparse direct solver provided in

Matlab through the standard backslash operation

to solve the linear systems for each sample. The
value for γ we observed numerically in this case

was 1.2 in 2D. We see that even with our non-

optimised implementation it is possible to obtain

a RMSE for Q̂ML
M of less than 10−3 in just over

100 seconds. In the right plot in Figure 7 we fur-
ther see that the advantage of the MLMC method

is not restricted to computing expected values, but

is just as apparent when computing the second or-

der moment of quantities of interest.

5 Conclusions and Further Work

With the numerically observed values for α and
β in the previous section (cf. Figures 2, 3 and 6)

it is possible also to compare the theoretically pre-

dicted costs given by Theorem 1 for each of the two

quantities of interest we studied and we do this in
Table 1. This allows us also to project the expected

gains of the MLMC method over the standard MC

method to 3D. The numerical results above suggest

that α ≈ 1.75/d and β ≈ 2/d for Q = keff , where

d = 1, 2, 3 is the spatial dimension. For the flux at
the centre of the domain α ≈ 0.75/d and β ≈ 1/d.

We see from Table 1 that asymptotically the

MLMC leads to a huge improvement over standard

MC for both quantities of interest. In cases where
the variance of Yℓ decays relatively rapidly, as is

the case for Q = keff , then a relatively large portion

of the computational effort is spent on the coarse

grids. Indeed, if we would have β > γ in d = 1, 2, 3,
then the MLMC method would have a cost that

is of asymptotic order ε−2. Note that this is the

same asymptotic cost as applying standard MC

to a problem with only one random variable, i.e.

M = 1. We see in the left table in Table 1 that
the cost of MLMC estimator for Q = keff does

indeed have an asymptotic order close to ε−2, for

d = 1, 2, 3.

When the variance of Yℓ decays more slowly,

on the other hand, as is the case for the flux at

the centre of the domain, then a relatively large

portion of the computational effort is spent on the

finest grid. We would like to point out here that if
we are in the situation that β < γ for d = 1, 2, 3

and β = 2α, then the MLMC method has a cost

that asymptotically is of the order ε−γ/α. Note

that this is proportional to the cost of obtaining
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d C( bQMC
M ) C( bQML

M ) C( bQMC
1 )

1 ε−18/7 ε−2 ε−2

2 ε−22/7 ε−2(log ε)2 ε−2

3 ε−26/7 ε−18/7 ε−2

d C( bQMC
M ) C( bQML

M ) C(Q
(i)
M )

1 ε−10/3 ε−2(log ε)2 ε−4/3

2 ε−14/3 ε−10/3 ε−8/3

3 ε−6 ε−14/3 ε−4

Table 1 Predicted asymptotic order of cost to achieve a RMSE of ε from Theorem 1 in the case of γ = 1, α = 1.75/d

and β = 2/d (left table) and γ = 1, α = 0.75/d and β = 1/d (right table) for the standard MC (C( bQMC
M )) and

MLMC (C( bQML
M )) estimators. In the left table we compare with the cost C( bQMC

1 ) to obtain a RMSE of ε with the

standard MC estimator for a single random variable, i.e. M = 1. In the right table we compare with the cost C(Q
(i)
M )

to obtain one sample on the finest grid.

one sample on the finest grid and thus to solving a

deterministic PDE to the same accuracy ε. For the

horizontal flux −k ∂p
∂x1

at the centre of the domain,

we do not quite have β = 2α, but we see in the

right table in Table 1 that the asymptotic order
of the cost of the MLMC estimator is indeed close

to that of the cost of obtaining one sample on the

finest grid.

To conclude, in this paper we successfully ap-

plied the MLMC algorithm to elliptic PDEs with
random coefficients. The numerical results clearly

show the advantage of using the MLMC estima-

tor over a standard MC estimator for this type of

model problem for several quantities of interest.
They further show that the gain of the MLMC

estimator is not limited to smooth or easy prob-

lems. The improvements are in fact even more pro-

nounced when the linear solver is not quite optimal

(γ > 1), or in cases where the discretisation error
is large (α and β are small).

There was nothing special about our choice of

uniform grids and isotropic model problems. The

MLMC estimator is expected to perform equally

well on locally refined grids and for anisotropic
problems provided a suitable hierarchy of grid lev-

els can be constructed. The numerical experiments

suggest ways to further improve the performance

of the MLMC algorithm. Firstly, as discussed, in
order to choose the coarse level M0 independent of

λ it would be better to choose smoother approxi-

mations of the random field on the coarse meshes,

e.g. by truncating the KL-expansion earlier. This

will not affect the asymptotic order of the cost as
ε → 0, but it would lead to larger gains of MLMC

over standard MC for a fixed tolerance ε. A way to

improve the asymptotic order of convergence of the

MLMC method may be the use of a different esti-
mator on each of the levels, such as a randomised

quasi–Monte Carlo estimator [13,14].

This paper has not addressed the challenges of

numerical analysis, but the assumptions of The-

orem 1 have recently been verified theoretically

for certain quantities of interest in the context

of finite element spatial discretisations in [1] and

[5]. The former considers coefficient fields k ∈ W 1,∞

that are bounded uniformly from above and away

from zero. The latter analyses the more challenging
case studied in this paper, where k is not uniformly

bounded and is only in C0,η, with η < 1/2.

A Proof of the generalised multilevel

Monte Carlo Theorem 1

Let us denote the hidden constants in Assumptions i),
ii) and iii) by c1, c2 and c3, respectively. Recall that we
assume that

Mℓ = s Mℓ−1 , for all ℓ = 1, . . . , L,

for some s ∈ N \ {1}, cf (4). Without loss of generality,
we shall also assume that M0 = 1. If this is not the case,
this will only scale the constants c1, c2 and c3.

Note also that since standard Monte Carlo estima-
tors are unbiased, we have

E[bYℓ] =

8
<
:

E[QMℓ
], ℓ = 0

E[QMℓ
− QMℓ−1

], ℓ > 0
(19)

Then, using the notation ⌈x⌉ to denote the unique
integer n satisfying the inequalities x ≤ n < x+1, we
start by choosing L to be

L =
l
α−1 logs(

√
2 c1 ε−1)

m

< α−1 logs(
√

2 c1 ε−1) + 1 (20)

so that

s−α ε√
2

< c1 s−α L ≤ ε√
2

, (21)

and hence, due to (19) and assumption i),

“
E[ bQML

M ] − E[Q]
”2

≤ 1
2

ε2.

This 1
2
ε2 upper bound on the square of the bias er-

ror, together with the 1
2
ε2 upper bound on the variance

of the estimator to be proved later, gives an ε2 upper
bound on the estimator MSE.

Using the left-hand inequality in (21), we obtain the
following inequality which will be used later,

LX

ℓ=0

sγ ℓ <
sγL

1−s−γ
<

sγ (
√

2 c1)γ/α

1−s−γ
ε−γ/α. (22)

13



We now need to consider the different possible values
for β.

a) If β = γ, we set Nℓ =
˚
2 ε−2 (L+1) c2 s−β ℓ

ˇ
so

that

V[ bQML
M ] =

LX

ℓ=0

V[bYℓ] ≤
LX

ℓ=0

c2 N−1
ℓ s−β ℓ ≤ 1

2
ε2,

which is the required upper bound on the variance of
the estimator. Since Nℓ ≤ 2ε−2 (L+1) c2 s−β ℓ + 1, the
computational complexity is bounded by

C( bQML
M ) ≤ c3

LX

ℓ=0

Nℓ sγ ℓ

≤ c3

 
2 ε−2(L+1)2 c2 +

LX

ℓ=0

sγ ℓ

!

For ε<e−1 <1 we have 1< log ε−1 and ε−γ/α ≤ ε−2 ≤
ε−2(log ε)2 since α ≥ 1

2
γ. Hence, using the inequalities

in (20) and (22), it follows that C( bQML
M ) . ε−2(log ε)2.

b) For β >γ, we set

Nℓ =

‰
2 ε−2 c2

“
1−s−(β−γ)/2

”
−1

s−(β+γ)ℓ/2

ı
so that

LX

ℓ=0

V[bYℓ] ≤ 1
2

ε2
“
1−s−(β−γ)/2

” LX

ℓ=0

s−(β−γ)ℓ/2

< 1
2

ε2.

Since

Nℓ < 2 ε−2 c2
“
1−s−(β−γ)/2

”
−1

s−(β+γ)ℓ/2 + 1,

the computational complexity is bounded by

C( bQML
M ) ≤ c3

 
2 ε−2 c2

“
1−s−(β−γ)/2

”
−2

+
LX

l=0

sγ l

!
.

Again for ε<e−1 <1 we have ε−γ/α ≤ ε−2 and hence
due to inequality (22) we have C( bQML

M ) . ε−2.

c) For β <γ, we set

Nℓ =

‰
2ε−2c2s(γ−β)L/2

“
1−s−(γ−β)/2

”
−1

s−(β+γ)ℓ/2

ı

so that
LX

ℓ=0

V[bYℓ]

< 1
2

ε2 s−(γ−β)L/2
“
1−s−(γ−β)/2

” LX

ℓ=0

s(γ−β)ℓ/2

< 1
2

ε2.

Since

Nℓ <2ε−2c2s(γ−β)L/2(1−s−(γ−β)/2)−1s−(β+γ)ℓ/2+1,

the computational complexity is bounded by

C( bQML
M )

≤ c3

 
2ε−2c2s(γ−β)L/2(1−s−(γ−β)/2)−1

LX

ℓ=0

s(γ−β)ℓ/2

+
LX

ℓ=0

sγℓ

!

≤ c3

 
2ε−2c2s(γ−β)L(1−s−(γ−β)/2)−2 +

LX

ℓ=0

sγℓ

!
.

Using the first inequality in (21),

s(γ−β)L <
“√

2 c1
”(γ−β)/α

sγ−β ε−(γ−β)/α.

Also, for ε < e−1 < 1 we have ε−γ/α ≤ ε−2−(γ−β)/α

since α ≥ 1
2
β. Hence, due to inequality (22), we have

C( bQML
M ) . ε−2−(γ−β)/α.
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