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Abstract

The subject of this work is an optimal and scalable parallel geometric multigrid solver for elliptic
problems on the sphere. The use of fast elliptic solvers is crucial to the forecasting and data assim-
ilation tools used at the UK Met Office, and the preconditioned Krylov subspace solvers currently
used do not perform well for large problem sizes due to the ill-conditioned nature of the problems.
The optimality of multilevel techniques for elliptic problems therefore makes them a suitable choice
for these applications. The Met Office uses spherical polar grids which, although structured, have
the drawback of creating strong anisotropies near the poleswhere the grid lines converge. Moreover,
a higher resolution of mesh points in the radial direction poses further anisotropies, and so mod-
ifications to the standard multigird relaxation and coarsening procedures are necessary in order to
retain optimal efficiency. Since the strength of anisotropy varies between theequator and the poles,
we propose a non-uniform coarsening strategy, where the grid is coarsened only in regions that are
sufficiently isotropic. This is combined with line relaxation inthe radial direction. The success of
non-uniform coarsening strategies has been demonstrated with Algebraic Multigrid (AMG) methods.
Without the large setup costs required by these methods, however, we aim to surpass them with the
geometric approach outlined above. We demonstrate the advantages of the method with experiments
on model problems, both sequentially and in parallel. Our experiments show robustness and optimal
efficiency of this method with constant V-cycle convergence factors of less than 0.1. It substantially
outperforms the Krylov subspace methods with one-level preconditioners and theBoomerAMG im-
plementation of AMG by factors of 10 and 5, respectively, on typical grid resolutions. The parallel
implementation scales almost optimally on up to 256 processors, so that a global solve of the quasi-
geostrophicω-equation with a resolution of 10km at the equator and 3× 109 unknowns takes about
60 seconds.

Keywords. Quasi-geostrophicω-equation, anisotropy, spherical polar grid, geometric multigrid, condi-
tional semi-coarsening, line relaxation.

1 Introduction

In this paper we propose an optimal and scalable parallel iterative solver for the following three di-
mensional elliptic problem (in spherical polar coordinates) that plays a key role in data assimilation for
numerical weather forecasting, i.e.

−N2(r)∇2
rω − f 2
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= g , (1)
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where∇2
r is the 2D-Laplacian in spherical coordinates at constant height r. It is known as thequasi-

geostrophic omega (QG-ω) equation and describes the vertical motion in scales important for weather
forecasting in the atmosphere. We are interested in solvingit in the spherical shell representing the
(entire) Earth’s atmosphere. The unknown functionω is the vertical motion.f0 is the Coriolis parameter,
which in the quasi-geostrophic regime is assumed constant.Note however that from an algorithmic point
of view, changing this to a (more realistic) variable parameter f (φ) poses no additional difficulties.N2(r)
is related to the frequency of vertical buoyancy oscillations, which depends on the temperature gradient
and varies smoothly withr. The right hand side termg encompasses all the sources of quasi-geostrophic
forcing for vertical motion, such as temperature gradients, quasi-geostrophic wind, quasi-geostrophic
vorticity, and latent heat release. Details of the equation, including its derivation and the asymptotic
regimes in which it is valid, can be found in [4, 9]. Byoptimal we mean that the time for solving the
discretised problem is proportional to the (discrete) problem size. Similarly, we say that an algorithm has
optimal parallel scalability, if the solution time remains constant when the problem sizeand the number
of processors are increased proportionally.

Many of the standard meteorological codes, in particular atthe UK MET Office, use spherical polar
grids, which lead to strong grid anisotropies near the poleswhere the grid lines converge. Therefore,
several alternative grids that avoid the “pole problem” such as Yin−Yang or icosahedral grids, are be-
coming increasingly popular in numerical weather prediction, as discussed in [3, 23]. Nevertheless, for
all the negative things the spherical polar grids might entail, these grids are very structured. This greatly
simplifies the discretisation of (1) and the coding, which iswhy they are still widely used. We will show
in this article that from a solver point of view the bad reputation of spherical polar grids (e.g. in [23,
§3.2b]) is unjustified, provided the solvers are suitably adapted. Before we expand a bit further on this
let us note that the grid spacings in the radial direction arein general much smaller than in the horizontal
ones, since the thickness of the atmosphere is two orders of magnitude smaller than the circumference of
the Earth. This creates a further source of anisotropy. Additionally, the grid is usually strongly graded in
the radial direction with smaller grid spacings near the surface of the Earth to obtain a better resolution
in the regions of most interest.

A standard finite volume discretisation of (1) on this anisotropic mesh leads to a system of equations

Aω = b, (2)

whereA is a large, sparse, symmetric positive definite (SPD) matrix. The discretisation which we use
is basically identical to that given in [2] for Poisson’s equation on a spherical polar grid. The matrixA
contains a 7-point stencil for each node on the grid, with non-zero entries only for the node itself and for
its immediate neighbours. Typical grid resolutions used indata assimilation at the Met Office are 216,
163 and 50 nodes in the latitudinal, longitudinal and radialdirections, respectively. This leads to a large
problem size of over a million degrees of freedom and a highlyill-conditioned system matrixA, making
(2) very difficult to solve efficiently. The solver currently used at the MET Office, i.e. a Krylov subspace
method preconditioned with simpler-line relaxation or ADI-type methods, is not optimal and restricts
the grid resolutions that are currently feasible for globalsimulations, as highlighted in [23,§3.2b]. 1

It is well known that it is necessary to resort to multilevel techniques to obtain optimality (of iter-
ative methods for large elliptic problems). For isotropic problems with smoothly varying coefficients
standard geometric multigrid with simple point-wise smoothing and uniform coarsening is the most ef-
ficient method. As outlined in [7, 22] a simple relaxation method (the smoother) eliminates the high

1Note that the mean radius of the earth is about 6370km, and so the horizontal grid size in the latitudinal direction for 216
nodes is about 185km near the equator.
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frequency components of the error of an initial approximation, which is then approximated on a coarse
grid (coarse grid correction). For anisotropic problems, this standard approach does unfortunately not
lead to an optimal method. However, if the anisotropies are aligned with the grid then simple modifi-
cations achieve optimality even to strong anisotropies. These modifications are line smoothing and/or
semi-coarsening. Line smoothing involves collectively relaxing all unknowns on an entire grid line by
solving a tridiagonal system corresponding to the unknownson that line. Semi-coarsening uses a family
of coarse grids that are only coarsened in the direction of the larger coefficient. In (2) there are two
sources of anisotropy: one due to the large aspect ratio between the radial and horizontal grid spac-
ings; the second due to the spherical polar grid. In this paper we propose a robust geometric multigrid
method that is able to deal with both these problems by applying a simple non-uniform partial coarsening
(inspired from algebraic multigrid methods) combined withanr-line smoother.

The robustness of the non-uniform coarsening strategy is first demonstrated on a two-dimensional
model problem: Poisson’s equation on the unit sphere. The idea is extremely simple. The spherical
polar grid introduces anisotropy near the poles but not nearthe equator, so the grid is semi-coarsened
near the poles but fully coarsened near the equator. We compare the off-diagonal matrix entries in the
latitudinal and longitudinal direction at each line of latitude, and the grid line is fully coarsened only if
the coefficients in both directions are of similar magnitude. This will be true near the equator where we
coarsen in both directions, but not near the poles where we only coarsen in the longitudinal direction,
thus leading to coarse grids that are better and better adapted to the anisotropy.

To deal with the strong anisotropy in the radial direction inthree dimensions we user-line relaxation
and do not coarsen at all in the radial direction. This is thencombined with the nonuniform coarsening
strategy in the longitudinal and latitudinal directions. Although this partial coarsening only leads to a
coarsening factor of about 3 from one grid to the next (instead of 8 for uniform coarsening), it guarantees
that the method is fully robust to the anisotropies induced by the geometry and the grid and leads to an
optimal method with an average V-cycle convergence factor of less than 0.1, as our numerical tests show.

Geometric multigrid methods with line and plane smoothers,but with “uniform” semi-coarsening,
have already been studied in [2]. Theoretical results for planar polar coordinates, line smoothers and
(uniform) semi-coarsening can be found in [5] (see also [6]). PDEs of the type (1) from meteorological
applications have already been solved with geometric multigrid methods, but only on cube-like domains
with doubly-periodic boundary conditions and not on the entire globe (cf. [13, 1, 24, 25, 26, 19]). The
most closely related paper is [26], wherer-line relaxation and partial coarsening (i.e. uniform coarsening
in the horizontal directions and no coarsening in the radialdirection) was already studied extensively for
the quasi-geostrophic equations. However, since the domain was not the entire atmosphere the additional
complication of the anisotropy at the poles played no role. Multigrid algorithms have also already been
proposed for alternative grids on the sphere, such as the icosahedral or the Yin−Yang grids, in [3, 17]

The idea of “conditional” semi-coarsening in the longitudinal direction proposed here has only been
explored for edge and corner singularities so far (cf. [14, 18, 27]) but not for spherical polar grids (even
in two dimensions). To the best of our knowledge, it seems to be a novel approach. It is clearly inspired
by algebraic multigrid (AMG) ideas (see e.g. [7, 21]). AMG methods are fully automatic and only based
on algebraic information in the matrixA. Coarse grid unknowns are chosen based on the relative size
of the off-diagonal entries in the matrix which in the application here will lead to very similar coarse
grids. However, AMG methods are known to require a large setup cost to design these coarse grids
and the operator-dependent interpolation and restrictionoperators, especially in three dimensions. Our
geometric method on the other hand, requires almost no setupcost to obtain the same robustness, which
is why it easily outperforms established AMG methods. Numerical tests (cf. Section 4) for a variety of
problem sizes confirm this. In that section, we also give a comparison to preconditioned Krylov solvers
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as currently used by the MET Office [10] and their collaborators [8]. As expected, Krylov methods are
only optimal when preconditioned with a robust multigrid method, such as AMG or the non-uniform
geometric method proposed in this paper. With standard preconditioners used at the MET Office, such
asr-line relaxation (on a single grid) or ADI-type preconditioners, the number of iterations grows with
the problem size.

All (sequential) computations are carried out using the Fortran95 compilerifort on a single pro-
cessor of a Dual dual-core 64bit AMD Opteron 2210 processor with clock speed of 1.8GHz, cache size
1.0MB and 2GB memory. The initial guess for each iterative scheme is always taken to be zero. The
stopping criterion is a relative residual reduction of 10−8.

The rest of this paper is organised as follows. In Section 2, we describe the discretisation of (1)
in more detail. In Section 3 we describe our nonuniform geometric multigrid method that is adapted to
the particular anisotropies induced by the geometry and by the grid, and highlight some similarities with
AMG. Numerical results for the sequential solver, as well ascomparisons with AMG and preconditioned
Krylov methods, will be given in Section 4. In the final section, we outline how we parallelised our
method and demonstrate its optimal parallel scalability for up to 64 processors, as well as comparing the
speedup to the speedup of parallel versions of the other solvers.

Acknowledgements.We would like to thank Mike Cullen (MET Office) for bringing this problem to
our attention and for many helpful discussions.

2 Model Problem and Discretisation

LetΩ be a non-dimensionalised spherical shell representing theearth’s atmosphere2, i.e.

Ω = { (x, y, z) : 0.99≤ x2 + y2 + z2 ≤ 1 }.

Re-parameterising into spherical polar coordinates gives

Ω̂ = { (θ, φ, r) : 0.99≤ r ≤ 1 , 0 ≤ φ ≤ π , 0 ≤ θ ≤ 2π }, (3)

whereφ andθ are the polar and azimuthal angles, respectively. The parameterisation is given by

A(θ, φ, r) = r sin(φ) cos(θ) i + r sin(φ) sin(θ) j + r cos(φ) k

In order to discretise (1) on this domain, let us subdivideΩ̂ into nθ × nφ × nr cubes with cell centres

{ (θi, φ j, rk) : i = 1, . . . , nθ, j = 1, . . . , nφ, k = 1, . . . , nr },

and edge lengthshθ = 2π/nθ, hφ = π/(nφ + 1) andhr,k, k = 1, . . . , nr, as well as into 2× nr cells at the
poles with edge lengths 2π, π/(2nφ + 2) andhr,k. The computational grid in theθ − φ plane can be seen
in Figure 1(a), where the top and bottom boundary represent the North and South pole, respectively. As
we can see, the grid on theθ − φ plane is uniform (except at the poles). The nodes are locatedat the cell
centres, whereθi = (i − 1

2)hθ andφ j = jhφ. At the poles we use half cells, so that the poles themselves
are located at the centres of the cells in the physical domainΩ, and so that a discrete equation can be
derived at these points in the same fashion as at the other points. In the radial direction, the mesh is
graded as shown in Figure 1(b) with the cell centres located at rk =

∑k−1
i=1 hr,i +

1
2hr,k, and with the mesh

widthshr,k increasing withk. Thus, the total number of unknowns (including the unknownsat the poles)
is (nθ × nφ + 2)× nr.

2The mean radius of the Earth is about 6,370km and the height ofthe atmosphere of interest for meteorology is about 63km.
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Figure 1: (a) The computational grid in theθ-φ plane, and (b) the graded mesh in ther-direction.

We discretise (1) using the finite volume method, which is done by integrating the PDE over each
mesh cell (or control volume) corresponding to a grid point (θi, φ j, rk), i.e.

Ω̂i, j,k =

[

θi− 1
2
, θi+ 1

2

]

×

[

φ j− 1
2
, φ j+ 1

2

]

×

[

rk− 1
2
, rk+ 1

2

]

,

whereθi± 1
2
= θi ±

hθ
2 , φ j± 1

2
= φ j ±

hφ
2 and rk± 1

2
= rk ±

hr,k

2 .
Except at the poles, the boundary of each control volume consists of six faces, i.e.

∂Ω̂i, j,k = Γi− 1
2 , j,k
∪ Γi+ 1

2 , j,k
∪ Γi, j− 1

2 ,k
∪ Γi, j+ 1

2 ,k
∪ Γi, j,k− 1

2
∪ Γi, j,k+ 1

2

and the cell faces are denoted byΓi± 1
2 , j,k

= {θi± 1
2
} × [φ j− 1

2
, φ j+ 1

2
] × [rk− 1

2
, rk+ 1

2
], with analogous

definitions forΓi, j± 1
2 ,k

andΓi, j,k± 1
2

and suitable modifications on the boundaries.
Since the problem is discretised on a sphere, it is necessaryto impose periodic boundary conditions

on the lateral boundary, i.e.

ω(0, φ, r) = ω(2π, φ, r)
∂ω

∂θ
(0, φ, r) =

∂ω

∂θ
(2π, φ, r) ∀φ ∈ [0, π],∀r ∈ [0.99, 1]. (4)

In addition, we impose for expositional purposes homogeneous Dirichlet boundary conditions on the
upper and lower boundaries of the atmosphere, i.e.

ω(θ, φ, 0.99)= ω(θ, φ, 1) = 0, (5)

but this is not essential. The finite volume discretisation is now obtained by integrating (1) over each
control volumeΩ̂i, j,k, i.e.

∫

Ω̂i, j,k

{

−N2(r)∇2ω − f 2
0

1

r2

∂

∂r

(

r2∂ω

∂r

)}

dV =
∫

Ω̂i, j,k

g dV . (6)

WheredV is the volume element in spherical coordinates, i.e.

dV =

∣

∣

∣

∣

∣

∣

(

∂A

∂r
×
∂A

∂φ

)

·
∂A

∂θ

∣

∣

∣

∣

∣

∣

dθdφdr = r2 sin(φ) dθdφdr.
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SubstitutingdV into (6), applying the Divergence Theorem, and using central differences to approximate
derivatives in the integrals over the cell faces, we obtain the following 7-point stencil3 for the interior
nodes ofΩ̂:

− f 2
0

hθhφ
hr,k

r2
k− 1

2
sin(φ j)





























−N2(rk)
hθhr,k

hφ
sin(φ j+ 1

2
)

−N2(rk)
hφhr,k

hθ
sin(φ j)−1 −

∑

−N2(rk)
hφhr,k

hθ
sin(φ j)−1

−N2(rk)
hθhr,k

hφ
sin(φ j− 1

2
)





























− f 2
0

hθhφ
hr,k

r2
k+ 1

2
sin(φ j) .(7)

Similar stencils are obtained at the lateral and vertical boundaries. At the poles we can proceed in a
similar fashion, but each pole cell hasnθ + 2 neighbours (with the obvious changes at the top and bottom
of the atmosphere). After integrating over the pole cap and using the Divergence Theorem and central
differences as before, we find that thenθ off-diagonal entries in theθ-direction are−N2(rk)

hrhθ
hφ

sin(hφ/2),

whereas the entries (e.g. at the south pole) in the radial direction are− f 2
0
πhφ
2hr,k

sin(hφ/2)r2
k± 1

2

. This results

in a system of linear equations of the form
Aω = b,

whereA ∈ R
n×n, andn = (nθ × nφ + 2) × nr is the dimension of the problem.ω ∈ R

n is the unknown
solution vector corresponding to the values of the unknown functionω at the cell centres, andb ∈ R

n is
the right-hand side containing the source terms.

3 Non-Uniform Geometric Multigrid for Spherical Polar Grid s

In this section we describe a novel geometric multigrid method for solving (2). Standard geometric
multigrid methods for simple isotropic problems use full coarsening (i.e. coarsening in all directions)
and point relaxation smoothers (see [7] for details), and the optimal convergence of this method has been
proven both experimentally and theoretically (cf. [15]). There are several variants of the method, but
here we focus on the V-cycle, which can be described as follows.

Iterate the following routine withAF = A, bF = b and initial guessuF = 0, until a certain
stopping criterion is satisfied:

subroutine VCycle(Aℓ, bℓ, uℓ)

if (ℓ = 1) then

u1 = A−1
1 b1 (solve on coarsest grid)

else
uℓ = S

ν1
ℓ

(uℓ, bℓ) (ν1 pre-smoothing steps)

r ℓ−1 = Rℓ(bℓ − Aℓuℓ) (calculate residual and restrict onto next coarser grid)

eℓ−1 = 0

VCycle(Aℓ−1, r ℓ−1, eℓ−1) (recursively applyVCycle for coarse grid correction)

uℓ = uℓ + Pℓeℓ−1 (interpolate error and update solution)

uℓ = S
ν2
ℓ

(uℓ, bℓ) (ν2 post-smoothing steps)

end if
3Note that we use a similar notation as in [2] to present the 7-point stencil. The numbers in square brackets give the 5-point

stencil in theθ − φ plane in the usual way. The numbers outside the brackets denote the entries corresponding to the upwards
and downwards neighbours, respectively.

∑

denotes the sum of the off-diagonal entries corresponding to the six neighbours.
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This routine requires a sequence of matricesAℓ, ℓ = 1, . . . , F, corresponding to the PDE (1) discretised
on a sequence of grids, where usually the grid on levelℓ is a uniform refinement of the grid on level
ℓ − 1. It requires a smootherSℓ on each grid (which is commonly a simple relaxation scheme like
Gauss−Seidel), as well as prolongation and restriction matricesPℓ andRℓ, e.g. linear interpolation and
full-weighting restriction. The number of pre- and post-smoothing steps is denoted byν1 andν2. An
alternative approach to define the matricesAℓ on the coarser grids is via the Galerkin approach, i.e.
Aℓ−1 = RℓAℓPℓ, but this is more costly to set up and creates denser matriceson the coarser levels.

This standard method, however, is not robust for problems with anisotropy. Problem (1) discretised
on the grid described in Section 2 contains two sources of anisotropy as outlined in Section 1, thus
alternative ingredients are needed to solve it optimally. If the anisotropy has the convenient feature of
being grid–aligned, i.e. aligned with the coordinate directions, two standard ways to retain optimality of
multigrid are to use semi-coarsening and/or line relaxation. Line relaxation involves collectivelyrelaxing
all unknowns on an entire grid line by solving a tridiagonal system corresponding to the unknowns on
that line. Semi-coarsening uses a family of coarse grids that are only coarsened in the direction of the
larger coefficient, thus reducing the strength of the anisotropy on the coarser grids.

Conditional semi-coarsening in theθ − φ plane

In two dimensions, problems with grid aligned anisotropy can be written in the form

−∇ ·

((

α1(x1, x2) 0
0 α2(x1, x2)

)

∇u

)

= g, (8)

with α1, α2 uniformly positive almost everywhere. The simplest model problem with grid aligned
anisotropy isα1 ≡ ǫ ≪ 1 constant andα2 ≡ 1. For this model problem, it is shown theoretically in
[20] that x-line relaxation with full coarsening leads to an optimal multigrid convergence. In the more
general case of varying coefficientsα1, α2 it seems that is necessary to combine line relaxation with
semi-coarsening to still get an optimal method at least theoretical (cf. [5]).

If we ignore for a moment ther-dependency in our problem (1) and restrict to the two dimensional
Poisson equation in spherical polar coordinates in eachr-layer of the domain, we see that our problem is
exactly of the type (8), i.e.

−
∂

∂φ

(

sin(φ)
∂u
∂φ

)

−
∂

∂θ

(

1
sin(φ)

∂u
∂θ

)

= g2D sin(φ) . (9)

We will use this problem now to motivate the key idea of this paper and to show that in practice line
relaxation is not necessary for problems of the type (9) provided a conditional semi-coarsening strategy
is used. A theoretical proof of this is still missing. Note however, that even in the case of problem (8)
with constantα1, α2 it has not yet been possible to obtain such a proof.

The finite volume discretisation of problem (9) on the grid introduced in Section 2 results in a sin-
gular system of linear equations. We require a compatibility condition ong2D and we need to regularise
the problem, e.g. by projecting the right-hand side vector onto the range of the operator or by fixing the
solution at one of the poles. Now assuming that we use a quasi-uniform grid such thathθ ≈ hφ, then the
stencil at the interior nodes is:





























−
hθ
hφ

sin(φ j+ 1
2
)

−
hφ
hθ

1
sin(φ j)

−
∑

−
hφ
hθ

1
sin(φ j)

−
hθ
hφ

sin(φ j− 1
2
)





























. (10)
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→

Figure 2: Conditional semi-coarsening on a 16× 8 grid

Sinceφ j ∈ [0, π], we observe a strong anisotropy near the poles caused by thespherical polar grid,
where 1

sinφ j
→ ∞ and sinφ j → 0. Thus the entries in theθ-direction are significantly larger than

the entries in theφ-direction at the poles. Near the equator, on the other hand,the problem is close
to isotropic. So while semi-coarsening would be effective near the poles, it would not work near the
equator. This motivates the key idea which we propose, i.e. to introduce conditional semi-coarsening,
where full uniform coarsening is performed near the equatorand semi-coarsening (inθ-direction only)
near the poles. More specifically, we compare the ratio of theφ andθ off-diagonal entries at each line of
latitude. We fully coarsen that line only if the ratio is sufficiently close to 1. We observe from (10) that
on a uniform mesh withhθ ≈ hφ the ratio is about sin2(φ j). On subsequent grids this gets compensated
by the factor (hθ/hφ)2. In the actual computations, since 0≤ sin2(φ j) ≤ 1, we fully coarsen only
if (hθ/hφ)2 sin2(φ j) is greater than1

2 which in numerical experiments proved to be the optimal value.
Figure 2 shows the non-uniform coarsening strategy appliedto a 16× 8 uniform grid.

The idea of the non-uniform coarsening strategy is to make the problem on the coarser grids more
isotropic. Looking at stencil (10), we observe that an isotropic problem is obtained if

−
hφ, j
hθ

1
sinφ j

≈ −
hθ

hφ, j
sinφ j, (11)

wherehθ is constant on each grid whilsthφ, j varies withφ on the coarser grids. Equality in (11) is

achieved if
hφ, j
hθ
→ sin(φ j) as the grid is coarsened. Figures 3(a) to 3(d) monitor the aspect ratio

hφ, j
hθ

obtained by our algorithm on progressively coarser grids. The stars represent the aspect ratio at each
value ofφ j, and it becomes clear that this ratio does indeed converge tosin(φ j) as the grid is coarsened.
Hence this coarsening strategy yields an isotropic problemon the coarser grids, which is a heuristic
explanation of the optimal convergence. We confirm this claim with a simple test for the two dimensional
problem. The Poisson equation (9) on the unit sphere is solved using a standard multigrid V-cycle with
pointwise Gauss−Seidel smoother combined with the conditional semi-coarsening described above. The
stopping criterion is the relative reduction of the residual norm by a factor 10−8. In addition to CPU times
and to the numbers of iterationsNits, we also give the (geometric) average of the V-cycle convergence
factor (excluding the first cycle), i.e.

µavg =
(

‖r (Nits)
F ‖/‖r (1)

F ‖
)1/(Nits−1)

(12)

Table 1 shows that the time taken to solve (9) increases linearly with problem size, and that the number
of iterations as well as the V-cycle convergence factor remain constant, which shows that the method is
robust and performs optimally. Note that the coarsening factor from grid level to grid level is about 3.

In contrast, Table 2 demonstrates that neither full coarsening nor semi-coarsening (on all latitudes)
are optimal in conjunction with point relaxation. In both cases the number of iterations grows strongly
with problem size.
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Figure 3: Aspect ratio
hφ
hθ

for (top left) zero, (top right) one, (bottom left) four and (bottom right) seven
refinements

Problem size # Coarse grids Setup time (s) Solve time (s) # Iterations µavg

32x16 2 1.63E-3 2.27E-3 9 0.102
64x32 3 5.12E-3 8.63E-3 9 0.114
128x64 4 1.80E-2 3.61E-2 9 0.118
256x128 5 6.86E-2 1.70E-1 9 0.118
512x256 6 2.67E-1 7.86E-1 9 0.119

Table 1: Two dimensional Poisson’s equation on the unit sphere solved using non-uniform MG (with a
projection onto the range ofA in each iteration). CPU time in seconds.

Line smoothing and no vertical coarsening

Let us come back to the original three dimensional problem. The anisotropy introduced by the spherical
polar grid is of the exactly same type as in two dimensions andso we adopt the same coarsening strategy
in theθ − φ plane. However, there is a second source of anisotropy in three dimensions due to the large
grid aspect ratio between the radial direction and the horizontal directions. In typical computations at the
MET Office, the mesh widthshθ andhφ areO(10−2), whereas in the radial direction we have

hr,1 = O(10−6) ≤ hr,k ≤ hr,nr = O(10−3).

Therefore, we havehr,k ≪ hθ andhr,k ≪ hφ for all k.

9



Full Coarsening Semi-Coarsening
Problem size # Coarse Grids Solve time (s) # Iterations Solve time (s) # Iterations

32x16 2 7.68E-3 34 2.56E-3 8
64x32 3 8.61E-2 103 1.21E-2 10
128x64 4 1.66 471 9.34E-2 18
256x128 5 40.36 2396 1.07 42
512x256 6 875.70 11139 14.88 125

Table 2: Two dimensional Poisson’s equation on the unit sphere solved using full coarsening and (uni-
form) semi coarsening (with a projection onto the range ofA in each iteration).

Let us first considerf 2
0 = 1 andN2(r) ≡ 1, i.e. Poisson equation in three dimensions in the spherical

shell. The solution of this problem is also of great importance in numerical weather forecasting, but the
traditional solvers, employed at the UK MET Office for example, are coping better with this problem,
as we shall see below. The small mesh widths in the radial direction mean that the behaviour of the
off-diagonal entries in the stencil at each grid point is dominated by thehr,k dependency, i.e.

O
( hθhφ
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

O
(hθhφ

hr,k

)

wherehr,k ≪
hθhφ
hr,k

, for all k. The anisotropy is therefore very large and we deal with thisby modifying our
multigrid method in the usual way, i.e. by usingr–line relaxation, namelyr–line Gauss–Seidel. We see
in Table 3 that in combination with the non-uniform coarsening strategy in theθ−φ plane this leads to an
extremely efficient method with a V-cycle convergence factor of about 10−8. Note that the anisotropy is in
fact so large thatr-line Gauss–Seidel on its own and conjugate gradients (CG) preconditioned withr-line
Jacobi – which is essentially the same as the method currently employed by the MET Office [10] – work
very well too (cf. Table 3). However, neither of these two other methods is robust to grid refinement and
the number of iterations grows as the grid resolution is increased, such that for large (typical) problem
sizes the multigrid method outperforms both of them.

Non-uniform Multigrid r-line Gauss-Seidel Preconditioned CG
Problem size # Iterations Total time # Iterations Total time # Iterations Total time

32x16x8 1 6.57E-3 3 2.00E-3 3 3.77E-3
64x32x16 1 5.89E-2 6 3.11E-2 5 2.82E-2
128x64x32 2 4.99E-1 26 1.08 10 4.38E-1
192x120x48 2 3.83 136 23.72 28 4.97

Table 3: Three dimensional Poisson’s equation in the spherical shell. Stopping criterion: Relative resid-
ual reduction of 10−8. (CPU time in seconds.)

Now let us consider the QG-ω equation (1). In this casef 2
0 = O(10−8) andN2(r) = O(10−4), which

complicates the situation drastically, since it largely reduces the strength of the anisotropy in the radial
direction, such that the matrix entry in the radial direction is not always the largest at each grid point
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anymore. The stencil (7) for the QG-ω equation is now dominated by the following terms
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and so the ratio of the radial entry to the horizontal entrieshas been reduced by a factor
f 2
0

N2(rk) = O(10−4)
(w.r.t. Poisson’s equation above). This means that for common grid resolutions, towards the bottom of
the atmosphere the aspect ratio of the radial entry to the horizontal entries isO(10−4), whereas towards
the top of the atmosphere the aspect ratio isO(10+2), i.e. the radial entry is actually the smaller one. This
reduces the smoothing properties ofr-line relaxation (as shown in [5]) and it is necessary to combine it
with semi-coarsening, i.e. carry out no coarsening in radial direction. This fact has already been noted
in [26], where they solved the QG-ω equation (1) in some part of the atmosphere with doubly periodic
boundary conditions using multigrid methods. It is again related to the theory for (8) in [5].

Finally, to summarise the multigrid method we propose for (2): We employ the standard V-cycle
with linear interpolation and full weighting restriction with r-line relaxation smoother (Gauss−Seidel)
and a non-uniform coarsening strategy. We employ no coarsening in the radial direction and conditional
semi-coarsening (as described above) in theθ − φ plane. For the coarse grid solve we use the smoother
and iterate until the relative residual is reduced by 10−2. In the next section we will study the robustness
and efficiency of this method numerically and compare it to some other methods.

Similarities with algebraic multigrid methods

The success of non-uniform (conditional) coarsening strategies for anisotropic elliptic problems has al-
ready been demonstrated with the highly successful algebraic multigrid (AMG) methods. As stated
in [21], the advantage of AMG is its robustness and applicability in any complex geometric situations
which are out of reach of geometric multigrid methods. In addition, AMG methods usually use matrix-
dependent prolongation operators which further enhance its robustness, particularly for problems with
large (non-smooth) coefficient variation.

Thus for many complex problems, AMG is the only approach thatcan be used. However, the
flexibility of AMG comes at a price: its setup cost. The selection of coarse nodes, the construction of in-
terpolation operators and the construction of coarse leveloperators is slower for AMG than for geometric
methods (especially in 3D), since everything has to be deduced algebraically from the system matrixA
via graph theoretical techniques. Also, the coarse grid operators generally become very dense and expen-
sive to apply. Therefore, AMG is usually less efficient than geometric multigrid on problems for which
geometric multigrid can be suitably adapted. The QG-ω equation is a highly anisotropic problem, but as
discussed above it can be dealt with efficiently and robustly using geometric approaches by exploiting
the particular structure of the grid anisotropy. Because ofthe reduced setup cost and the sparser coarse
grid matrices it should outperform standard AMG methods, such as the popularBoomerAMG from the
Hypre library [16, 12], comfortably. In fact, in Section 4 wewill compare our geometric method with
BoomerAMG. Note however, that there are also AMG codes that are more tailored to anisotropic problems
(e.g. [14]) which may be cheaper thanBoomerAMG for (2), but they are still unlikely to outperform a
robust geometric method like the one presented here.
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4 Numerical Results – Robustness and Comparisons

All tests in this section are carried out on a single 1.8GHz processor of a Dual dual-core 64bit AMD
Opteron 2210 (Cache size 1.0MB and 2GB memory) using the Fortran95 compilerifort. The non-
uniform geometric multigrid algorithm (NUMG) for solving (2) uses the V-cycle scheme [7]. The com-
ponents of the algorithm have been described in detail in Section 3. The initial guess for the iteration is
taken to be zero, with a relative residual reduction ofǫ = 10−8 as the stopping criterion. The number of
pre- and post-smoothing steps isν1 = 3 andν2 = 2.

We compare the method withBoomerAMG, an AMG preconditioner from the Hypre library [16, 12].
We use the default settings forBoomerAMG, i.e. a symmetric-SOR/Jacobi smoother, Falgout coarsening,
classical Ruge-Stüben interpolation and Gaussian Elimination as the coarse grid solver. Some experi-
ments with other settings have not led to a significant improvement of the method. Both NUMG and
AMG are tested stand-alone and as preconditioners for the conjugate gradient (CG) method (one V-cycle
per iteration). We also user-line Jacobi as a preconditioner for CG. This is essentiallythe solver currently
used by the MET Office. The actual Krylov subspace method used at the MET Office is thegeneralised
conjugate residual (GCR) method [10]. This method is also applicable to nonsymmetric matrices, but
(in exact arithmetic) it reduces to CG for symmetric positive definite problems such as (2). Since it re-
quires more floating point operations and the storage of all previous search directions, it is substantially
more expensive (see Table 7), and so we also use CG to get a fairer comparison. We do however choose
exactly the same preconditioner as that employed at the MET Office, i.e.r-line Jacobi relaxation.

Table 4 gives the performance for solving (2) using NUMG (as asolver and as a preconditioner for
CG) with f 2

0 = 10−8 and N2(r) = O(10−4) as provided by the MET Office. The number of iterations
and the convergence rate per iteration (cf. (12)) is constant (asymptotically) suggesting full robustness
of the solver with respect to an increase in problem size. TheCPU times for the setup and for the solve
phase are both scaling linearly with the problem size and so the method is optimal. There is hardly any
difference in the performance of NUMG as a solver or as a preconditioner for CG.

NUMG (V-cycle only) CG+ NUMG
Problem size Setup time Solve time # Iterations µavg Solve time # Iterations µavg

32x16x8 1.06E-2 4.16E-2 7 0.050 4.43E-2 7 0.057
64x32x16 7.97E-2 3.42E-1 7 0.072 4.10E-1 8 0.078
128x64x32 6.29E-1 3.54 8 0.093 3.72 8 0.080
256x128x64 4.94 29.94 8 0.101 34.24 8 0.081

Table 4: Non-Uniform geometric multigrid applied to the QG-ω equation in 3D. (CPU times in seconds.)

In Table 5 we see that all the modifications to the standard multigrid V-cycle which we applied were
necessary, and that without the modifications geometric multigrid is not robust to grid refinement.

Table 6 gives the performance for solving (2) using AMG as a preconditioner for CG and stand-
alone. We observe from this table that, although CG+ AMG is also robust with respect to grid refine-
ment, the solve time is higher than that of NUMG by a factor of about 3.5 and the difference gets larger
as the problem size is increased. As for the setup time, NUMG is approximately an order of magnitude
faster than AMG, so that in total NUMG is almost 5 times fasterthan CG+ AMG. When used as a
stand-alone solver AMG is not fully robust. The number of iterations and the average convergence factor
per iteration grow slightly with the problem size.

Table 7 shows that without a multilevel preconditioner, Krylov subspace methods such as CG or
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Coarsening: (a) θ & φ direction (b) θ direction only (c) r & conditionalθ-φ
Problem size Solve time # Iterations Solve time # Iterations Solve time # Iterations

32x16x8 0.11E-3 23 5.04E-2 6 4.39E-2 7
64x32x16 3.44E-2 84 0.74 9 0.66 16
128x64x32 174.54 441 15.26 16 30.69 86
256x128x64 *** >1000 332.81 36 271.37 228

Table 5: Geometric multigrid withr-line Gauss-Seidel smoother applied to the QG-ω equation in 3D,
using (a) full coarsening on theθ − φ plane and no coarsening inr, (b) semi-coarsening on theθ − φ
plane and no coarsening inr, or (c) non-uniform coarsening on theθ − φ plane and full coarsening inr.
(CPU times in seconds.)

BoomerAMG (V-cycle only) CG+ AMG
Problem size Setup time Solve time # Iterations µavg Solve time # Iterations µavg

32x16x8 4.05E-2 9.37E-2 7 0.059 8.05E-2 5 0.024
64x32x16 6.11E-1 1.37 8 0.083 1.12 5 0.029
128x64x32 6.76 15.62 10 0.134 12.37 6 0.049
256x128x64 57.64 133.80 11 0.163 108.55 7 0.058

Table 6:BoomerAMG applied to the QG-ω equation in 3D. (CPU times in seconds.)

GCR (the method currently employed by the MET Office) are not robust to grid refinement. The number
of iterations grows and therefore the CPU time is not proportional to the problem size. At the typical
grid sizes currently used at the MET Office, NUMG is more than 10 times faster than CG withr-line
Gauss-Seidel preconditioner.

Conjugate Gradients Generalised Conjugate Residuals
Problem size Solve time (s) # Iterations Solve time (s) # Iterations

32x16x8 2.83E-2 57 5.19E-2 62
64x32x16 0.70 132 1.21 170
128x64x32 20.03 370 40.06 525
256x128x64 397.24 879 *** >1000

Table 7: Preconditioned Krylov subspace methods applied tothe QG-ω equation in 3D (withr-line
Gauss-Seidel preconditioner).

5 Parallel Tests

5.1 Parallelisation Strategy

Because of ther-line smoother it would not be good in the parallelisation ofthe method to partition the
domain in the radial direction. The tridiagonal solves along eachr-grid line would lead to too much
unnecessary communication and data dependencies between the processors. Therefore we partition only
in the longitudinal and latitudinal directions. This is also the case in the MET Office codes. However,
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Figure 4: Speedup test onwolf: Global problem size 360× 180× 100

any number of partitionings in these directions should be admissible.
A ghost point (or halo) strategy [11] is used for communication between processors, which is im-

plemented using MPI (message passing interface). Note thatwe must handle the communication at the
boundaries of the domain differently to account for the poles and the periodic boundary conditions. The
discretisation scheme, the choice of coarse level matricesand the choice of restriction and prolongation
Rℓ andPℓ, are chosen such that communication only occurs with adjacent processors. Thus, we have a
communication topology which resembles a 5-point stencil.The conversion of a distributed vector to an
accumulated vector (cf. [11]) therefore requires communication only with four neighbouring processors.

To reduce inter-processor communication, the smoother is modified to a hybrid Jacobi/Gauss−Seidel
smoother, only making use of the most up-to-date values of the solution vector if the corresponding node
is associated with the same processor (within one relaxation step). If the node is a ghost point and
belongs to another processor then the value from the previous relaxation sweep is used (as in the Jacobi
method). Thus all the communication during the smoothing iteration is concentrated at the start of each
sweep. This may lead to a slight increase in the number of iterations on large numbers of processors, but
it avoids unnecessary communication and data dependencies.

Finally, we modify the coarsening strategy slightly to ensure that all coarse grids are partitioned
along the same planes to avoid extra communication when using the grid transfer operatorsRℓ andPℓ.
This leads to minor modifications at processor boundaries.

Note, that in our partitioning strategy, subdomain blocks near the equator will have a four-fold
reduction in the number of grid points from one grid level to the next as a result of full coarsening, while
blocks near the poles will only have a two-fold reduction. This leads to a load imbalance on coarser
grids. However, the majority of the work is done on the finest grid and so it is sufficient to make sure the
load is distributed evenly on that level. Our numerical tests confirmed this. The amount of time certain
processors are idle is minimal.

5.2 Parallel Numerical Results – Speedup and Scaling

We test the parallel non-uniform multigrid code on two different clusters, a 64-bit AMD Opteron 2210
cluster (wolf) with a total of 24 processors (the same ones as in Sections 3 and 4) and a 64-bit Intel
Xeon E5462 cluster (aquila) with 2GB memory and 3MB Cache per processor. Both clusters use an
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Figure 5: Scaled efficiency test onwolf: Problem size 200× 100× 50 on each processor.
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Figure 6: Scaled efficiency test onaquila: Problem size 192× 120× 50 on each processor.

Infinipath network.
We firstly perform a speedup test, which is a measure of the performance gain of a parallel code

running onN processors over the sequential code where the global problem size remains unchanged.
We test this on a problem of size 360× 180× 100, with the results shown in Figure 4. The speedup is
very good (almost optimal) on up to about 8 processors. However, for larger numbers of processors the
amount of work that each of the processors has to do becomes too small and so the speedup drops off
slightly from the optimal (linear) growth.

A better test for how well the implementation scales on larger numbers of processors is a scaled ef-
ficiency test, where the problem size per processor is kept fixed as the number of processors is increased.
In this test the CPU time of a method that scales optimally should remain constant as the number of
processors is increased. Figures 5 and 6 show how the method scales on the two different clusters with
respect to CPU time and the number of iterations. In Figure 5 we fix the problem size per processor
to 200× 100× 50 onwolf, and observe that the method scales almost optimally, particularly beyond
four processors. Onaquila we fix the problem size per processor to 192× 120× 50 and observe also
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very good parallel scaling with a slight increase of the CPU time for more than 96 processors. This is
because the number of iterations jumps from about 10 to about15 when using more than 96 processors,
potentially because of the hybrid smoother or because the anisotropy in ther-direction is getting weaker.
Nevertheless, we see that on 256 processors with the new non-uniform multigrid method, it is possible
to solve the QG-ω equation on the entire globe with a resolution of 10km at the equator and 3× 109

unknowns in about 60 seconds. On larger clusters, potentially even finer resolutions could be solved
within the same time.

Finally let us compare the parallel NUMG solver with parallelisations of the other methods. Krylov
subspace methods withr-line Jacobi preconditioners (such as the ones used at the Met Office) are ex-
tremely well suited to an efficient parallelisation, and the numerical results in Figure4 show this clearly.
The speedup is almost optimal (linear) on any number of processors. However, as we saw in Section 4,
the method is not robust, i.e. the number of iterations growswith the problem size, and with the typical
grid resolution of 360× 180× 100 used at the Met Office, the multigrid method is about 10 times faster
thanr-line Jacobi preconditioned CG on 24 processors. For finer grid resolutions, such as the ones used
in the scaling tests in Figures 5 and 6, the preconditioned CGmethod becomes increasingly inferior to
NUMG. As for BoomerAMG, this does not parallelise as well as the geometric multigrid, particularly in
the setup phase. The speedup and the scaled efficiency are substantially smaller than for NUMG.
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