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Abstract. In this paper we present a new preconditioner suitable for solving linear systems
arising from finite element approximations of elliptic PDEs with high-contrast coefficients. The
construction of the preconditioner consists of two phases. The first phase is an algebraic one
which partitions the degrees of freedom into “high” and “low” permeability regions which may be
of arbitrary geometry. This partition yields a corresponding blocking of the stiffness matrix and
hence a formula for the action of its inverse involving the inverses of both the high permeability
block and its Schur complement in the original matrix. The structure of the required sub-block
inverses in the high contrast case is revealed by a singular perturbation analysis (with the contrast
playing the role of a large parameter). This shows that for high enough contrast each of the sub-
block inverses can be approximated well by solving only systems with constant coefficients. The
second phase of the algorithm involves the approximation of these constant coefficient systems
using multigrid methods. The result is a general method of algebraic character which (under
suitable hypotheses) can be proved to be robust with respect to both the contrast and the mesh
size. While a similar performance is also achieved in practice by algebraic multigrid (AMG)
methods, this performance is still without theoretical justification. Since the first phase of our
method is comparable to the process of identifying weak and strong connections in conventional
algebraic multigrid algorithms, our theory provides to some extent a theoretical justification
for these successful algebraic procedures. We demonstrate the advantageous properties of our
preconditioner using experiments on model problems. Our numerical experiments show that for
sufficiently high contrast the performance of our new preconditioner is almost identical to that
of the Ruge and Stüben AMG preconditioner, both in terms of iteration count and CPU-time.
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1. Introduction

Problems with high-contrast coefficients are ubiquitous in porous media flow applications; e.g., [20,
25, 24]. Consequently, development of efficient solvers for high-contrast heterogeneous media
has been an active area of research, specifically in the setting of multiscale solvers [2, 10, 11, 22].
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In this paper, we are particularly concerned with the convergence of a family of algebraic precon-
ditioners that exploit the binary character of high-contrast coefficients related to those recently
proposed by Aksoylu and Klie [3].

We consider preconditioners for piecewise linear finite element discretisations of boundary-value
problems for the model elliptic problem

−∇ · (α∇u) = f , (1.1)

in a bounded polygonal or polyhedral domain Ω ⊂ R
d, d = 2 or 3 with suitable boundary

conditions on the boundary ∂Ω. The coefficient α(x) may vary over many orders of magnitude in
an unstructured way on Ω. Many examples of this kind arise in groundwater flow and oil reservoir
simulation; see for example the comprehensive overviews [1, 17, 7, 15]. For the theoretical
statements in this paper, we will assume for convenience that α in (1.1) is a scalar function.
However all the same results hold when α(x) is replaced by a symmetric positive definite matrix
A(x), with spectrum lying in the range [C−1α(x) , Cα(x)] where C is moderate in size, and
where the scalar function α(x) has the properties which we assume below. The case when C
is very large (the anisotropic case) presents additional difficulties and should be the subject of
future analysis.

Let T h be a conforming shape-regular simplicial mesh on Ω and let Vh denote the space of
continuous piecewise linear finite elements on T h which vanish on essential boundaries. The
finite element discretisation of (1.1) in this space yields the linear system:

Au = f , (1.2)

and it is well-known that the conditioning of A worsens when T h is refined or when the hetero-
geneity (characterised by the range of α) becomes large. It is of interest to find solvers for (1.2)
which are robust to the heterogeneity as well as to the mesh width h.

In the literature there are many papers devoted to the efficient solution of this problem and provide
a rigorous justification when discontinuities in α are simple interfaces which can be resolved by
a coarse mesh (see e.g. [4, 13] and the references therein for papers on domain decomposition
methods and [26] for results on multigrid methods).

Even if suitable coefficient-resolving coarse meshes are not available, good performance of Krylov-
based methods can still be achieved by standard preconditioners when there is a small number of
unresolved interfaces. This is because the preconditioning produces a highly clustered spectrum
with correspondingly few near-zero eigenvalues [9, 10, 23].

For more general complicated heterogeneous high-contrast media, recent progress was made in
[11] where a characterisation of domain decomposition methods which are robust with respect
to both contrast and mesh parameters was presented. This analysis indicated explicitly how
subdomains and coarse spaces should be designed in order to achieve robustness also with re-
spect to extreme heterogeneities, even inside coarse mesh elements. This approach was further
extended in [22] to give a justification of the robustness of smoothed aggregation type domain
decomposition methods for problems of this type.

At the same time it is well-known that algebraic multigrid procedures also produce optimal robust
solvers for such heterogeneous problems, but so far theoretical justification of this is lacking. In
this paper we describe a preconditioner which involves both an algebraic phase (similar to that
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used in algebraic multigrid) coupled with an application of standard multigrid ([12]) and we prove
its robustness and demonstrate this on a sequence of model problems.

The preconditioner which we shall describe is an enhancement of an original method proposed
in [14] for solving pressure-saturation coupled systems and recently applied in [3] for the setting
of highly heterogeneous media. In [3], the coupling in the pressure system was interpreted
as the interaction of degrees of freedom with different physical properties (as explained later).
Moreover, when the underlying physics is not fully captured algebraically by the block partitioning
– especially in the case of complex geometry – a deflation strategy was employed to enhance the
preconditioner.

To give some more details, the first algebraic phase of our family of preconditioners involves par-
titioning of the degrees of freedom (subsequently referred to as “DOFs”) into a set corresponding
to a “high-permeability” region and a “low-permeability” region. DOFs that lie on the interface
between the two regions are (always) included in the high-permeability region. Note that in the
context of standard FE matrices and, for high enough contrast, this can easily be obtained by
examining the diagonal entries of the matrix A, or by using a strong-connection criterion similar
to that used in algebraic multigrid algorithms. Thus any vector u ∈ R

n can be decomposed into

u =
(

u
T
H ,uT

L

)T
and the stiffness matrix A in (1.2) can be partitioned

A =

[

AHH AHL

ALH ALL

]

. (1.3)

After a little algebra, the exact inverse of A can be written:

A−1 =

[

IHH −A−1
HHAHL

0 ILL

][

A−1
HH 0
0 S−1

][

IHH 0
−ALHA−1

HH ILL

]

(1.4)

where S = ALL−ALHA−1
HHAHL is the Schur complement of AHH in A and IHH and ILL denote

the identity matrices of the appropriate dimension.

A singular perturbation analysis can now be devised to explain the properties of the subblocks
in (1.4). Arguments of this type were first used in the context of condition number analysis for
additive Schwarz methods in [9, 10]. More recently this approach was refined to treat the more
complicated problem of analysing multigrid preconditioners in [26]. Here we use the singular
perturbation-type analysis in a different context.

Suppose for simplicity that ΩH has coefficient α = α̂ ≫ 1 and that ΩL := int(Ω\ΩH) has
coefficient α = 1. (Note however, that our method and our analysis are not restricted to this
piecewise constant model situation.) It is clear that

α̂−1AHH = NHH + O(α̂−1) , as α̂ → ∞ , (1.5)

where NHH is the matrix corresponding to the pure Neumann problem for the Laplace operator on
ΩH . This shows that (after scaling by α̂−1), AHH can be preconditioned robustly and efficiently
by standard multilevel methods, such as geometric multigrid, with a performance independent of
h and α̂. The possible benefits of using multigrid as a preconditioner for the congugate gradient
method are well-known and were pointed out, for example, by W. Hackbusch in [12].

Moreover the analysis of AHH as α̂ → ∞ has important implications for the behaviour of S. In
§2, 3 we show that in this case

S = S(∞) + O(α̂−1) (1.6)
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where S(∞) is a low rank perturbation of ALL. The rank of the perturbation depends on the
number of disconnected components in ΩH . This special limiting form of S allows us to build a
robust approximation of S−1, for example combining solves with ALL (again available robustly
using standard multilevel methods) with the Sherman-Morrison-Woodbury formula.

There are a number of further approximations of (1.4) which can be envisaged. In fact, the
simplest version of the Aksoylu-Klie preconditioner [3] is

MAK0 =

[

A−1
HH 0
0 ILL

][

IHH 0
−ALHA−1

HH ILL

]

. (1.7)

As we show in §2, this preconditioner will perform reasonably provided the number of DOFs in
ΩL is not significantly large. To obtain better behaviour with respect to the number of DOFs in
ΩL a suitable modification to the Aksoylu-Klie preconditioner would be

MAK1 =

[

A−1
HH 0
0 S−1

][

IHH 0
−ALHA−1

HH ILL

]

. (1.8)

As a simple consequence of (1.4) we have σ(MAK1A) = {1}. However, a practical application
of this preconditioner requires again robust and efficient approximations of A−1

HH and S−1, and
so MAK1 is in fact nothing else but a nonsymmetric version of the preconditioner which we shall
present below. We will only focus on the symmetric version in this paper.

The paper is structured as follows. In the next section we explain the basic idea for a simple
model problem of a two scale medium with a simply connected high permeability region inside
the domain. This leads to a suggested preconditioner which we show robust as α̂ → ∞. In
§3 we extend the perturbation analysis to several high permeability regions and more general
coefficients. In §4 we compare the performance of the proposed preconditioners numerically on
some model problems. We also include performance comparisons with geometric and algebraic
multigrid methds.

2. The one island case

2.1. Singular perturbation analysis. Let Ω be decomposed with respect to permeability value
as

Ω = ΩH ∪ ΩL, (2.1)

where ΩH and ΩL denote the high and low permeability regions respectively. Note that this is
available algebraically, either via inspection of the diagonal entries in A or using the very common
notion from AMG of strong and weak connections in A. Let Γ be the interface between ΩH and
ΩL; Γ = Ω̄H ∩ Ω̄L.

We shall describe the basic idea by assuming first of all that ΩH is connected and Ω̄H ∩ ∂Ω = ∅,
and that pure Dirichlet boundary conditions are enforced on all of ∂Ω. (See Figure 1.) Moreover
let α|ΩH

= α̂ ≫ 1 and α|ΩL
= 1. We will come back to the more general situation in the next

section.

From the decomposition (2.1), we obtain a blocking for A as in (1.3) where only the block
AHH = AHH(α̂) depends on α̂ and the Schur complement is

S(α̂) := ALL − ALHAHH(α̂)−1AHL . (2.2)
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ΩL

ΩH

Figure 1. Ω = ΩH ∪ ΩL where ΩH and ΩL are high and low permeable regions, respectively.

To analyse the α̂-robustness of preconditioners based on (1.4), we need to analyse the asymptotic
behaviour of the block components AHH(α̂)−1, S(α̂)−1 and ALHAHH(α̂)−1 as α̂ → ∞. This is
the purpose of Lemma 2.1 below. To prepare for this, we further decompose the set of DOFs
associated with ΩH into a set of interior DOFs associated with index I and boundary DOFs with
index Γ. This leads to the following further block representation of

AHH(α̂) =

[

AII(α̂) AIΓ(α̂)
AΓI(α̂) AΓΓ(α̂)

]

. (2.3)

The entries in the block AΓΓ(α̂) are assembled from contributions both from finite elements in

ΩH and ΩL, i.e. AΓΓ(α̂) = A
(H)
ΓΓ (α̂) + A

(L)
ΓΓ and so, inserting this into (2.3), we obtain

AHH(α̂) = α̂NHH + ∆ where ∆ =

[

0 0

0 A
(L)
ΓΓ

]

, (2.4)

and where NHH is the Neumann matrix on ΩH , as described in (1.5). This is a symmetric
positive semidefinite matrix with a simple zero eigenvalue and associated constant eigenvector.
If nH denotes the number of degrees of freedom in Ω̄H , a suitable normalised eigenvector is the

constant vector with entries n
−1/2
H , which we denote by eH . We further write in block form as

eH = (eT
I , e

T
Γ )T .

Finally we note that the off-diagonal blocks in (1.3) (which are independent of α̂) have the
decomposition:

ALH =
[

0 ALΓ

]

= AT
HL. (2.5)

The following result describes the asymptotic behaviour of the sub-blocks in (1.4).

Lemma 2.1.

(i) AHH(α̂)−1 = eH

(

e
T
ΓA

(L)
ΓΓ eΓ

)−1

e
T
H + O(α̂−1)

(ii) S(α̂) = ALL − (ALΓeΓ)
(

e
T
ΓA

(L)
ΓΓ eΓ

)−1
(

e
T
ΓAΓL

)

+ O(α̂−1)

(iii) ALHAHH(α̂)−1 = (ALΓeΓ)
(

e
T
ΓA

(L)
ΓΓ eΓ

)−1

e
T
H + O(α̂−1)

Proof. Since NHH is symmetric positive semidefinite we have the eigenvalue decomposition:

ZTNHHZ = diag(λ1, λ2, . . . , λnH−1, 0), (2.6)
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where {λi : i = 1, . . . , nH} is a non-increasing sequence of eigenvalues of NHH and Z is
orthogonal. Because the eigenvector corresponding to the zero eigenvalue is constant, we may

write Z =
[

Z̃ | eH

]

and so, using (2.4), we have

ZT AHH(α̂)Z =

[

α̂ diag(λ1, . . . , λnH−1) + Z̃T ∆Z̃ Z̃T ∆eH

e
T
H∆Z̃ e

T
H∆eH

]

=:

[

Λ̃(α̂) δ̃

δ̃
T

η

]

, (2.7)

where
η = e

T
H∆eH = e

T
ΓA

(L)
ΓΓ eΓ > 0 (2.8)

(independent of α̂), since η = e
T
HAHH(α̂)eH and AHH(α̂) as a diagonal subblock of A(α̂) is

SPD. To find the limiting form of AHH(α̂)−1 note that

Λ̃(α̂) = α̂ diag(λ1, . . . , λnH−1) + Z̃T ∆Z̃

= α̂ diag(λ1, . . . , λnH−1)
(

I + α̂−1 diag(λ−1
1 , . . . , λ−1

nH−1)Z̃
T ∆Z̃

)

.

and so, for sufficiently large α̂, we have:

‖Λ̃(α̂)−1‖2 ≤
α̂−1 maxi<nH

λ−1
i

1 − α̂−1 maxi<nH
λ−1

i ‖Z̃T ∆Z̃‖2

→ 0 as α̂ → ∞ .

Hence we may write, for α̂ sufficiently large,
[

Λ̃(α̂) δ̃

δ̃
T

η

]−1

=

[

I −Λ̃(α̂)−1δ̃

0
T 1

]

[

Λ̃(α̂)−1
0

0
T

(

η − δ̃
T
Λ̃(α̂)−1δ̃

)−1

]

[

I 0

−δ̃
T
Λ̃(α̂)−1 1

]

.

(2.9)
which implies

[

Λ̃(α̂) δ̃

δ̃
T

η

]−1

=

[

O 0

0
T η−1

]

+ O(α̂−1) , (2.10)

and, by (2.7), we have

AHH(α̂)−1 = Z

[

O 0

0
T η−1

]

ZT + O(α̂−1) = eH

(

e
T
ΓA

(L)
ΓΓ eΓ

)−1

e
T
H + O(α̂−1) , (2.11)

which proves part (i) of the Lemma.

Parts (ii) and (iii) follow from simple substitution, using (2.2) and (2.5). �

To understand this lemma a bit better, we define the limiting forms:

AHH(∞)−1 = eH

(

e
T
ΓA

(L)
ΓΓ eΓ

)−1

e
T
H ,

S(∞) = ALL − ALHAHH(∞)−1AHL = ALL − (ALΓeΓ)
(

e
T
ΓA

(L)
ΓΓ eΓ

)−1
(

e
T
ΓAΓL

)

,

PLH(∞) = ALHAHH(∞)−1 = (ALΓeΓ)
(

e
T
ΓA

(L)
ΓΓ eΓ

)−1

e
T
H .

Note that S(∞) can also be interpreted as the Schur complement of c2
e

T
ΓA

(L)
ΓΓ eΓ in the matrix

A∞

LL =

[

c2
e

T
ΓA

(L)
ΓΓ eΓ c e

T
ΓAΓL

c ALΓeΓ ALL

]

,
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for any nonzero value of c. In particular, if we choose c := n
1/2
H , then ceΓ = 1Γ, the vector of all

ones on Γ and, using also (2.4), we have

A∞

LL :=

[

1
T
ΓA

(L)
ΓΓ 1Γ 1

T
ΓAΓL

ALΓ1Γ ALL

]

=

[

1
T
HAHH(1)1H 1

T
HAHL

ALH1H ALL

]

. (2.12)

This is the stiffness matrix for a pure Dirichlet problem for the Laplacian on all of Ω with the
additional constraint that the solution is constant on ΩH . See Figure 2.

ΩL

ΩH

uH = const

Figure 2. The matrix in (2.12) corresponds to a homogeneous Dirichlet problem
for the Laplacian on Ω under the constraint that the solution is constant on ΩH .

Thus, when α̂ ≫ 1, the original problem decouples almost entirely into a (regularised) Neumann
problem (i.e. AHH(α̂)) for the Laplacian on ΩH (scaled by α̂) and a Dirichlet problem (i.e. A∞

LL)
for the Laplacian on all of Ω, but under the additional constraint that the solution is constant on
ΩH . The coupling of the two problems (i.e. ALHAHH(α̂)−1) reduces to a transfer of the average
of the solution over ΩH to ΩL. Efficient and robust multilevel preconditioners exist (with theory)
for the two subproblems and we will exploit exactly this fact to construct preconditioners that we
can prove are robust with respect to mesh size and coefficient variations. We shall now explain
this in the context of the model problem considered in this section.

2.2. A suitable preconditioner. Based on the above perturbation analysis we propose the
following preconditioner:

B(α̂) :=

[

IHH −PLH(∞)T

0 ILL

][

AHH(α̂)−1 0
0 S(∞)−1

][

IHH 0
−PLH(∞) ILL

]

. (2.13)

The following theorem shows that B is an effective preconditioner for α̂ ≫ 1.

Theorem 2.1. For α̂ sufficiently large we have

σ(B(α̂)A(α̂)) ⊂ [1 − cα̂−1/2, 1 + cα̂−1/2]

for some constant c independent of α̂, and therefore

κ(B(α̂)A(α̂)) = 1 + O(α̂−1/2).

Remark 2.1. It is possible to carry out a more detailed perturbation analysis of AHH(α̂)−1 and
S(α̂), and to quantify the constant c in the above theorem. It turns out that c ≤ κeff(NHH)1/2,
where κeff(NHH) = λmax(NHH)/λ2(NHH) is the effective condition number of NHH ,. In the case

of a quasi-uniform mesh κeff(NHH)1/2 = O(h−1) = O(n
1/2
H ), where nH is the number of nodes
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in ΩH . Therefore provided α̂ ≫ nH , the preconditioned matrix B(α̂)A(α̂) is well conditioned,
i.e. κ(B(α̂)A(α̂)) = 1 + O((nH/α̂)1/2). The proof of this requires substantial further analysis.
Details will be given in the forthcoming work [21].

Proof. Letting M1/2 denote the square root of any symmetric positive definite matrix M , we
write B = LT L with

L :=





A
−1/2
HH 0

−S(∞)−1/2PLH(∞) S(∞)−1/2



 .

(Note that for notational convenience we do not explicitly state which terms depend on α̂ every-
where in this proof.) A straightforward calculation shows that

σ(BA) = σ(LALT ) = σ(I + R) , (2.14)

where R is the matrix:




0 A
−1/2
HH (AHL − AHHP T

LH(∞))S(∞)−1/2

S(∞)−1/2(ALH − PLH(∞)AHH)A
−1/2
HH 0



 .

As an example of the computation leading to (2.14), note that the bottom right-hand entry of
the product LALT reads:

S(∞)−1/2
[

PLH(∞)AHHPLH(∞)T − PLH(∞)AHL − ALHPLH(∞)T + ALL

]

S(∞)−1/2 = I,

since, by definition of PLH(∞) and of η, we have −ALHPLH(∞)T + ALL = S(∞) and

PLH(∞)AHHPLH(∞)T−PLH(∞)AHL = ALH

(

eHη−1
e

T
HAHHeHη−1

e
T
H − eHη−1

e
T
H

)

AHL = 0 .

To finish the proof we shall show that, for α̂ sufficiently large,

A
−1/2
HH = eHη−1/2

e
T
H + O(α̂−1/2). (2.15)

On the assumption that (2.15) holds, we have

RLH = S(∞)−1/2ALH(IHH − eHη−1
e

T
HAHH)eHη−1/2

e
T
H + O(α̂−1/2) = O(α̂−1/2) (2.16)

and so the spectral radius ρ(R) of R is O(α̂−1/2), which together with (2.14) completes the
proof.

To prove (2.15), let us write down the eigenvalue decomposition of AHH(α̂)

Q(α̂)T AHH(α̂)Q(α̂) = diag(µ1(α̂), . . . , µnH
(α̂)) (2.17)

where {µi(α̂) : i = 1, . . . , nH} denotes any non-increasing ordering of the eigenvalues of
AHH(α̂). Since AHH(α̂) is SPD (see the discussion following (2.8)), we have µi(α̂) > 0 for
all i ≤ nH . Moreover, the µi are continuous functions of α̂, with

α̂−1µi(α̂) = λi + O(α̂−1), (2.18)

as α̂ → ∞, where the λi are as defined in the proof of Lemma 2.1 and we have used (2.7). How-
ever, we also know from (2.11) that (for α̂ sufficiently large) the largest eigenvalue of AHH(α̂)−1

is given by

µnH
(α̂)−1 = η−1 + O(α̂−1) . (2.19)
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Therefore, using (2.17), (2.18) and (2.19), we have

Q(α̂)T AHH(α̂)−1/2Q(α̂) = diag(0, . . . , 0, η−1/2) + O(α̂−1/2) .

The required estimate (2.15) follows by noting that the last column of Q(α̂) approaches eH with
O(α̂−1) as α̂ → ∞.

�

Remark 2.2. Applying the original Aksoylu-Klie preconditioner MAK0 [3] defined in 1.7 to A(α̂)
we get

MAK0A(α̂) =

[

IHH AHH(α̂)−1AHL

0 S(α̂)

]

.

Thus as shown in [3],

σ(MAK0A) = {1} ∪ σ(S(α)).

We see from Lemma 2.1 that, as α̂ → ∞, S(α̂) converges to a rank 1 perturbation of ALL. By
standard theory for such perturbations (e.g. [8, Theorem 8.1.5]), for large α̂ and small h, the
condition number of S(α̂) will be close to the condition number of ALL, which grows with h−2

(assuming the area of the domain ΩL is of fixed size). Therefore MAK0 will lose robustness as
h → 0 (even if α̂ ≫ h2).

To illustrate the sharpness of the estimates in Theorem 2.1, we computed the eigenvalues of
B−1A for the geometry illustrated in Figure 3. This was done by exact computation of the blocks
in B, and so is restricted to moderate numbers of degrees of freedom. The domain Ω is a unit
square and the dark interior square is a high-permeability region (denoted ΩH) which is placed
at the centre of Ω, and has side length ρ. (See Figure 3.) Then ΩL = Ω\ΩH . The unit square
is covered with a uniform triangular mesh with mesh diameter h, which resolves the boundary of
ΩH . Dirichlet conditions are applied on the boundary of Ω and nH is the number of degrees of
freedom in ΩH . We study results for two different choices of ρ, namely ρ = 1/2 fixed and ρ = 4h,
decreasing as the mesh is refined. In the tables, β denotes the quantity κeff(NHH)1/2α̂−1/2 which
is an upper bound for the quantity cα̂−1/2 in Theorem 2.1, so that Theorem 2.1 predicts that the
spectrum of B−1A is bracketed in the interval [1− β, 1 + β]. We also display the exact smallest
and largest eigenvalues of B−1A which are denoted λ1 and λn respectively.

ρ

ρ

Figure 3. The unit square domain Ω and the high permeability region ΩH , which
is a square of side length ρ centred at the centre of Ω.
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α̂ = 102 α̂ = 104 α̂ = 106

h−1 nH 1 − β λ1 λn 1 − β λ1 λn 1 − β λ1 λn

8 25 0.511 0.869 1.311 0.951 0.987 1.013 0.995 0.9987 1.0013
16 81 0.146 0.789 1.211 0.915 0.978 1.022 0.991 0.9978 1.0022
32 289 0.842 0.967 1.033 0.984 0.9967 1.0033
64 1089 0.698 0.953 1.047 0.970 0.9953 1.0047

Table 1. Case 1: ρ = 1/2

From Table 1 we see first of all that the spectrum of B−1A lies within the interval [1−β, 1+β],
as predicted. Observing that λ1 and λn are symmetrically located with respect to 1 let us look
more carefully at the behaviour of λn. Reading across the rows in Table 1, we see that λn − 1
decreases very clearly with O(α̂−1/2). Reading down the columns we see that λn − 1 increases

with a rate bounded by O(n
1/2
H ), which is what is predicted by Theorem 2.1 and Remark 2.1.

Table 2 illustrates the case when ρ = 4h, so that the number of degrees of freedom nH remains
fixed at 25 as h → 0. Reading down the columns we see that for fixed α̂, β remains fixed as h
decreases and λ1 and λn remain within fixed distances from 1. Again reading across the rows we
see that the distance of λ1 and λn from 1 decreases clearly with O(α̂−1/2).

α̂ = 102 α̂ = 104 α̂ = 106

h−1 nH 1 − β λ1 λn 1 − β λ1 λn 1 − β λ1 λn

8 25 0.5111 0.8687 1.1313 0.9511 0.9866 1.0134 0.9511 0.9987 1.0013
16 25 0.5111 0.8382 1.1618 0.9511 0.9834 1.0166 0.9951 0.9983 1.0017
32 25 0.9511 0.9829 1.0171 0.9951 0.9983 1.0017
64 25 0.9511 0.9828 1.0171 0.9951 0.9983 1.0017

Table 2. Case 2: ρ = 4h

2.3. Practical implementation of the preconditioner. The preconditioner B(α̂) still involves
inverses of the blocks AHH(α̂) and S(∞). Factorising these will be prohibitively large in realistic
applications. However, as discussed above, in the limit as α̂ → ∞ both these blocks contain
no more coefficient variation and can be efficiently preconditioned via multilevel preconditioners
(with theoretical foundation).

Recall first that α̂−1AHH(α̂) = NHH + α̂−1∆ where NHH is the Neumann problem for the
Laplacian on ΩH . Therefore AHH(α̂) can be efficiently preconditioned via a standard multigrid
V-cycle BHH (with either geometric or algebraic coarsening strategy). This preconditioner is
(justifiably) h-robust on the subspace orthogonal to eH , and there exists a well-documented
theory explaining this (see e.g. [12] for geometric multigrid and [18] for algebraic multigrid).

Similarly we can build robust preconditioners for S(∞) via standard multigrid methods. Recall
that S(∞) = ALL − vη−1

v
T where v := ALHeH , η := e

T
HAHHeH , and ALL is the Dirichlet

problem for the Laplacian on ΩL. If BLL denotes a standard multigrid V-cycle for ALL, we
can construct an efficient and robust preconditioner S̃−1 for S(∞) using the Sherman-Morrison
formula, i.e.

S̃−1 := BLL + BLLv(1 − η)−1
v

TBLL.
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Again it follows from standard multigrid theory that this preconditioner is h-robust. Note also
that in practice we can precompute and store BLLv during the setup phase. This means we only
need to apply the multigrid V-cycle BLL once per iteration.

Alternatively, we can also obtain an efficient preconditioner for S(∞) by constructing a standard
multigrid V-cycle for A∞

LL. In this way one can avoid the application of the Sherman-Morrison
formula (which may become prohibitively expensive in the case of multiple islands). However, a
proof of the h-robustness of this approach can not be directly deduced from existing literature.
In the numerical results in §4 we have used this approach. However, in the following (in a slight
abuse of notation) we will refer to this preconditioner also by S̃−1.

Therefore, the final (practical) preconditioner which we propose and use is

B̃ :=

[

IHH −PLH(∞)T

0 ILL

][

BHH 0

0 S̃−1

][

IHH 0
−PLH(∞) ILL

]

. (2.20)

This preconditioner is robust on the subspace orthogonal to e := [eT
H , 0T ]T . To deal with the

component of the solution in the direction of e we use deflation techniques, i.e. we apply our
preconditioner within a conjugate gradient algorithm for the deflated system

PAu
⊥ = Pf (2.21)

where PT is the A-orthogonal projection into the subspace orthogonal to e, that means

PT = I − eη−1
e

T A .

and u
⊥ := PT

u is the projected solution. The component of the solution u in the direction of
e is then simply given by

u− u
⊥ = (I − PT )u = eη−1

e
T
f .

This approach has a significant additional advantage. Working only on the deflated system (2.21)
(where each CG iteration requires an application of the projections P and PT to project the right
hand side into the range of PA and to project the current iterate into the subspace orthogonal
to e, respectively), we do not require the application of the block

[

IHH 0
−PLH(∞) ILL

]

and of its transpose. This is a simple consequence of the fact that

PLH(∞)AHHeHη−1
e

T
H = PLH(∞)

and thus
[

IHH 0
−PLH(∞) ILL

]

P =

[

IHH 0
−PLH(∞) ILL

] [

IHH − AHHeHη−1
e

T
H 0

−PLH(∞) ILL

]

= P

This implies that within a CG algorithm for the deflated system (2.21) our preconditioner B̃
decouples entirely into a preconditioner BHH for AHH(α̂) (on the subspace AHH -orthogonal to

eH) and into a preconditioner S̃−1 for S(α̂).

Remark 2.3. The fact that for the model problem considered here deflation against the vector e

leads to a huge improvement in the robustness of the preconditioned conjugate gradient method
for any preconditioner, has been observed numerically (e.g. in [16]). The analysis in [16] is
for deflation against exact eigenvectors, or small perturbations of these, while here we provide
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theory for deflation against the “physical” vector e, which is not a small perturbation of a true
eigenvector.

Remark 2.4. Note that based on the above perturbation analysis it is also possible to construct
simpler preconditioners which do not require an approximation of S(∞)−1, but only an approxi-
mation for A−1

LL. It can be shown that (for α̂ sufficiently large again) these preconditioners lead
to a clustering of the spectrum with a small number (1 or 2) of outliers. The position of these
outliers on the real line is independent of the value of α̂, but it depends on the shape of the island
ΩH . More details will be in [21].

3. More general coefficients and boundary conditions

3.1. Disconnected high permeability regions. In this section we extend the results of the
previous section to the case where the boundary conditions on ∂Ω may be of mixed type and
where ΩH may consist of multiple disconnected components. In addition the coefficient function
α is no longer required to be constant on each of the regions ΩH and ΩL.

Specifically, we suppose that ∂Ω is partitioned into a Neumann part ΓN and a Dirichlet part ΓD

and that the high-permeability region ΩH may be written as ΩH =
⋃k

i=0 Ωi with Ω̄i∩ Ω̄j = ∅, for
all i, j = 0, . . . , k, with i 6= j. Moreover, we assume that, for i = 1, . . . , k, each of the regions
Ωi is itself connected and that Ωi ∩ΓD = ∅. The remaining component Ω0 of ΩH consists of the
union of all remaining (disconnected) components of ΩH that touch the Dirichlet boundary, i.e.
for each x ∈ Ω0 there exists a continuous path in Ω0 to ΓD. Then the low permeability region
is defined to be ΩL := Ω\ΩH . Finally Γ denotes the portion of the boundary of ΩH which does
not coincide with ∂Ω and Γi = Γ ∩ ∂Ωi.

Note that the stiffness matrix A can be scaled globally by any fixed parameter, without changing
its condition number, and so we can assume, without loss of generality,

inf
x∈Ω

α(x) = 1 . (3.1)

Below we perform a singular perturbation analysis analogous to that in §2. The hidden constants
in our estimates will depend on the coefficient variation in each of the high permeability and
low-permeability regions which we encapsulate in a single parameter µ, chosen so that

µ−1 ≤
α(x)

α(y)
≤ µ , x, y ∈ Ωi , i = L, 0, . . . , k .

Our asymptotic analysis will be valid on the assumption that the minimum value of the coefficient
on all the Ωi is large compared to the maximum value on ΩL. Accordingly we introduce local
and global parameters:

α̂i =
infx∈Ωi

α(x)

supx∈ΩL
α(x)

and α̂ = min{α̂i : i = 0, . . . , k} (3.2)

Note that this reduces to the same definition of α̂ as in the special case described in §2. Moreover,
if α̂ → ∞ then α̂i → ∞, for each i = 0, . . . , k. Implicitly our estimates below will be valid for
fixed µ as α̂ → ∞, i.e. under a kind of “scale separation” assumption. In general there may be
considerable freedom in choosing the interface between the high- and low-permeability regions.
The results below hold for all choices of boundary so that the scale separation assumption holds,
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and therefore for an “optimal” choice of interface. The optimal choice may not be easily iden-
tifiable in the case of general variable coefficients, but “reasonable” choices could be computed
for example by identifying weak and strong connections as in AMG.

To simplify this discussion, let us assume for the moment that k = 2. (The general case is
presented in Lemma 3.1 below. ) Then, since the Ωi are pairwise disjoint, for i = 0, 1, 2, we have

AHH(α) =





A00(α) 0 0
0 A11(α) 0
0 0 A22(α)



 , (3.3)

and, generalising (2.4), we can write

Aii(α) = α̂iNi + ∆i . (3.4)

Here Ni and ∆i also depend on α. In fact Ni is the stiffness matrix of a Neumann boundary value
problem (i = 1, 2), respectively a mixed boundary value problem (i = 0) on Ωi, with coefficient
function

α̂−1
i α(x) =

(

supx∈ΩL
α(x)

infx∈Ωi
α(x)

)

α(x) ,

which, from the assumptions above, can be easily seen to satisfy

1 ≤ α̂−1
i α(x) ≤ µ2 , x ∈ Ωi , i = 0, 1, 2 .

Moreover, analogously to (2.4),

∆i =

[

0 0

0 A
(L)
Γi,Γi

]

,

where A
(L)
Γi,Γi

represents the coupling on between nodes on Γi coming from the low permeability
region, in which (by assumptions above), the coefficient varies between 1 and µ.

As in Section 2 we find that, as α̂ → ∞,

Aii(α)−1 = ei

(

e
T
i ∆iei

)−1
e

T
i + O(α̂−1) for i = 1, 2 , (3.5)

and, since N0 has trivial nullspace, we have

A00(α)−1 = O(α̂−1) , α̂ → ∞ . (3.6)

Thus, if we denote by eH,i the nH -vector which coincides with ei on Ωi and is 0 elsewehere, then

AHH(α)−1 =

2
∑

i=1

eH,i

(

e
T
i ∆iei

)−1
e

T
H,i + O(α̂−1) (3.7)

and

S(α) := ALL −
2

∑

i=1

(ALHeH,i)
(

e
T
i ∆iei

)−1 (

e
T
H,iAHL

)

+ O(α̂−1). (3.8)

We collect the results in a lemma, which generalises Lemma 2.1.
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Lemma 3.1.

AHH(∞)−1 := lim
α̂→∞

AHH(α)−1 =
k

∑

i=1

eH,i

(

e
T
i ∆iei

)−1
e

T
H,i,

S(∞) := lim
α̂→∞

S(α) = ALL −
k

∑

i=1

(ALHeH,i)
(

e
T
i ∆iei

)−1 (

e
T
H,iAHL

)

,

PLH(∞) := lim
α̂→∞

ALHAHH(α)−1 =

k
∑

i=1

(ALHeH,i)
(

e
T
i ∆iei

)−1
e

T
H,i.

Thus, in the limit as α̂ → ∞ the Schur complement S(α) is a simple rank-k update of the block
ALL. As in the previous section S(∞) can again be interpreted as the Schur complement of the
k × k diagonal matrix

E := diag( n1e
T
1 ∆1e1 , . . . , nke

T
k ∆kek ) = diag( 1

T
H,1AHH1H,1 , . . . , 1

T
H,kAHH1H,k )

in

A∞

LL :=

[

E F T

F ALL

]

where F := ALH [1H,1, . . . , 1H,k] (3.9)

and 1H,i := n
1/2
i eH,i, i.e. the nH-vector that is 1 on Ωi and 0 elsewhere.

Thus, analogously to the discussion at the end of §2.1, for large α̂, the problem again essentially
decouples into Neumann or mixed boundary value problems on each of the Ωi and a Dirichlet
problem on Ω\Ω0 with the additional constraint that the solution is constant on each of the Ωi,
i = 1, . . . , k. Again (and assuming of course that µ is small compared to α̂), there exist efficient
and robust multilevel preconditioners for each of these decoupled problems.

With this insight, a suitable preconditioner B can be defined exactly as in (2.13) and we then
have, analogously to Theorem 2.1, the following result.

Theorem 3.1. For α̂ sufficiently large we have

σ(BA) ⊂ [1 − cα̂−1/2, 1 + cα̂−1/2]

for some constant c = c(µ, h), which is independent of α̂ and in which the dependence on h is
understood. (Details will be in [21].)

3.2. Multiscale media. Finally, we also consider multiscale media, i.e. high-permeability regions
within regions of intermediate strength premeability. We simply apply the above framework
recursively. For simplicity let us consider the following model situation: as in Section 2, we
assume that ΩH is connected and Ω̄H ∩ ∂Ω = ∅, but now we assume further that ΩH = Ω1 ∪Ω2

where Ω1 is again connected and Ω̄1 ∩ ∂ΩH = ∅, i.e. an island within an island. We will consider
the case when α2 is high relative to αL and α1 is high relative to α2, so we define

α̂1 =

(

infx∈Ω1
α(x)

supx∈Ω2
α(x)

)

and α̂2 =

(

infx∈Ω2
α(x)

supx∈ΩL
α(x)

)

,

and assume that α̂ := min{α̂1, α̂2} → ∞, i.e. we have a three-scale medium with good scale
separation. Again assume moderate coefficient variation inside the subdomains, with µ defined
as in §3.1.
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We can now apply the above framework recursively. Provided α̂2 is sufficiently large we obtain
the limiting form of the Schur complement S(α) (of AHH in A) as before. However, there is still
strong coefficient variation in the Neumann problem on ΩH and so we need to apply our analysis
again. We write

AHH =

[

A11 A12

A21 A22

]

and find as above that, since α̂1 → ∞, this problem again essentially decouples into a Neumann
problem on Ω1 and a problem on ΩH with the constraint that the solution is constant on Ω1.
This latter problem can again be described either through the limiting Schur complement of A11

in AHH , i.e.

S2(∞) := A22 − (A21e1)
(

e
T
1 ∆1e1

)−1 (

e
T
1 A12

)

,

or through the (n2 + 1) × (n2 + 1) matrix

A∞

22 :=

[

1
T
1 A1111 1

T
1 A12

A2111 A22

]

,

and the preconditioner B can be extended accordingly.

4. Numerical Experiments

In this section we apply the congugate gradient (CG) algorithm preconditioned using our precon-

ditioner B̃ defined in (2.20) and we compare this with several other possible choices of precondi-
tioner in the context of several model problems. In the following tables the notation CG + MG
means that the CG algorithm is preconditioned using one V −cycle of standard geometric multigrid
with SSOR smoother, piecewise linear interpolation and full weighting restriction. The problem
on the coarsest grid is solved using the banded Cholesky solver dpbsv.f in LAPACK. The nota-
tion CG + AMG means that one V −cycle of the Ruge and Stüben AMG algorithm amg1r5.f

[19] is used as preconditioner for CG. Finally the notation CG+ B̃ means that the preconditioner

is B̃, which is constructed using the (above) geometric multigrid V −cycle on subblocks of A as
described in §2.3. κ(MG), κ(AMG) and κ(B̃A) are estimates (based on Ritz values obtained
from the CG iteration) of the condition numbers of the respective preconditioned matrices.

The initial guess for the CG algorithm is taken to be zero and the stopping criterion is taken to
be a relative residual reduction of ǫ = 10−8 in the Euclidean norm. In all the experiments below
the domain is the unit square and the relevant elliptic problem is solved subject to a Dirichlet
condition u(x) = 1−x1 where x = (x1, x2), consistent with flow from left to right in the domain.

All computations are done using the GNU fortran95 compiler gfortran on a linux intel core 2
laptop with clockspeed 2GHz, 2Gb of memory and cache size 4Mb.

Example 1

Our first example concerns the geometry in Figure 3, with ρ = 1/2 where the central island is
given a coefficient α = α̂ and the surrounding region a coefficient α = 1. Table 3 gives the
iteration numbers and (in brackets) the cpu times for fixed α̂ = 106 as h → 0. Table 4 gives the
iteration numbers and (in brackets) the cpu times for fixed h−1 = 1024 as α̂ → ∞.

We observe from these tables that the B̃ preonditioner performs almost identically to the MG
and AMG preconditioners for large enough α̂. In particular all three (as expected) are h−robust
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h−1 CG + MG CG + AMG CG + B̃ κ(MG) κ(AMG) κ(B̃A)
128 6 (0.11) 7 (0.10) 7 (0.11) 1.19 1.27 1.20
256 6 (0.30) 7 (0.36) 7 (0.40) 1.21 1.29 1.23
512 6 (1.29) 7 (1.48) 7 (1.48) 1.25 1.31 1.24
1024 6 (5.05) 7 (5.81) 7 (5.98) 1.24 1.35 1.26

Table 3. Iteration numbers (cpu times) for the geometry given in Figure 3, with
ρ = 1/2 and α̂ = 106 and associated condition numbers.

α̂ CG + MG CG + AMG CG + B̃ κ(MG) κ(AMG) κ(B̃A)
102 6 (5.06) 7 (5.83) 23 (17.7) 1.23 1.36 27.9
104 6 (5.04) 7 (5.81) 7 (5.98) 1.23 1.35 1.49
106 6 (5.05) 7 (5.81) 7 (5.98) 1.23 1.35 1.26
108 6 (5.05) 7 (5.81) 7 (5.98) 1.23 1.35 1.26

Table 4. Iteration numbers (cpu times) for the geometry given in Figure 3, with
ρ = 1/2 and h−1 = 1024 and associated condition numbers.

for α̂ fixed. In all three cases the condition numbers of the preconditioned matrices are very
near to unity. A proof of the robustness of the CG+MG method is given in [26], under the
assumption that the coarse grid resolves the discontinuous coefficient (which is the case here).

We have given a proof of the robustness of B̃ under quite general assumption on the shape of
the interface between low-and high permeability regions earlier in this paper. A proof of the
α̂-robustness of the AMG preconditioner is still lacking.

Example 2

The second experiment is for the geometry depicted in Figure 4. For this we perform the same
experiments as in Example 1. Again the dark shaded regions are given a coefficient α = α̂ and
the remainder a coefficient α = 1. The results are given in Tables 5 and 6. The results lead to
similar conclusions as in Example 1.

Figure 4. The unit square domain Ω and the high permeability region ΩH , which
consists of two squares of side length 1/5 centred at the points (3/10, 3/10) and
(7/10, 7/10).
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We also remark that preconditioner B̃ does not work so well as α̂ gets smaller (see Table 6). This
is to be expected, since this method is based on asymptotic expansions as α̂ → ∞. However as
mentioned earlier our analysis demonstrates theoretically the success of algebraic methods based
on strong and weak connections in the high contrast case. Also, of course, standard geometric
multigrid works well in the low-contrast case.

h−1 CG + MG CG + AMG CG + B̃ κ(MG) κ(AMG) κ(B̃A)
160 6 (0.14) 7 (0.14) 7 (0.16) 1.20 1.39 1.21
320 6 (0.51) 7 (0.57) 7 (0.61) 1.21 1.38 1.23
640 6 (1.93) 7 (2.26) 7 (2.39) 1.22 1.38 1.24
1280 6 (7.84) 7 (8.88) 7 (9.81) 1.24 1.43 1.25

Table 5. Iteration numbers (cpu times) for the geometry given in Figure 4, with
α̂ = 106 and various condition numbers.

α̂ CG + MG CG + AMG CG + B̃ κ(MG) κ(AMG) κ(B̃A)
102 6 (7.82) 8 (9.54) 19 (22.9) 1.23 1.57 11.8
104 6 (7.85) 7 (8.90) 7 (9.85) 1.24 1.43 1.28
106 6 (7.84) 7 (8.88) 7 (9.81) 1.24 1.43 1.25
108 6 (7.79) 7 (8.87) 7 (9.82) 1.24 1.42 1.25

Table 6. Iteration numbers (cpu times) for the geometry given in Figure 4, with
h−1 = 1280 and various condition numbers.

With respect to Examples 1 and 2, we would like to highlight a point that has already been made
many times in the literature, but so far without theoretical justification. Using algebraic proce-
dures to identify strong and weak couplings in the stiffness matrix arising from FE discretisations
of high-contrast diffusion problems, it is indeed possible (as we have proved in this paper) to
design multigrid methods that are α̂-robust and have almost the same computational complexity
as geometric multigrid methods for diffusion problems with constant coefficents. In fact, applying
CG+MG to the Laplace problem α̂ = 1 with h−1 = 1280 we require 6 iterations and 7.72 seconds
with our code which is only slightly faster than the performance of CG+AMG and CG+B̃ for the
high contrast case.

Example 3

As a final example we use the geometry pictured in Figure 5. This is derived from the Society
of Petroleum Engineers benchmark example SPE10 [5]. We took Layer 59 of this benchmark
test and created a binary medium by imposing a coarse mesh on the medium and identifying
boxes where the permeability was above and below average. Regions of low permeability are
shaded dark in Figure 5 in this case. In the case of applications in groundwater flow, to obtain
physical flow fields, conservative discretizations like finite volume or mixed finite elements are
usually used. When mixed finite elements with Raviart-Thomas velocity elements are applied
to the problem (1.1) it is well-known that a resulting linear system of saddle-point type results.
However this system can be reduced to a positive-definite system of form (1.2) by the employment
of a divergence-free basis ([6]). Moreover this reduced positive definite system corresponds (in the
case of scalar coefficient) to a standard discretisation of a problem of form (1.1) with coefficient
α−1. Therefore to make our numerical experiments physically relevant, we perform them on the
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Figure 5. The geometry of the SPE10-derived problem.

geometry depicted in Figure 5 with the coefficient value α̂ on the dark shaded areas taken to be
large (corresponding to small permeability in the physical example).

The results are given in Tables 7, 8. Again we observe comparable performance of the three
preconditioners. Because of the way we have chosen the permeability field in this case it is easy
to create a coarse mesh in geometrical multigrid which resolves the coefficient discontinuity, and
so geometrical multigrid works well. For more complicated coefficient fields this would not be
the case and in the context of such examples, the comparison between AMG and B̃ is the more
realistic one.

h−1 CG + MG CG + AMG CG + B̃ κ(MG) κ(AMG) κ(B̃A)
160 8 (0.18) 7 (0.18) 8 (0.20) 1.96 1.28 1.90
320 8 (0.64) 7 (0.66) 8 (0.75) 2.56 1.36 2.48
640 8 (2.52) 7 (2.45) 8 (3.17) 3.26 1.45 3.20
1280 8 (10.1) 8 (10.1) 9 (14.4) 4.06 1.62 4.12

Table 7. Iteration numbers (cpu times) for the geometry given in Figure 5, with
α̂ = 106 and various condition numbers.

α̂ CG + MG CG + AMG CG + B̃ κ(MG) κ(AMG) κ(B̃A)
102 10 (12.3) 8 (10.3) > 100 (***) 3.27 1.53 1.2(E+3)
104 8 (10.2) 8 (10.1) 17 (24.3) 3.98 1.51 9.71
106 8 (10.1) 8 (10.1) 9 (14.4) 4.06 1.62 4.12
108 8 (10.2) 7 (9.9) 8 (13.2) 4.06 1.55 4.06
Table 8. Iteration numbers (cpu times) for the geometry given in Figure 5, with
h−1 = 1280 and various condition numbers.

Finally we would like to mention a phenomenon which we discovered while implementing these
examples. That is that in the case of high contrast media, geometric multigrid is very sensitive
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to the choice of solver on the coarseset grid. In Tables 9,10 below we repeat the experiments of
Tables 7,8 but this time we use 200 iterations of SSOR for the solution of the problems on the
coarsest level in CG+MG and in CG+B̃ (instead of a direct solver). This changes the picture
for CG+MG rather strongly and it now no longer appears to be robust. The Ritz values (on the
Krylov subspace generated by the CG iteration) suggest that the reason for this lack of robustness
is related to a cluster of eigenvalues close to 0 which is not dealt with properly by the coarse
solver. (The largest Ritz value is ∼1.0 in all cases.) This phenomenon is not restricted to the
case of the complicated geometry in Example 3. A similar behaviour of CG+MG can be observed
in the case of 1 or 2 islands in Examples 1 and 2. Since the smallest eigenvalues are dealt with
explicitly in B̃, CG+B̃ does not suffer from this problem.

h−1 CG + MG CG + B̃ λ1(MG) λ7(MG) λ1(B̃A)
160 22 (1.34) 11 (0.75) 1.26(E-4) 0.53 0.40
320 25 (2.74) 11 (1.42) 1.25(E-4) 0.41 0.35
640 28 (8.84) 12 (4.84) 1.24(E-4) 0.32 0.28
1280 29 (33.6) 13 (19.8) 1.24(E-4) 0.26 0.23

Table 9. Iteration numbers (cpu times) for the geometry given in Figure 5, with
α̂ = 106 and various Ritz values (coarse solver: 200 iterations of SSOR).

α̂ CG + MG CG + B̃ λ1(MG) λ7(MG) λ1(B̃A)
102 11 (13.8) > 100 (***) 0.31 0.88 1.65(E-2)
104 29 (33.6) 18 (26.3) 1.14(E-2) 0.25 0.18
106 29 (33.6) 13 (19.8) 1.24(E-4) 0.26 0.23
108 11 (13.8) 13 (19.8) 0.24 0.91 0.23

Table 10. iteration numbers (cpu times) for the geometry given in Figure 5,
with h−1 = 1280 and various Ritz values (coarse solver: 200 iterations of SSOR).
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