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Abstract

The subject of this work is an optimal and scalable paraksirgetric multigrid solver for elliptic
problems on the sphere. The use of fast elliptic solversusialto the forecasting and data assim-
ilation tools used at the UK Met fice, and the preconditioned Krylov subspace solvers cuyrent
used do not perform well for large problem sizes due to theatiditioned nature of the problems.
The optimality of multilevel techniques for elliptic pradrhs therefore makes them a suitable choice
for these applications. The Metflixe uses spherical polar grids which, although structurade h
the drawback of creating strong anisotropies near the pdiese the grid lines converge. Moreover,
a higher resolution of mesh points in the radial directiosgsofurther anisotropies, and so mod-
ifications to the standard multigird relaxation and coairsgprocedures are necessary in order to
retain optimal éiciency. Since the strength of anisotropy varies betweerduator and the poles,
we propose a hon-uniform coarsening strategy, where tlieigdoarsened only in regions that are
sufficiently isotropic. This is combined with line relaxationtime radial direction. The success of
non-uniform coarsening strategies has been demonstritedlgebraic Multigrid (AMG) methods.
Without the large setup costs required by these methodsgvyewwe aim to surpass them with the
geometric approach outlined above. We demonstrate thentayes of the method with experiments
on model problems, both sequentially and in parallel. Opegxnents show robustness and optimal
efficiency of this method with constant V-cycle convergencédiacof less than 0.1. It substantially
outperforms the Krylov subspace methods with one-levatqnditioners and thBoomerAMG im-
plementation of AMG by factors of 10 and 5, respectively, goidal grid resolutions. The parallel
implementation scales almost optimally on up to 256 pramssso that a global solve of the quasi-
geostrophiav-equation with a resolution of 10km at the equator and1®® unknowns takes about
60 seconds.

Keywords. Quasi-geostrophie-equation, anisotropy, spherical polar grid, geometridtignid, condi-
tional semi-coarsening, line relaxation.

1 Introduction

In this paper we propose an optimal and scalable paralledtite solver for the following three di-
mensional elliptic problem (in spherical polar coordimtthat plays a key role in data assimilation for
numerical weather forecasting, i.e.
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whereV? is the 2D-Laplacian in spherical coordinates at constaighhe. It is known as theguasi-
geostrophic omega (QG-w) eguation and describes the vertical motion in scales important fomtier
forecasting in the atmosphere. We are interested in soltiimgthe spherical shell representing the
(entire) Earth’s atmosphere. The unknown functiois the vertical motionfy is the Coriolis parameter,
which in the quasi-geostrophic regime is assumed condthoie however that from an algorithmic point
of view, changing this to a (more realistic) variable partné(¢) poses no additional fliculties. N%(r)

is related to the frequency of vertical buoyancy oscillagiowhich depends on the temperature gradient
and varies smoothly with. The right hand side termencompasses all the sources of quasi-geostrophic
forcing for vertical motion, such as temperature gradieqtgsi-geostrophic wind, quasi-geostrophic
vorticity, and latent heat release. Details of the equatindluding its derivation and the asymptotic
regimes in which it is valid, can be found in [4, 9]. Bptimal we mean that the time for solving the
discretised problem is proportional to the (discrete) fwbsize. Similarly, we say that an algorithm has
optimal parallel scalability, if the solution time remains constant when the problem aimbthe number

of processors are increased proportionally.

Many of the standard meteorological codes, in particultheatJK MET Cffice, use spherical polar
grids, which lead to strong grid anisotropies near the polesre the grid lines converge. Therefore,
several alternative grids that avoid the “pole problem”sas Yin-Yang or icosahedral grids, are be-
coming increasingly popular in numerical weather predigtias discussed in [3, 23]. Nevertheless, for
all the negative things the spherical polar grids mightigriteese grids are very structured. This greatly
simplifies the discretisation of (1) and the coding, whictvis/ they are still widely used. We will show
in this article that from a solver point of view the bad repiagta of spherical polar grids (e.g. in [23,
§3.2b)) is unjustified, provided the solvers are suitably addpBefore we expand a bit further on this
let us note that the grid spacings in the radial directionrmpgeneral much smaller than in the horizontal
ones, since the thickness of the atmosphere is two orderaghitnde smaller than the circumference of
the Earth. This creates a further source of anisotropy. thafdilly, the grid is usually strongly graded in
the radial direction with smaller grid spacings near thdamgr of the Earth to obtain a better resolution
in the regions of most interest.

A standard finite volume discretisation of (1) on this amgpic mesh leads to a system of equations

Aw = b, 2

whereA is a large, sparse, symmetric positive definite (SPD) maifixe discretisation which we use
is basically identical to that given in [2] for Poisson’s atjon on a spherical polar grid. The matéx
contains a 7-point stencil for each node on the grid, with-pero entries only for the node itself and for
its immediate neighbours. Typical grid resolutions useddta assimilation at the Metffice are 216,
163 and 50 nodes in the latitudinal, longitudinal and radiedctions, respectively. This leads to a large
problem size of over a million degrees of freedom and a hightonditioned system matriA, making
(2) very dificult to solve diciently. The solver currently used at the METHi©e, i.e. a Krylov subspace
method preconditioned with simpfeline relaxation or ADI-type methods, is not optimal andtiiets
the grid resolutions that are currently feasible for glabiaiulations, as highlighted in [283.2b]. !

It is well known that it is necessary to resort to multilevethnigues to obtain optimality (of iter-
ative methods for large elliptic problems). For isotroproljfems with smoothly varying cdécients
standard geometric multigrid with simple point-wise sninlog and uniform coarsening is the most ef-
ficient method. As outlined in [7, 22] a simple relaxation hoegt (the smoother) eliminates the high

INote that the mean radius of the earth is about 6370km, anlgesiaarizontal grid size in the latitudinal direction for 216
nodes is about 185km near the equator.



frequency components of the error of an initial approximmtiwhich is then approximated on a coarse
grid (coarse grid correction). For anisotropic problenhés standard approach does unfortunately not
lead to an optimal method. However, if the anisotropies &gmed with the grid then simple modifi-
cations achieve optimality even to strong anisotropieseséhmodifications are line smoothing gord
semi-coarsening. Line smoothing involves collectivellaxeng all unknowns on an entire grid line by
solving a tridiagonal system corresponding to the unknownthat line. Semi-coarsening uses a family
of coarse grids that are only coarsened in the direction efldiger cofficient. In (2) there are two
sources of anisotropy: one due to the large aspect ratioeeetvihe radial and horizontal grid spac-
ings; the second due to the spherical polar grid. In this peygepropose a robust geometric multigrid
method that is able to deal with both these problems by applgisimple non-uniform partial coarsening
(inspired from algebraic multigrid methods) combined vétir-line smoother.

The robustness of the non-uniform coarsening strategysisde@monstrated on a two-dimensional
model problem: Poisson’s equation on the unit sphere. Tée isl extremely simple. The spherical
polar grid introduces anisotropy near the poles but not treaequator, so the grid is semi-coarsened
near the poles but fully coarsened near the equator. We gentipa df-diagonal matrix entries in the
latitudinal and longitudinal direction at each line of tatle, and the grid line is fully coarsened only if
the codficients in both directions are of similar magnitude. Thid wé true near the equator where we
coarsen in both directions, but not near the poles where Weomarsen in the longitudinal direction,
thus leading to coarse grids that are better and betteredl&pthe anisotropy.

To deal with the strong anisotropy in the radial directiothiree dimensions we usdine relaxation
and do not coarsen at all in the radial direction. This is tbembined with the nonuniform coarsening
strategy in the longitudinal and latitudinal directionslth®ugh this partial coarsening only leads to a
coarsening factor of about 3 from one grid to the next (irt&e for uniform coarsening), it guarantees
that the method is fully robust to the anisotropies inducgdhle geometry and the grid and leads to an
optimal method with an average V-cycle convergence fadtlass than 0.1, as our numerical tests show.

Geometric multigrid methods with line and plane smoothbus,with “uniform” semi-coarsening,
have already been studied in [2]. Theoretical results fanat polar coordinates, line smoothers and
(uniform) semi-coarsening can be found in [5] (see alsa [BEs of the type (1) from meteorological
applications have already been solved with geometric gridtimethods, but only on cube-like domains
with doubly-periodic boundary conditions and not on thearerglobe (cf. [13, 1, 24, 25, 26, 19]). The
most closely related paper is [26], wherbne relaxation and partial coarsening (i.e. uniform ceaing
in the horizontal directions and no coarsening in the radiralction) was already studied extensively for
the quasi-geostrophic equations. However, since the dowes not the entire atmosphere the additional
complication of the anisotropy at the poles played no roleltigrid algorithms have also already been
proposed for alternative grids on the sphere, such as tahearal or the YiaYang grids, in [3, 17]

The idea of “conditional” semi-coarsening in the longitualidirection proposed here has only been
explored for edge and corner singularities so far (cf. [B4,2I7]) but not for spherical polar grids (even
in two dimensions). To the best of our knowledge, it seemseta hovel approach. It is clearly inspired
by algebraic multigrid (AMG) ideas (see e.qg. [7, 21]). AMGtmeds are fully automatic and only based
on algebraic information in the matrik. Coarse grid unknowns are chosen based on the relative size
of the df-diagonal entries in the matrix which in the applicationéheirill lead to very similar coarse
grids. However, AMG methods are known to require a largepsetist to design these coarse grids
and the operator-dependent interpolation and restricifmrators, especially in three dimensions. Our
geometric method on the other hand, requires almost no sestgo obtain the same robustness, which
is why it easily outperforms established AMG methods. Nuoagtests (cf. Section 4) for a variety of
problem sizes confirm this. In that section, we also give aganmon to preconditioned Krylov solvers



as currently used by the METffice [10] and their collaborators [8]. As expected, Krylov hogts are
only optimal when preconditioned with a robust multigrid threed, such as AMG or the non-uniform
geometric method proposed in this paper. With standardopdittoners used at the METffice, such
asr-line relaxation (on a single grid) or ADI-type preconditars, the number of iterations grows with
the problem size.

All (sequential) computations are carried out using therBa®5 compileri fort on a single pro-
cessor of a Dual dual-core 64bit AMD Opteron 2210 processtr elock speed of 1.8GHz, cache size
1.0MB and 2GB memory. The initial guess for each iterativeesae is always taken to be zero. The
stopping criterion is a relative residual reduction of2.0

The rest of this paper is organised as follows. In Section € describe the discretisation of (1)
in more detail. In Section 3 we describe our nonuniform gadmeultigrid method that is adapted to
the particular anisotropies induced by the geometry anthégtid, and highlight some similarities with
AMG. Numerical results for the sequential solver, as wett@®parisons with AMG and preconditioned
Krylov methods, will be given in Section 4. In the final seatiave outline how we parallelised our
method and demonstrate its optimal parallel scalabilityufoto 64 processors, as well as comparing the
speedup to the speedup of parallel versions of the othegrsolv

Acknowledgements.We would like to thank Mike Cullen (MET @ice) for bringing this problem to
our attention and for many helpful discussions.

2 Model Problem and Discretisation

Let Q be a non-dimensionalised spherical shell representingatta’s atmosphefei.e.
Q={(xy,2 : 099< ¥ +y*+Z <1}

Re-parameterising into spherical polar coordinates gives

Q={(@,¢r) : 099<r<1,0<p<n, 0<6<2r}, ©)
whereg¢ and# are the polar and azimuthal angles, respectively. The perisation is given by

AB, ¢, 1) = rsin(@)cosP) i + rsin()sin@) | + rcosg) k

In order to discretise (1) on this domain, let us subdivitlimto ny x ny X Ny cubes with cell centres

{(@,0,r) - i=1...,n, j=1,....,n, K=1,...,n },

and edge lengthy = 2r/ng, hy = n/(ny + 1) andhy, k = 1,...,n,, as well as into Z n; cells at the
poles with edge lengthsi2r/(2ns + 2) andh, . The computational grid in theé— ¢ plane can be seen

in Figure 1(a), where the top and bottom boundary representiorth and South pole, respectively. As
we can see, the grid on tife- ¢ plane is uniform (except at the poles). The nodes are locHtttk cell
centres, wheré; = (i — %)hg andgj = jhy. Atthe poles we use half cells, so that the poles themselves
are located at the centres of the cells in the physical dofaiand so that a discrete equation can be
derived at these points in the same fashion as at the othetspdin the radial direction, the mesh is
graded as shown in Figure 1(b) with the cell centres Iocalteglazg‘;ll hri + %hr,k, and with the mesh
widthsh, x increasing wittk. Thus, the total number of unknowns (including the unknoatrtfie poles)

IS (Ng X Ng + 2) X ny.

2The mean radius of the Earth is about 6,370km and the heigheaftmosphere of interest for meteorology is about 63km.
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Figure 1: (a) The computational grid in thep plane, and (b) the graded mesh in théirection.

We discretise (1) using the finite volume method, which isedby integrating the PDE over each
mesh cell (or control volume) corresponding to a grid pointg(j, ry), i.e.

Q'Jk_ [9 i, |+] [¢j 1¢j+:| [kl rk+]’
wheref, 1 = 6 + 3 $jay =0 = % and Med =Tk + M
Except at the poles the boundary of each control volumeistsnsf six faces, i.e.

|+ s Ij+ Ijk+

and the cell faces are denoted b};),+ k= {49 } % [¢J__ ¢J+1] X [rk 1, rk+1] with analogous
2 2
definitions forl’; ;.1  andr’ ;.1 and stitable modlfzcatlons on the boundaries.”
Since the prof)lem is discretised on a sphere, it is necessanpose periodic boundary conditions
on the lateral boundary, i.e.

w(0, 4, 1)
ow
%(0, ¢,1)

In addition, we impose for expositional purposes homogesdoirichlet boundary conditions on the
upper and lower boundaries of the atmosphere, i.e.

w(6, $,0.99) = w(6, ¢, 1) = O, (5)

w(2, ¢,1)
2—3(%, ¢.r) V¢ €[0,n],Vr €[0.991]. (4)

but this is not essential. The finite volume discretisatidmaw obtained by integrating (1) over each
control volumeQ; j, i.e.

10 (0w
—N2(r)\V?w - f2= ( r? )} dv = gdv. (6)
jf;i,j,k { 0 2 5 or ﬁi,j,k

WheredV is the volume element in spherical coordinates, i.e.

6&7( 0OA\ O0A oo
av = ‘( o a¢) ) dodgdr = r“sin(gp) dodedr.




SubstitutingdV into (6), applying the Divergence Theorem, and using cedifferences to approximate
derivatives in the integrals over the cell faces, we obtafbllowing 7-point stencil for the interior

nodes ofQ): heh
o1 k

=N*(r) =5 sin@;, 1)
sin(g;) "y —N2(ri) 2k singg ) | - 25542 | singg;) (7)
_NZ(r)hghrk S|n(¢j7%) ‘ e k+

hy hr Kk

122 , Sin@) | ~-N(r);

Similar stencils are obtained at the lateral and verticaindaries. At the poles we can proceed in a
similar fashion, but each pole cell hag+ 2 neighbours (with the obvious changes at the top and bottom
of the atmosphere). After integrating over the pole cap aidguthe Divergence Theorem and central

differences as before, we find that tiheoff-diagonal entries in the-direction are—NZ(rk) h9 sin(hs/2),
whereas the entries (e.g. at the south pole) in the radiattitin are- fo2 §:¢ sm(h¢/2)r ThIS results
in a system of linear equations of the form

Aw = Db,

whereA e R™", andn = (ng x ng + 2) x n; is the dimension of the problenw € R" is the unknown
solution vector corresponding to the values of the unknamttionw at the cell centres, artie R" is
the right-hand side containing the source terms.

3 Non-Uniform Geometric Multigrid for Spherical Polar Grid s

In this section we describe a novel geometric multigrid mdtfor solving (2). Standard geometric
multigrid methods for simple isotropic problems use fulacgening (i.e. coarsening in all directions)
and point relaxation smoothers (see [7] for details), ardibtimal convergence of this method has been
proven both experimentally and theoretically (cf. [15])h€fe are several variants of the method, but
here we focus on the V-cycle, which can be described as fellow

Iterate the following routine withAr = A, bg = b and initial guessug = 0, until a certain
stopping criterion is satisfied:

subroutine VCycle(A, by, uy)

if (¢ =1) then
up = A11b1 (solve on coarsest grid)

else
ue = Sy (us,by) (v pre-smoothing steps)

re-1 = Re(by — Aeup)  (calculate residual and restrict onto next coarser grid)
e_1=0
VCycle(A,_1,r,-1,€-1) (recursively applyCycle for coarse grid correction)
us = Uy + Peep_g  (interpolate error and update solution)
ue = S}*(us,by)  (v2 post-smoothing steps)

end if

3Note that we use a similar notation as in [2] to present theifitstencil. The numbers in square brackets give the 5tpoin
stencil in they — ¢ plane in the usual way. The numbers outside the bracketgelémdentries corresponding to the upwards
and downwards neighbours, respectivelydenotes the sum of thefediagonal entries corresponding to the six neighbours.



This routine requires a sequence of matriéest = 1,..., F, corresponding to the PDE (1) discretised
on a sequence of grids, where usually the grid on léviela uniform refinement of the grid on level
¢ — 1. It requires a smoothe$, on each grid (which is commonly a simple relaxation scherke i
Gauss-Seidel), as well as prolongation and restriction matrieeandR,, e.g. linear interpolation and
full-weighting restriction. The number of pre- and postegthing steps is denoted by andv,. An
alternative approach to define the matridgson the coarser grids is via the Galerkin approach, i.e.
Ar_1 = RPAP,, but this is more costly to set up and creates denser maticé®e coarser levels.

This standard method, however, is not robust for problentis anisotropy. Problem (1) discretised
on the grid described in Section 2 contains two sources afosmoipy as outlined in Section 1, thus
alternative ingredients are needed to solve it optimaliyheé anisotropy has the convenient feature of
being grid—aligned, i.e. aligned with the coordinate dimts, two standard ways to retain optimality of
multigrid are to use semi-coarsening grdine relaxation. Line relaxation involves collectivelaxing
all unknowns on an entire grid line by solving a tridiagongdtem corresponding to the unknowns on
that line. Semi-coarsening uses a family of coarse gridsateonly coarsened in the direction of the
larger codficient, thus reducing the strength of the anisotropy on tlaesss grids.

Conditional semi-coarsening in thed — ¢ plane

In two dimensions, problems with grid aligned anisotropg ba written in the form

V. (( mbare) O )VU) - g, ()

a2(X1, X2)

with @y, a2 uniformly positive almost everywhere. The simplest modedbem with grid aligned
anisotropy isa1 = € <« 1 constant and, = 1. For this model problem, it is shown theoretically in
[20] that x-line relaxation with full coarsening leads to an optimalltigmid convergence. In the more
general case of varying cfigients a, a» it seems that is necessary to combine line relaxation with
semi-coarsening to still get an optimal method at leastréteal (cf. [5]).

If we ignore for a moment the-dependency in our problem (1) and restrict to the two diroerad
Poisson equation in spherical polar coordinates in edakier of the domain, we see that our problem is
exactly of the type (8), i.e.

o (. ou 0 1 ou
- %(3'”(‘”%) - a_e(sin@)%
We will use this problem now to motivate the key idea of thipgraand to show that in practice line
relaxation is not necessary for problems of the type (9) idexla conditional semi-coarsening strategy
is used. A theoretical proof of this is still missing. NoteAmver, that even in the case of problem (8)
with constantry, a; it has not yet been possible to obtain such a proof.

The finite volume discretisation of problem (9) on the grittaduced in Section 2 results in a sin-
gular system of linear equations. We require a compatibsiindition ong,p and we need to regularise
the problem, e.g. by projecting the right-hand side vecto the range of the operator or by fixing the
solution at one of the poles. Now assuming that we use a quifsirm grid such thah, ~ hy, then the
stencil at the interior nodes is:

) = O2p Sin(@) . C)

—fe sin;, 3)
hy 1 hy 1 10
~R S 2 ~hy 5@ |- (10)



Figure 2: Conditional semi-coarsening on ax18 grid

Since¢; € [0,n], we observe a strong anisotropy near the poles caused bgpthexical polar grid,
whereSTllm — oo and sing; — 0. Thus the entries in the-direction are significantly larger than
the entries in the-direction at the poles. Near the equator, on the other h#dmedproblem is close
to isotropic. So while semi-coarsening would Hfeeetive near the poles, it would not work near the
equator. This motivates the key idea which we propose, aénttoduce conditional semi-coarsening,
where full uniform coarsening is performed near the equatal semi-coarsening (#direction only)
near the poles. More specifically, we compare the ratio opthrdé off-diagonal entries at each line of
latitude. We fully coarsen that line only if the ratio isfBciently close to 1. We observe from (10) that
on a uniform mesh witly ~ hy the ratio is about sﬁ(qb,-). On subsequent grids this gets compensated
by the factor hg/h¢)2. In the actual computations, since 0 sin2(¢j) < 1, we fully coarsen only
if (hg/hy)? sin2(¢j) is greater thar% which in numerical experiments proved to be the optimal @alu
Figure 2 shows the non-uniform coarsening strategy apphiedl6x 8 uniform grid.

The idea of the non-uniform coarsening strategy is to mageptbblem on the coarser grids more
isotropic. Looking at stencil (10), we observe that an ot problem is obtained if

h¢,j 1 N he

- ~ ———Sing;, 11
he Sing,; hy. | sing; (11)

wherehy is constant on each grid whil$t, j varies with¢ on the coarser grids. Equality in (11) is
achieved ifth: — sin(g;) as the grid is coarsened. Figures 3(a) to 3(d) monitor tpetasratioth:
obtained by our algorithm on progressively coarser gridse $tars represent the aspect ratio at each
value ofgj, and it becomes clear that this ratio does indeed convergie{t)) as the grid is coarsened.
Hence this coarsening strategy yields an isotropic proldenthe coarser grids, which is a heuristic
explanation of the optimal convergence. We confirm thiswthaith a simple test for the two dimensional
problem. The Poisson equation (9) on the unit sphere is dalsing a standard multigrid V-cycle with
pointwise GaussSeidel smoother combined with the conditional semi-coangedescribed above. The
stopping criterion is the relative reduction of the residuwam by a factor 10%. In addition to CPU times
and to the numbers of iteratiodys, we also give the (geometric) average of the V-cycle coremeg
factor (excluding the first cycle), i.e.

B l/(Nis—l)
pavg = (Ir /i)~ (12)

Table 1 shows that the time taken to solve (9) increasesrlinedth problem size, and that the number
of iterations as well as the V-cycle convergence factor reroanstant, which shows that the method is
robust and performs optimally. Note that the coarseningpfdcom grid level to grid level is about 3.

In contrast, Table 2 demonstrates that neither full co@mgemor semi-coarsening (on all latitudes)
are optimal in conjunction with point relaxation. In botlsea the number of iterations grows strongly
with problem size.
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Problem size, # Coarse gridg Setup time (s) Solve time (s)| # Iterations| payg
32x16 2 1.63E-3 2.27E-3 9 0.102
64x32 3 5.12E-3 8.63E-3 9 0.114
128x64 4 1.80E-2 3.61E-2 9 0.118
256x128 5 6.86E-2 1.70E-1 9 0.118
512x256 6 2.67E-1 7.86E-1 9 0.119

Table 1: Two dimensional Poisson’s equation on the unitgpbelved using non-uniform MG (with a
projection onto the range @& in each iteration). CPU time in seconds.

Line smoothing and no vertical coarsening

Let us come back to the original three dimensional problehe dnisotropy introduced by the spherical
polar grid is of the exactly same type as in two dimensionssangde adopt the same coarsening strategy
in thed — ¢ plane. However, there is a second source of anisotropy @& thimensions due to the large
grid aspect ratio between the radial direction and the bat& directions. In typical computations at the

MET Office, the mesh widthisy andh, areO(l(rz), whereas in the radial direction we have

hei=0(10° < hy < hy = 0(1079).

Therefore, we havk, x < hy andh;x < hy for all k.
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Full Coarsening Semi-Coarsening

Problem size # Coarse Grids| Solve time (s)| # Iterations|| Solve time (s)| # Iterations
32x16 2 7.68E-3 34 2.56E-3 8
64x32 3 8.61E-2 103 1.21E-2 10
128x64 4 1.66 471 9.34E-2 18
256x128 5 40.36 2396 1.07 42
512x256 6 875.70 11139 14.88 125

Table 2: Two dimensional Poisson’s equation on the unitigpbkelved using full coarsening and (uni-
form) semi coarsening (with a projection onto the rang@ of each iteration).

Let us first considef02 = 1 andN?(r) = 1, i.e. Poisson equation in three dimensions in the spHerica
shell. The solution of this problem is also of great impoc&m numerical weather forecasting, but the
traditional solvers, employed at the UK METiH@e for example, are coping better with this problem,
as we shall see below. The small mesh widths in the radiattitire mean that the behaviour of the
off-diagonal entries in the stencil at each grid point is domeiddy theh, x dependency, i.e.

hoh Ohvx) hoh
O(%2) | oty -% o) | O(%2)
‘ O(hex) ‘

whereh, < % for all k. The anisotropy is therefore very large and we deal withtifisrodifying our

multigrid method in the usual way, i.e. by usingine relaxation, namely—line Gauss—Seidel. We see
in Table 3 that in combination with the non-uniform coarsgnstrategy in thé — ¢ plane this leads to an
extremely dicient method with a V-cycle convergence factor of abouf10ote that the anisotropy is in
fact so large that-line Gauss—Seidel on its own and conjugate gradients (€&&ppditioned withr-line
Jacobi — which is essentially the same as the method cyrremiployed by the MET @ice [10] — work
very well too (cf. Table 3). However, neither of these twoastiethods is robust to grid refinement and
the number of iterations grows as the grid resolution isdased, such that for large (typical) problem
sizes the multigrid method outperforms both of them.

Non-uniform Multigrid r-line Gauss-Seidel Preconditioned CG

Problem sizeg|| # Iterations| Total time || # lterations| Total time | # Iterations| Total time

32x16x8 1 6.57E-3 3 2.00E-3 3 3.77E-3

64x32x16 1 5.89E-2 6 3.11E-2 5 2.82E-2

128x64x32 2 4.99E-1 26 1.08 10 4.38E-1
192x120x48 2 3.83 136 23.72 28 4,97

Table 3: Three dimensional Poisson’s equation in the sgdleshell. Stopping criterion: Relative resid-
ual reduction of 16%. (CPU time in seconds.)

Now let us consider the Q@-equation (1). In this cas€? = O(10°8) andN?(r) = O(10"%), which
complicates the situation drastically, since it largelgiuees the strength of the anisotropy in the radial
direction, such that the matrix entry in the radial direstie not always the largest at each grid point
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anymore. The stencil (7) for the QG-equation is now dominated by the following terms

O (N*(rohrx)
O(f&%") 0 (N2(rhex) Y 0 (N2(rhr) O(f&%"’)
O (N*(rohrx)

and so the ratio of the radial entry to the horizontal entnizs been reduced by a facf@f% =0(10%)
(w.r.t. Poisson’s equation above). This means that for comgrid resolutions, towards the bottom of
the atmosphere the aspect ratio of the radial entry to thedwial entries ig)(10°%), whereas towards
the top of the atmosphere the aspect rati@([02), i.e. the radial entry is actually the smaller one. This
reduces the smoothing propertiesrdine relaxation (as shown in [5]) and it is hecessary to ciomlit
with semi-coarsening, i.e. carry out no coarsening in tadiraction. This fact has already been noted
in [26], where they solved the QG-equation (1) in some part of the atmosphere with doubly péerio
boundary conditions using multigrid methods. It is agaiatesl to the theory for (8) in [5].

Finally, to summarise the multigrid method we propose fgr {&e employ the standard V-cycle
with linear interpolation and full weighting restrictionitw r-line relaxation smoother (GausSeidel)
and a non-uniform coarsening strategy. We employ no comgémthe radial direction and conditional
semi-coarsening (as described above) infthep plane. For the coarse grid solve we use the smoother
and iterate until the relative residual is reduced by?*10n the next section we will study the robustness
and dficiency of this method numerically and compare it to someratiethods.

Similarities with algebraic multigrid methods

The success of non-uniform (conditional) coarsening efiias for anisotropic elliptic problems has al-
ready been demonstrated with the highly successful algebraltigrid (AMG) methods. As stated

in [21], the advantage of AMG is its robustness and appllitgbin any complex geometric situations

which are out of reach of geometric multigrid methods. Initiold, AMG methods usually use matrix-

dependent prolongation operators which further enhasceltustness, particularly for problems with
large (non-smooth) cdigcient variation.

Thus for many complex problems, AMG is the only approach tizat be used. However, the
flexibility of AMG comes at a price: its setup cost. The sdtatiof coarse nodes, the construction of in-
terpolation operators and the construction of coarse vetators is slower for AMG than for geometric
methods (especially in 3D), since everything has to be delatgebraically from the system matwx
via graph theoretical technigues. Also, the coarse gridadpes generally become very dense and expen-
sive to apply. Therefore, AMG is usually lesSieient than geometric multigrid on problems for which
geometric multigrid can be suitably adapted. The @@gquation is a highly anisotropic problem, but as
discussed above it can be dealt witfi@ently and robustly using geometric approaches by exptpit
the particular structure of the grid anisotropy. Becausthefreduced setup cost and the sparser coarse
grid matrices it should outperform standard AMG methodshsas the populaBoomerAMG from the
Hypre library [16, 12], comfortably. In fact, in Section 4 wll compare our geometric method with
BoomerAMG. Note however, that there are also AMG codes that are mdoeddito anisotropic problems
(e.g. [14]) which may be cheaper th@nomerAMG for (2), but they are still unlikely to outperform a
robust geometric method like the one presented here.
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4 Numerical Results — Robustness and Comparisons

All tests in this section are carried out on a single 1.8GHxcessor of a Dual dual-core 64bit AMD
Opteron 2210 (Cache size 1.0MB and 2GB memory) using thedf®5 compilerifort. The non-
uniform geometric multigrid algorithm (NUMG) for solvin@) uses the V-cycle scheme [7]. The com-
ponents of the algorithm have been described in detail iti®@e8. The initial guess for the iteration is
taken to be zero, with a relative residual reductiore ef 108 as the stopping criterion. The number of
pre- and post-smoothing stepsiis= 3 andv, = 2.

We compare the method wiBoomerAMG, an AMG preconditioner from the Hypre library [16, 12].
We use the default settings fBoomerAMG, i.e. a symmetric-SORacobi smoother, Falgout coarsening,
classical Ruge-Stiiben interpolation and Gaussian Edititn as the coarse grid solver. Some experi-
ments with other settings have not led to a significant imgnoent of the method. Both NUMG and
AMG are tested stand-alone and as preconditioners for thjeigate gradient (CG) method (one V-cycle
per iteration). We also useline Jacobi as a preconditioner for CG. This is essentibtysolver currently
used by the MET @ice. The actual Krylov subspace method used at the MEE®is thegeneralised
conjugate residual (GCR) method [10]. This method is also applicable to honswtnic matrices, but
(in exact arithmetic) it reduces to CG for symmetric positdefinite problems such as (2). Since it re-
quires more floating point operations and the storage ofrallipus search directions, it is substantially
more expensive (see Table 7), and so we also use CG to getrdamparison. We do however choose
exactly the same preconditioner as that employed at the MEETeDi.e.r-line Jacobi relaxation.

Table 4 gives the performance for solving (2) using NUMG (aslaer and as a preconditioner for
CG) with f2 = 1078 andN?(r) = O(10™%) as provided by the MET fiice. The number of iterations
and the convergence rate per iteration (cf. (12)) is comgteymptotically) suggesting full robustness
of the solver with respect to an increase in problem size. R# times for the setup and for the solve
phase are both scaling linearly with the problem size anthaartethod is optimal. There is hardly any
difference in the performance of NUMG as a solver or as a preconelitfor CG.

NUMG (V-cycle only) CG+ NUMG
Problem size, Setup time|| Solve time| # Iterations| uayg || Solve time| # Iterations| uayg
32x16x8 1.06E-2 4.16E-2 7 0.050|| 4.43E-2 7 0.057
64x32x16 7.97E-2 3.42E-1 7 0.072| 4.10E-1 8 0.078
128x64x32 | 6.29E-1 3.54 8 0.093 3.72 8 0.080
256x128x64 4,94 29.94 8 0.101 34.24 8 0.081

Table 4: Non-Uniform geometric multigrid applied to the Q&equation in 3D. (CPU times in seconds.)

In Table 5 we see that all the modifications to the standardignial V-cycle which we applied were
necessary, and that without the modifications geometriignial is not robust to grid refinement.

Table 6 gives the performance for solving (2) using AMG asecpnditioner for CG and stand-
alone. We observe from this table that, although €BMG is also robust with respect to grid refine-
ment, the solve time is higher than that of NUMG by a factorlmd# 3.5 and the dierence gets larger
as the problem size is increased. As for the setup time, NU8&pproximately an order of magnitude
faster than AMG, so that in total NUMG is almost 5 times fagtean CG+ AMG. When used as a
stand-alone solver AMG is not fully robust. The number ofdatens and the average convergence factor
per iteration grow slightly with the problem size.

Table 7 shows that without a multilevel preconditioner, ldwysubspace methods such as CG or
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Coarsening: ()0 & ¢ direction (b) 6 direction only (c) r & conditional§-¢
Problem size|| Solve time| # Iterations|| Solve time| # Iterations|| Solve time| # Iterations
32x16x8 0.11E-3 23 5.04E-2 6 4.39E-2 7
64x32x16 3.44E-2 84 0.74 9 0.66 16
128x64x32 174.54 441 15.26 16 30.69 86
256x128x64 el >1000 332.81 36 271.37 228

Table 5: Geometric multigrid with-line Gauss-Seidel smoother applied to the Q@¢guation in 3D,
using (a) full coarsening on thie— ¢ plane and no coarsening in (b) semi-coarsening on the— ¢

plane and no coarseningtinor (c) non-uniform coarsening on the- ¢ plane and full coarsening n

(CPU times in seconds.)

BoomerAMG (V-cycle only) CG+ AMG
Problem size, Setup time|| Solve time| # Iterations| uayg || Solve time| # Iterations| uayg
32x16x8 4.05E-2 9.37E-2 7 0.059|| 8.05E-2 5 0.024
64x32x16 6.11E-1 1.37 8 0.083 1.12 5 0.029
128x64x32 6.76 15.62 10 0.134 12.37 6 0.049
256x128x64 57.64 133.80 11 0.163 108.55 7 0.058

Table 6:BoomerAMG applied to the QGo equation in 3D. (CPU times in seconds.)

GCR (the method currently employed by the METEe) are not robust to grid refinement. The number
of iterations grows and therefore the CPU time is not propoal to the problem size. At the typical
grid sizes currently used at the METiR2e, NUMG is more than 10 times faster than CG witline
Gauss-Seidel preconditioner.

Conjugate Gradients Generalised Conjugate Residuals
Problem size|| Solve time (s)| # Iterations|| Solve time (s)| # Iterations
32x16x8 2.83E-2 57 5.19E-2 62
64x32x16 0.70 132 1.21 170
128x64x32 20.03 370 40.06 525
256x128x64 397.24 879 Fkk >1000

Table 7. Preconditioned Krylov subspace methods applieithé0QGe«w equation in 3D (withr-line
Gauss-Seidel preconditioner).

5 Parallel Tests

5.1 Parallelisation Strategy

Because of the-line smoother it would not be good in the parallelisatiortted method to partition the
domain in the radial direction. The tridiagonal solves gl@achr-grid line would lead to too much
unnecessary communication and data dependencies betweeprotessors. Therefore we partition only
in the longitudinal and latitudinal directions. This is@lhe case in the MET fAice codes. However,
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Figure 4: Speedup test el f: Global problem size 362 180x 100

any number of partitionings in these directions should brissible.

A ghost point (or halo) strategy [11] is used for communmatbetween processors, which is im-
plemented using MPI (message passing interface). Notevtaabust handle the communication at the
boundaries of the domainftierently to account for the poles and the periodic boundangitons. The
discretisation scheme, the choice of coarse level matandshe choice of restriction and prolongation
R, andP,, are chosen such that communication only occurs with adjgm®cessors. Thus, we have a
communication topology which resembles a 5-point stefidie conversion of a distributed vector to an
accumulated vector (cf. [11]) therefore requires commaton only with four neighbouring processors.

To reduce inter-processor communication, the smootheodfiad to a hybrid Jacofibauss-Seidel
smoother, only making use of the most up-to-date valueseoddfution vector if the corresponding node
is associated with the same processor (within one relaxaiep). If the node is a ghost point and
belongs to another processor then the value from the preveaxation sweep is used (as in the Jacobi
method). Thus all the communication during the smoothiagation is concentrated at the start of each
sweep. This may lead to a slight increase in the number eticers on large numbers of processors, but
it avoids unnecessary communication and data dependencies

Finally, we modify the coarsening strategy slightly to emsthat all coarse grids are patrtitioned
along the same planes to avoid extra communication whem tisengrid transfer operatof® andP;.
This leads to minor modifications at processor boundaries.

Note, that in our partitioning strategy, subdomain blockamthe equator will have a four-fold
reduction in the number of grid points from one grid leveltie hext as a result of full coarsening, while
blocks near the poles will only have a two-fold reduction.isTleads to a load imbalance on coarser
grids. However, the majority of the work is done on the fine&t gnd so it is sfficient to make sure the
load is distributed evenly on that level. Our numericaldesinfirmed this. The amount of time certain
processors are idle is minimal.

5.2 Parallel Numerical Results — Speedup and Scaling

We test the parallel non-uniform multigrid code on twdfelient clusters, a 64-bit AMD Opteron 2210
cluster grol£f) with a total of 24 processors (the same ones as in Sectiomsl 3)aand a 64-bit Intel
Xeon E5462 clusteraguila) with 2GB memory and 3MB Cache per processor. Both clusteesam
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Infinipath network.

We firstly perform a speedup test, which is a measure of thiqpeance gain of a parallel code

running onN processors over the sequential code where the global pnogilee remains unchanged.
We test this on a problem of size 3&0180x 100, with the results shown in Figure 4. The speedup is
very good (almost optimal) on up to about 8 processors. Hewdéer larger numbers of processors the
amount of work that each of the processors has to do becornesrtall and so the speedup drogs o
slightly from the optimal (linear) growth.

A better test for how well the implementation scales on largenbers of processors is a scaled ef-
ficiency test, where the problem size per processor is kegd fs the number of processors is increased.
In this test the CPU time of a method that scales optimallyukhcemain constant as the number of
processors is increased. Figures 5 and 6 show how the methtes ©n the two dierent clusters with
respect to CPU time and the number of iterations. In FigureeSiwthe problem size per processor
to 200x 100x 50 onwolf, and observe that the method scales almost optimally,cpéatly beyond
four processors. Oaquila we fix the problem size per processor to 20220 x 50 and observe also
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very good parallel scaling with a slight increase of the Cihetfor more than 96 processors. This is
because the number of iterations jumps from about 10 to d@fowthen using more than 96 processors,
potentially because of the hybrid smoother or because tisetaopy in ther-direction is getting weaker.
Nevertheless, we see that on 256 processors with the newmitorm multigrid method, it is possible
to solve the QGw equation on the entire globe with a resolution of 10km at tipeagor and 3« 10°
unknowns in about 60 seconds. On larger clusters, potgngaén finer resolutions could be solved
within the same time.

Finally let us compare the parallel NUMG solver with parglations of the other methods. Krylov
subspace methods withline Jacobi preconditioners (such as the ones used at théRMee) are ex-
tremely well suited to anfcient parallelisation, and the numerical results in Figusilow this clearly.
The speedup is almost optimal (linear) on any number of msmrs. However, as we saw in Section 4,
the method is not robust, i.e. the number of iterations gnaitlis the problem size, and with the typical
grid resolution of 360k 180x 100 used at the Metf@ce, the multigrid method is about 10 times faster
thanr-line Jacobi preconditioned CG on 24 processors. For findmrgsolutions, such as the ones used
in the scaling tests in Figures 5 and 6, the preconditionedr@®od becomes increasingly inferior to
NUMG. As for BoomerAMG, this does not parallelise as well as the geometric muttigrarticularly in
the setup phase. The speedup and the scéiettacy are substantially smaller than for NUMG.
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