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Summary

We consider the application of multilevel Monte Carlo methods to elliptic partial

differential equations with random coefficients. Such equations arise, for exam-

ple, in stochastic groundwater flow modelling. Models for random coefficients

frequently used in these applications, such as log-normal random fields with ex-

ponential covariance, lack uniform coercivity and boundedness with respect to

the random parameter and have only limited spatial regularity.

To give a rigorous bound on the cost of the multilevel Monte Carlo estimator

to reach a desired accuracy, one needs to quantify the bias of the estimator. The

bias, in this case, is the spatial discretisation error in the numerical solution of the

partial differential equation. This thesis is concerned with establishing bounds

on this discretisation error in the practically relevant and technically demanding

case of coefficients which are not uniformly coercive or bounded with respect to

the random parameter.

Under mild assumptions on the regularity of the coefficient, we establish new

results on the regularity of the solution for a variety of model problems. The

most general case is that of a coefficient which is piecewise Hölder continuous with

respect to a random partitioning of the domain. The established regularity of the

solution is then combined with tools from classical discretisation error analysis to

provide a full convergence analysis of the bias of the multilevel estimator for finite

element and finite volume spatial discretisations. Our analysis covers as quantities

of interest several spatial norms of the solution, as well as point evaluations of the

solution and its gradient and any continuously Fréchet differentiable functional.

Lastly, we extend the idea of multilevel Monte Carlo estimators to the frame-

work of Markov chain Monte Carlo simulations. We develop a new multilevel

version of a Metropolis Hastings algorithm, and provide a full convergence anal-

ysis.
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Chapter 1

Introduction

1.1 Motivation

There are many situations in which modelling and computer simulation are indis-

pensable tools and where the mathematical models employed have been demon-

strated to give adequate representations of reality. However, the parameters

appearing in the models often have to be estimated from measurements and are,

therefore, subject to uncertainty. This uncertainty propagates through the simu-

lations and quantifying its impact on the results is frequently of great importance.

A good example is provided by the problem of assessing the safety of a poten-

tial deep geological repository for radioactive waste. Any radionuclides leaking

from such a repository could be transported back to the human environment by

groundwater flowing through the rocks beneath the earth’s surface. The very long

timescales involved mean that modelling and simulation are essential in evaluat-

ing repository performance. The study of groundwater flow is well established,

and there is general scientific consensus that in many situations Darcy’s Law can

be expected to lead to an accurate description of the flow [21, 16]. The classical

equations governing (steady state) single phase subsurface flow consist of Darcy’s

law coupled with an incompressibility condition:

q + A∇u = g and ∇ · q = 0, in D ⊂ Rd, d = 1, 2, 3, (1.1)

subject to suitable boundary conditions. In physical terms, u denotes the pressure

head of the fluid, A is the permeability tensor, q is the filtration velocity (or Darcy
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flux) and g are the source terms.

The main parameter appearing in Darcy’s Law is the permeability A, which

characterises how easily water can flow through the rock under a given pressure

gradient. In practice it is only possible to measure the permeability at a limited

number of spatial locations, but it is required at all points of the computational

domain for the simulation. This fact is the primary source of uncertainty in

groundwater flow calculations. Understanding and quantifying the impact of

this uncertainty on predictions of radionuclide transport is essential for reliable

repository safety assessments.

A widely used approach for dealing with uncertainty in groundwater flow

is to represent the permeability A as a random field over a probability space

(Ω, E ,P), with a mean and covariance structure that has to be inferred from the

data [23, 22]. This means that (1.1) becomes a system of PDEs with random

coefficients, which can be written in second order form as

−∇ · (A(ω, x)∇u(ω, x)) = f(ω, x), in D, (1.2)

with f = −∇ · g, and subject to appropriate boundary conditions. This means

that the solution u will also be a random field.

In this general form solving (1.2) is extremely challenging computationally,

and in practice it is common to use relatively simple models for A that are as

faithful as possible to the measured data. One model that has been studied

extensively is a log-normal distribution for A, i.e. replacing the permeability

tensor by a scalar valued field a whose log is Gaussian. It guarantees that a > 0

almost surely (a.s.) in Ω, and it allows the permeability to vary over many orders

of magnitude, which is typical in subsurface flow.

When modelling a whole aquifer, a whole oil reservoir, or a sufficiently large

region around a potential radioactive waste repository, the correlation length scale

for a is typically significantly smaller than the size of the computational region

D. In addition, typical sedimentation processes lead to fairly irregular structures

and pore networks, and faithful models should therefore also only assume limited

spatial regularity of a.

In applications, one is then usually interested in finding the expected value

(or higher order moments) of some functional Q = G(u) of the solution u to (1.2).
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This could for example be the value of the pressure u or the Darcy flux −A∇u
at or around a given point in the computational domain, or the outflow over

parts of the boundary. In the context of radioactive waste disposal, it could also

be something more complicated, such as positions and travel times of particles

released somewhere in the computational domain [39].

Since realistic random field models often need a rather large number of stochas-

tic degrees of freedom (> 100s) for their accurate representation, stochastic

Galerkin and stochastic collocation approaches [54, 67] are impractical and stan-

dard Monte Carlo (MC) simulation is the method of choice. Since the individual

realisations of the random field have low spatial regularity and significant spatial

variation, obtaining samples of the pressure field is very costly. The notoriously

slow rate of convergence of the standard MC method means that many such

realisations are required to obtain accurate results, and the standard MC ap-

proach quickly becomes unfeasible. The computational cost of solving elliptic

PDEs with random coefficient is a major challenge in uncertainty quantification

for groundwater flow studies.

In this thesis, we address the problem of the large cost of solving elliptic

PDEs with random coefficients. Our approach is based on a novel variance

reduction technique for the standard MC method, called the multilevel Monte

Carlo (MLMC) method. The basic idea was introduced by Heinrich to accelerate

Monte-Carlo computations of high-dimensional, parameter dependent integrals

and to solve integral equations [47]. Similar ideas were used by Brandt and his

co-workers to accelerate statistical mechanical calculations [5, 6]. The method was

extended by Giles [33, 32] to infinite-dimensional integration related to stochastic

differential equations in finance. Since then, it has been applied in many areas

of mathematics related to differential equations, in particular stochastic differen-

tial equations [24, 32, 50, 53] and several types of partial differential equations

(PDEs) with random forcing [34, 40] or random coefficients [4, 12, 15, 37, 66, 65].

The main challenge in the rigorous numerical analysis of MLMC methods

for elliptic PDEs with random coefficients, is the quantification of the numerical

discretisation error, or in other words the bias of the estimator. Models for the

random coefficient frequently used in applications, such as log–normal random

fields, are not uniformly coercive and bounded, making the numerical analysis

challenging. Indeed, if one does assume uniform coercivity and boundedness of
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the random coefficient, as well as (spatial) differentiability, the analysis of the

discretisation error is classical, and follows immediately from the analysis in the

deterministic setting (see e.g [2, 4, 27]).

As such, this thesis builds on and complements [10, 36, 28], which are all

concerned with the well-posedness and numerical approximation of elliptic PDEs

with infinite dimensional stochastic coefficients that are not uniformly bounded

and coercive, such as log-normal coefficients. The novel approach to the discreti-

sation error analysis in this thesis crucially makes use of the observation that for

each fixed ω, we have a uniformly coercive and bounded problem (in x). The stan-

dard tools from (deterministic) discretisation error analysis are hence applicable,

albeit with special attention to how these results depend on the data A(ω, x).

1.2 Aims, achievements and structure of thesis

The main aim of this thesis is to give a rigorous numerical analysis of the MLMC

algorithm applied to elliptic PDEs such as model problem (1.2), under minimal

assumptions on the random coefficient A. In particular, we will not assume

uniform coercivity or boundedness, and require only limited spatial regularity.

The achievements of this thesis are the following:

• Under minimal assumptions on the coefficient, we prove new regularity

results on weak solutions to model problem (1.2) in certain Bochner spaces.

We first consider problems posed on smooth domains (Theorem 2.7). By

analysing the singularities, we are able to extend the regularity results to

Lipschitz polygonal domains (Theorems 2.12) and discontinuous coefficients

(Theorem 2.17).

• Using these new regularity results, we then prove bounds on (moments of)

the finite element discretisation error in the natural H1-norm (Theorem

3.3). From this, error estimates in the L2-norm (Corollary 3.4) and output

functionals (Lemma 3.7) follow from a duality argument. We further prove

estimates of the finite element error in the L∞- and W 1,∞-norms (Theorem

3.11), and extend the discretisation error analysis to cover also some finite

volume schemes (Theorem 3.25 and Lemma 3.26).
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• We apply the discretisation error analysis to bound the bias of MLMC

estimators applied to model problem (1.2) (Propositions 4.3 - 4.7). Using

a generalised complexity theorem (Theorem 4.1), we then give a rigorous

bound on the cost of the multilevel estimator, and establish its superiority

over standard MC. We show that the cost of the multilevel estimator can

be reduced further by using level-dependent estimators (section 4.5.3).

• Finally, we develop a new multilevel estimator in the setting of Markov chain

Monte Carlo simulations (Algorithm 2), where the probability distribution

of interest (the posterior distribution) is generally intractable. We show

that moments with respect to the posterior distribution can be bounded

in terms of moments with respect to the prior distribution (Lemma 5.9).

With the prior distribution fulfilling the assumptions for the discretisation

error analysis carried out previously, we are then able to prove rigorously

the convergence of the new multilevel Markov chain Monte Carlo estimator

(Theorems 5.8 and 5.14).

The general structure of the thesis is as follows. We begin by proving regu-

larity results for several variations of model problem (1.2) in chapter 2. We then

move on to a (spatial) discretisation error analysis in chapter 3, which includes

(but is not limited to) the type of model problems considered in chapter 2. We

finally consider the application and analysis of multilevel Monte Carlo methods

in chapter 4 and (new) multilevel Markov chain Monte Carlo methods in chapter

5. We finish with some concluding remarks in chapter 6.

Parts of the material in this thesis has been published, or submitted for pub-

lication, in the references [15, 12, 66, 65, 52].

1.3 Notation

Given a probability space (Ω, E ,P) and a bounded Lipschitz domain D ⊂ Rd,

we introduce the following notation. For more details on any of the introduced

function spaces, see e.g. [44].

The space of all Lebesgue–measurable functions which are square integrable

on D (with respect to the Lebesgue measure) is denoted by L2(D), with the norm
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defined by

‖v‖L2(D) =

(∫
D

|v|2 dx

)1/2

.

For two functions v, w ∈ L2(D), we define the L2(D)-inner product

(v, w)L2(D) =

∫
D

v w dx.

For any k ∈ N, the Sobolev space Hk(D) ⊂ L2(D) consists of all functions

having weak derivatives of order |α| ≤ k in L2(D),

Hk(D) = {v ∈ L2(D) : Dαv ∈ L2(D) for |α| ≤ k}.

We identify H0(D) with L2(D). We define the following semi-norm and norm on

Hk(D):

|v|Hk(D) =

(∫
D

∑
|α|=k

|Dαv|2 dx

)1/2

and ‖v‖Hk(D) =

(∫
D

∑
|α|≤k

|Dαv|2 dx

)1/2

.

With C∞0 (D) the space of infinitely differentiable functions with compact support

on D, the completion of C∞0 (D) in L2(D) with respect to the norm ‖ · ‖Hk(D) is

denoted by Hk
0 (D). We recall that, since D is bounded, the semi-norm | · |Hk(D)

defines a norm equivalent to the norm ‖·‖Hk(D) on the subspace Hk
0 (D) of Hk(D).

For any real r ≥ 0, with r /∈ N, set r = k + s with k ∈ N and 0 < s < 1, and

denote by | · |Hr(D) and ‖ · ‖Hr(D) the Sobolev–Slobodetskii semi-norm and norm,

respectively, defined for v ∈ Hk(D) by

|v|Hr(D) =

( ∫
D×D

∫ ∑
|α|=k

[Dαv(x)−Dαv(y)]2

|x− y|d+2s
dx dy

)1/2

and

‖v‖Hr(D) =

(
‖v‖2

Hk(D) + |v|2Hr(D)

)1/2

.

The Sobolev space Hr(D) is then defined as the space of functions v in Hk(D)

such that the integral |v|2Hr(D) is finite. For 0 < s ≤ 1, the space H−s(D) denotes

the dual space to Hs
0(D) with the dual norm.

The space of essentially bounded measurable functions is denoted by L∞(D),
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with the norm defined as

‖v‖L∞(D) = ess sup
x∈D
|v(x)|.

In a similar fashion, we define for k ∈ N the Sobolev space W k,∞(D) containing

all functions having weak derivatives of order |α| ≤ k in L∞(D),

W k,∞(D) = {v ∈ L∞(D) : Dαv ∈ L∞(D) for |α| ≤ k}.

We define the following semi-norm and norm on W k,∞(D):

|v|Wk,∞(D) = max
|α|=k

ess sup
x∈D
|Dαv(x)| and ‖v‖Wk,∞(D) = max

0≤|α|≤k
ess sup

x∈D
|Dαv(x)|.

In addition to the above Sobolev spaces, we also make use of Hölder spaces.

For k ∈ N ∪ {0}, Ck(D) denotes the space of continuous functions which are k

times continuously differentiable, with semi–norm and norm

|v|Ck(D) = max
|α|=k

sup
x∈D
|Dαv(x)| and ‖v‖Ck(D) =

∑
0≤|α|≤k

sup
x∈D
|Dαv(x)|

For any real r > 0, with r /∈ N, we set r = k + s, and define the following

semi-norm and norm

|v|Cr(D) = max
|α|=k

sup
x,y∈D:x 6=y

|Dαv(x)−Dαv(y)|
|x− y|s

and ‖v‖Cr(D) = ‖v‖Ck(D)+|v|Cr(D).

Similarly, we define | · |Ck(D,Rd×d) and | · |Cr(D,Rd×d), for k and r as above, by

‖V ‖Ck(D,Rd×d) =
∑

0≤|α|≤k

sup
x∈D
‖DαV (x)‖d×d ,

and

|V |Cr(D,Rd×d) = max
|α|=k

sup
x,y∈D:x 6=y

‖DαV (x)−DαV (y)‖d×d
|x− y|s

,

where ‖ · ‖d×d denotes a suitable matrix norm on Rd×d.

Finally, we will also require spaces of Bochner integrable functions. To this

end, let B be a separable Banach space with norm ‖ · ‖B, and v : Ω → B be
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measurable. With the norm ‖ · ‖Lp(Ω,B) defined by

‖v‖Lp(Ω,B) =


(∫

Ω
‖v‖pB dP

)1/p
, for p <∞,

ess supω∈Ω ‖v‖B, for p =∞,

the space Lp(Ω,B) is defined as the space of all strongly measurable functions

on which this norm is finite. In particular, we denote by Lp(Ω, Hk
0 (D)) the space

where the norm on Hk
0 (D) is chosen to be the seminorm | · |Hk(D). For simplicity

we write Lp(Ω) for Lp(Ω,R).

A key task in this thesis is to keep track of how the constants in the bounds

and estimates depend on the coefficient A(ω, x) and on the mesh size h. Hence,

we will almost always be stating constants explicitly. Constants that do not

depend on A(ω, x) or h will not be explicitly stated. Instead, we will write b . c

for two positive quantities b and c, if b/c is uniformly bounded by a constant

independent of A(ω, x) and of h.
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Chapter 2

Regularity

The convergence rate of numerical methods is usually governed by the regularity

of the function being approximated. The smoother the function is, the better it

can be approximated by piecewise polynomials. To rigorously prove convergence

of numerical methods, it is essential to establish the regularity of the problem

under consideration. This section is therefore devoted to a study of the regularity

of model problems such as (1.2) in Section 1.1.

Given a probability space (Ω, E ,P) and ω ∈ Ω, we consider the following

linear elliptic partial differential equation (PDE) with random coefficients, posed

on a bounded, Lipschitz polygonal/polyhedral domain D ⊂ Rd, d = 1, 2, 3, and

subject to Dirichlet boundary conditions: Find u : Ω×D → R such that

−div (A(ω, x)∇u(ω, x)) = f(ω, x), for x ∈ D,

u(ω, x) = φj(ω, x), for x ∈ Γj . (2.1)

The differential operators div and ∇ are with respect to x ∈ D, and Γ := ∪mj=1Γj

denotes the boundary of D, partitioned into straight line segments in 2D and

into planar polygonal panels in 3D. We assume that the boundary conditions

are compatible, i.e. φj(x) = φk(x), if x ∈ Γj ∩ Γk. We also let φ ∈ H1(D)

be an extension of the boundary data {φj}mj=1 to the interior of D whose trace

coincides with φj on Γj. The existence of such φ is guaranteed by Theorem 2.6 for

φj ∈ H1/2(Γj). Denote by H1
φ(D) the subspace of H1(D) consisting of functions

whose trace on Γ is φ.

The restriction to Dirichlet conditions in (2.1) is for ease of presentation only,
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and the results in this chapter can be extended to the case of Neumann or mixed

Dirichlet/Neumann conditions. It is also possible to include lower order terms

in the differential operator, provided these are regular enough (cf assumptions

A1-A3).

The coefficient tensor A(ω, ·) is assumed to take values in the space of real–

valued, symmetric d × d matrices. Given the usual vector norm |v| := (v · v)1/2

on Rd, we choose the norm ‖ · ‖d×d on Rd×d as the norm induced by | · |, or any

matrix norm equivalent to it.

For all ω ∈ Ω, let now Amin(ω) and Amax(ω) be such that

Amin(ω)|ξ|2 ≤ A(ω, x)ξ · ξ ≤ Amax(ω)|ξ|2, (2.2)

for all ξ ∈ Rd, uniformly in x ∈ D. If the trajectories of A are continuous,

appropriate choices are

Amin(ω) := min
x∈D
‖A−1(ω, x)‖−1

d×d, and Amax(ω) := max
x∈D
‖A(ω, x)‖d×d. (2.3)

In the special case of scalar coefficients A(ω, x) = a(ω, x)Id, for some a : Ω×D →
R, we will denote Amin(ω) and Amax(ω) by amin(ω) and amax(ω), respectively. The

quantities in (2.2) in this case reduce to

amin(ω) := min
x∈D

a(ω, x), and amax(ω) := max
x∈D

a(ω, x).

We make the following assumptions on the input data:

A1. Amin > 0 almost surely and 1/Amin ∈ Lp(Ω), for all p ∈ [1,∞).

A2. A ∈ Lp(Ω, C t(D,Rd×d)), for some 0 ≤ t ≤ 1 and for all p ∈ [1,∞).

A3. f ∈ Lp∗(Ω, H t−1(D)) and φj ∈ Lp∗(Ω, H t+1/2(Γj)), for all j = 1, . . . ,m and

for some p∗ ∈ [1,∞], with t as in A2.

The Hölder continuity of A in assumption A2 implies that the quantities in

(2.3) are well defined, that Amax = ‖A‖C0(D,Rd×d) ∈ Lp(Ω) and (together with

assumption A1) that 0 < Amin(ω) < Amax(ω) < ∞, for almost all ω ∈ Ω.

Note that assumption A2 also implies that Ai,j ∈ Ct(D) almost surely, for i, j ∈
1, . . . , d, with ‖Ai,j(ω, ·)‖Ct(D) ≤ ‖A(ω, ·)‖C t(D,Rd×d).
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We will here not make the assumption that we can bound Amin(ω) away from

zero and Amax(ω) away from infinity, uniformly in ω, and shall instead work with

the quantities Amin(ω) and Amax(ω) directly. As we will see in Remark 2.13, we

could even weaken assumptions A1 and A2 and assume that ‖A‖Ct(D,Rd×d) and

1/Amin have only a finite number of bounded moments, i.e. 0 < p ≤ pa, for some

fixed pa > 0, but in order not to complicate the presentation we did not choose

to do this.

We will study the PDE (2.1) in weak (or variational) form, for fixed ω ∈
Ω. This is not possible uniformly in Ω, since we have not assumed uniform

boundedness of Amin(ω) and Amax(ω), but it is possible almost surely. In the

following we will not explicitly write this each time. With f(ω, ·) ∈ H t−1(D) and

0 < Amin(ω) ≤ Amax(ω) <∞, for all x ∈ D, the variational formulation of (2.1),

parametrised by ω ∈ Ω, is

bω
(
u(ω, ·), v

)
= Lω(v) , for all v ∈ H1

0 (D), (2.4)

where the bilinear form bω and the linear functional Lω (both parametrised by

ω ∈ Ω) are defined as usual, for all u, v ∈ H1(D), by

bω(u, v) :=

∫
D

A(ω, x)∇u(x) · ∇v(x) dx and (2.5)

Lω(v) := 〈f(ω, ·), v〉Ht−1(D),H1−t
0 (D) . (2.6)

We say that for any ω ∈ Ω, u(ω, ·) is a weak solution of (2.1) iff u(ω, ·) ∈ H1
φ(D)

and satisfies (2.4).

The following result is classical. It is based on the Lax-Milgram Lemma (see

e.g. [44]).

Lemma 2.1. For almost all ω ∈ Ω, the bilinear form bω is bounded and coercive

in H1
0 (D) with respect to | · |H1(D), with constants Amax(ω) and Amin(ω), respec-

tively. Moreover, there exists a unique solution u(ω, ·) ∈ H1
φ(D) to the variational

problem (2.4), with

‖u(ω, ·)‖H1(D) .
‖f(ω, ·)‖H−1(D) + Amax(ω)‖φ‖H1(D)

Amin(ω)
=: C2.1(ω).

The following proposition is a direct consequence of Lemma 2.1.
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Theorem 2.2. Let assumptions A1-A3 hold with t = 0. Then the weak solution

u of (2.1) is unique and belongs to

Lp(Ω, H1
φ(D)), for all p < p∗.

Proof. First note that u : Ω → H1
φ(D) is measurable, since u is a continuous

function of A. The result then follows directly from Lemma 2.1 and assumptions

A1- A3, together with Hölder’s inequality.

The aim of this chapter is now to establish more (spatial) regularity of the

solution u. This is necessary to prove convergence of numerical approximations

of (2.1) in chapter 3. To finish this introductory section, let us give a summary

of the main results in this chapter. Detailed proofs are provided later on.

For smooth domains D ⊂ Rd, for any d ≥ 1, the regularity of u depends

solely on the regularity of the input data A, {φj}mj=1 and f . With t and p∗ as in

assumptions A1-A3, we will prove in Theorem 2.7 that u ∈ Lp(Ω, H1+s(D)), for

any s < t and p < p∗. If t = 1, we have u ∈ Lp(Ω, H2(D)).

In the case of Lipschitz polygonal/polyhedral domains, the regularity of u

depends on the regularity of the input data A, {φj}mj=1 and f , as well as on the

geometry of D, so we need the following definition in addition to assumptions

A1-A3.

Definition 2.3. Let 0 < λ∆(D) ≤ 1 be such that for any 0 < s ≤ λ∆(D), s 6= 1
2
,

the Laplace operator ∆ is surjective as an operator from H1+s(D) ∩ H1
0 (D) to

Hs−1(D). In other words, let λ∆(D) be no larger than the order of the strongest

singularity of the Laplace operator with homogeneous Dirichlet boundary condi-

tions on D.

The number λ∆(D) exists for any Lipschitz polygonal/polyhedral domain, see

e.g. [42, Remarks 2.4.6 and 2.6.7]. We will come back to specific values of λ∆(D)

in section 2.3. For convex domains, we have λ∆(D) = 1.

Combining the regularity result for smooth domains with an analysis of the

corner singularities in D, we will prove in Theorem 2.12 that for any Lipschitz

polygonal domain D ⊂ R2, we have u ∈ Lp(Ω, H1+s(D)), for any s < t such that

s ≤ λ∆(D) and any p < p∗. If t = λ∆(D) = 1, we again have u ∈ Lp(Ω, H2(D)).

In the special case of scalar coefficients and Lipschitz polygonal domains

D ⊂ R2, we further extend the regularity results to coefficients which are only
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piecewise Hölder continuous with respect to a (possibly random) partitioning

of D. The regularity result from Theorem 2.12 in this case applies locally on

each subdomain. However, global regularity is limited due to the interfaces.

If all subdomains are convex, and no more than two subdomains meet at any

point in D, then it follows from Theorem 2.17 that u ∈ Lp(Ω, H1+s(D)), for any

s < min(t, 1/2) and p < p∗.

The tools we will use to prove the above results are classical. However, since

we did not assume uniform ellipticity or boundedness of bω, it is essential that

we track exactly how the constants appearing in the regularity estimates depend

on A.

The structure of the remainder of this chapter is as follows. In §2.1 we give

some preliminary estimates which will be useful in the subsequent analysis. We

then begin the regularity analysis by proving a regularity result for elliptic prob-

lems posed on smooth domains in §2.2. We extend this result to polygonal

domains in §2.3 by analysing the corner singularities of u. In §2.4, we further

extend the regularity results by relaxing assumption A2 and considering coeffi-

cients which are only piecewise Hölder continuous. In §2.5, we analyse some dual

problems which will later be used in chapter 3 to prove optimal convergence rates

for functionals. §2.6 gives a regularity result in the framework of Hölder spaces.

Finally, in §2.7, we give examples of random fields which satisfy the assumptions

needed for the regularity results in the earlier sections.

2.1 Preliminary estimates

In this section we present a collection of results on functions in Hölder and Sobolev

spaces which will be frequently used in the regularity analysis in the remainder

of this chapter.

Lemma 2.4. Let D ⊂ Rd, and let s, t be such that either 0 < s < t < 1 or

s = t = 1. If b ∈ Ct(D) and v ∈ Hs(D), then bv ∈ Hs(D) and

‖bv‖Hs(D) . |b|Ct(D) ‖v‖L2(D) + ‖b‖C0(D) ‖v‖Hs(D).

The hidden constants depend only on t, s and d.

Proof. This is a classical result, but we require the exact dependence of the bound
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on b. First note that trivially ‖bv‖L2(D) ≤ ‖b‖C0(D)‖v‖L2(D). The case s = t = 1

follows from the product rule, since

|bv|2H1(D) =

∫
D

|∇(bv)|2 dx =

∫
D

|b∇v + v∇b|2 dx

. (|b|C1(D) ‖v‖L2(D) + ‖b‖C0(D) ‖v‖H1(D))
2.

For the case 0 < s < t < 1, we have, for any x, y ∈ D,

|b(x)v(x)− b(y)v(y)|2 ≤ 2(b(x)2|v(x)− v(y)|2 + v(y)2|b(x)− b(y)|2).

Denoting by ṽ the extension of v by 0 on Rd, this implies∫∫
D2

|b(x)v(x)− b(y)v(y)|2

‖x− y‖d+2s
dx dy

≤ 2‖b‖2
C0(D)

‖v‖2
Hs(D) + 2

∫∫
D2

v(y)2|b(x)− b(y)|2

‖x− y‖d+2s

≤ 2‖b‖2
C0(D)

‖v‖2
Hs(D) +∫∫

x,y∈D
‖x−y‖≥1

8‖b‖2
C0(D)

v(y)2

‖x− y‖d+2s
+ 2|b|2

Ct(D)

v(y)2

‖x− y‖d+2(s−t) dx dy

≤ 2‖b‖2
C0(D)

‖v‖2
Hs(D)+(

8‖b‖2
C0(D)

∥∥∥∥ 1‖z‖≥1

‖z‖d+2s

∥∥∥∥
L1(Rd)

+ 2|b|2
Ct(D)

∥∥∥∥ 1‖z‖≤1

‖z‖d+2(s−t)

∥∥∥∥
L1(Rd)

)
‖ṽ‖2

L2(Rd)

. ‖b‖2
C0(D)

‖v‖2
Hs(D) + |b|2

Ct(D)
‖v‖2

L2(D).

The result then follows.

Lemma 2.5. Let D ⊂ Rd and 0 < s < 1, s 6= 1/2. Then

|||v|||s :=

(
‖v‖2

L2(D) +
d∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

Hs−1(D)

)1/2

defines a norm on Hs(D) that is equivalent to ‖v‖Hs(D) .

Proof. This is [44, Lemma 9.1.12].
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Note that for the case s = 1, the equivalence of the norms defined in Lemma

2.5 follows directly from the definition of ‖v‖H1(D).

Theorem 2.6. Let D be a Lipschitz domain with boundary Γ :=
⋃m
j=1 Γj, with

each Γj of class C2.

a) Let 1/2 < r ≤ 1. For each w ∈ Hr−1/2(Γ), there exists an extension

w̃ ∈ Hr(D) with trace on Γ equal to w and ‖w̃‖Hr(D) . ‖w‖Hr−1/2(Γ), where

the hidden constant is independent of w.

b) Let 1 < r ≤ 2 and D ⊂ R2. Suppose wj ∈ Hr−1/2(Γj) and wj(x) = wk(x)

for x ∈ Γj∩Γk. Then there exists an extension w̃ ∈ Hr(D) with trace on Γj

equal to wj and ‖w̃‖Hr(D) .
∑m

j=1 ‖wj‖Hr−1/2(Γj), where the hidden constant

is independent of wj, j = 1, . . . ,m.

Proof. This follows directly from the assumptions that Γ is Lipschitz continuous

and Γj, for j = 1, · · · ,m, is of class C2, together with [44, Theorem 6.2.40], [42,

section 1.4] and the Sobolev embedding Theorem [1].

2.2 Regularity in smooth domains

We start by proving a regularity result for problems posed on smooth domains.

Since the proofs are rather long and technical, we give here only the main ideas

of the proofs. Full proofs can be found in appendix A. The main result in this

section is the following.

Theorem 2.7. Suppose D is a C2 domain, and consider the boundary value

problem

−div (A(ω, x)∇w(ω, x)) = f(ω, x), for x ∈ D,

w(ω, x) = 0, for x ∈ ∂D . (2.7)

Let assumptions A1-A2 hold with 0 < t ≤ 1, and suppose f ∈ Lp∗(Ω, H t−1(D)),

for some p∗ ∈ (0,∞]. Then w(ω, ·) ∈ H1+s(D) and

‖w(ω, ·)‖H1+s(D) . C2.7(ω),
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for almost all ω ∈ Ω and all 0 < s < t, where

C2.7(ω) :=
Amax(ω)‖A(ω, ·)‖Ct(D,Rd×d)

Amin(ω)3
‖f(ω, ·)‖Ht−1(D).

Moreover w ∈ Lp(Ω, H1+s(D)), for all p < p∗. If the assumptions hold with t = 1,

then w ∈ Lp(Ω, H2(D)) and the above bound holds with s = 1.

The proof of Proposition 2.7 consists of three main steps, and follows the

proof in Hackbusch [44]. We formulate the first two steps as separate lemmas

and then give the final step following these lemmas. We fix ω ∈ Ω, and to simplify

the notation we do not specify the dependence on ω anywhere in the proof. We

will only consider the case 0 < t < 1 in detail. A full proof in the case of scalar

coefficients with t = 1 can be found in [9].

In the first step of the proof we consider the case D = Rd.

Lemma 2.8. Let 0 < t < 1 and D = Rd, and let T = (Tij)
d
i,j=1 be a symmetric,

uniformly positive definite d × d matrix-valued function from Rd to Rd×d, i.e.

there exists Tmin > 0 such that T(x)ξ · ξ ≥ Tmin|ξ|2 uniformly in x ∈ Rd and

ξ ∈ Rd, and let Tij ∈ Ct(Rd), for all i, j = 1, . . . , d. Consider

−div(T(x)∇w(x)) = F (x), for x ∈ Rd, (2.8)

with F ∈ Hs−1(Rd), for some 0 < s < t. Any weak solution w ∈ H1(Rd) of (2.8)

is in H1+s(Rd) and

‖w‖H1+s(Rd) .
1

Tmin

(
|T|Ct(Rd,Rd×d) |w|H1(Rd) + ‖F‖Hs−1(Rd)

)
+ ‖w‖H1(Rd).

Proof. This is essentially [44, Theorem 9.1.8] with the dependence on T made

explicit, and it can be proved using the representation of the norm on H1+s(Rd)

via Fourier coefficients, as well as a fractional difference operator Ri
h, i = 1, . . . , d,

on a Cartesian mesh with mesh size h > 0 (similar to the classical Nirenberg

translation method for proving H2 regularity). For a definition of Ri
h and more

details see [44, Theorem 9.1.8] or section A.1 in the appendix.

The second step consists in treating the case where D = Rd
+ := {y =

(y1, ..., yd) : yd > 0}.
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Lemma 2.9. Let 0 < t < 1 and D = Rd
+, and let T : D → Rd×d be as in

Lemma 2.8. Consider now (2.8) on D = Rd
+ subject to w = 0 on ∂D with

F ∈ H t−1(Rd
+). Then any weak solution w ∈ H1(Rd

+) of this problem is in

H1+s(Rd
+) and

‖w‖H1+s(Rd+) .
Tmax

T2
min

(
|T|

Ct(Rd+,Rd×d)
|w|H1(Rd+)+‖F‖Ht−1(Rd+)

)
+

Tmax

Tmin

‖w‖H1(Rd+) .

Proof. This is essentially [44, Theorem 9.1.11] with the dependence on T made

explicit. It uses Lemmas 2.4 and 2.5. For details see [44, Theorem 9.1.11] or

section A.2 in the appendix.

Proof of Theorem 2.7. We are now ready to prove Theorem 2.7 using Lemmas 2.8

and 2.9. The third and last step consists in using a covering of D by r+1 bounded

regions (Di)0≤i≤r, such that

D0 ⊂ D, D ⊂
r⋃
i=0

Di and ∂D =
r⋃
i=1

(Di ∩ ∂D).

Using a (non-negative) partition of unity {χi}0≤i≤r ⊂ C∞(Rd) subordinate to

this cover, it is possible to reduce the proof to bounding ‖χiu‖H1+s(D), for all

0 ≤ i ≤ r.

For i = 0 this reduces to an application of Lemma 2.8 with w and F chosen to

be extensions by 0 from D to Rd of χ0u and of fχ0 + A∇u · ∇χ0 + div(Au∇χ0),

respectively. The tensor T is A(x), where A is a smooth extension of A(x) on

D0 to AminId on Rd\D, and so Tmin & Amin and ‖T‖Ct(Rd,Rd×d) . ‖A‖Ct(Rd,Rd×d).

For 1 ≤ i ≤ r, the proof reduces to an application of Lemma 2.9. As for

i = 0, we can see that χiu ∈ H1
0 (D ∩ Di) is the weak solution of the problem

−div(A∇ui) = fi on D ∩ Di with fi := fχi + A∇u · ∇χi + div(Au∇χi). To

be able to apply Lemma 2.9 to the weak form of this PDE, we define now a

twice continuously differentiable bijection αi (with α−1
i also in C2) from Di to

the cylinder

Qi := {y = (y1, . . . , yd) : |(y1, . . . , yd−1)| < 1 and |yd| < 1},

such that Di∩D is mapped to Qi∩Rd
+, and Di∩∂D is mapped to Qi∩{y : yd = 0}.

22



We use α−1
i to map all the functions defined above on Di∩D to Qi∩Rd

+, and then

extend them suitably to functions on Rd
+ to finally apply Lemma 2.9. The tensor

T in this case depends on the mapping αi. However, since ∂D was assumed to be

C2, we get Tmin & Amin, Tmax . Amax and ‖T‖Ct(Rd,Rd×d) . ‖A‖Ct(Rd,Rd×d), with

hidden constants that only depend on αi, α
−1
i and their Jacobians. For details

see [44, Theorem 9.1.16] or section A.3 in the appendix.

2.3 Corner singularities

For polygonal/polyhedral domains D, the solution u can have singularities near

the non–smooth parts of the boundary Γ, i.e. near corners in 2D and near corners

and edges in 3D. These singularities can reduce the global regularity of u, and

hence need to be analysed. However, we will see that under assumptions A1-

A2, this question can be reduced to analysing the singularities of the Laplace

operator on D. We will follow [41, §5.2], and as in the previous section we

will again establish the result first path wise, almost surely in ω ∈ Ω. The key

technicality will again be to track how the constants in all the necessary estimates,

in particular in the semi-Fredholm property of the underlying random differential

operator, depend on ω.

As in [41, §5.2], for simplicity we actually consider D to be a piecewise C2

domain and restrict ourselves to R2. We again write the boundary Γ as Γ =

∪mj=1Γj, where now in 2D each Γj is an open arc of curve of class C2, and Γj

meets Γj+1 at Sj (where we identify Γm+1 and Γ1). We consider only domains

with boundaries that are rectilinear near the corners, which of course includes

Lipschitz polygonal/polyhedral domains. This means that at each corner Sj, we

can find a polygonal domain Wj ⊂ D such that the boundary ∂Wj coincides with

Γ near Sj.

For a given ω ∈ Ω, with 0 < Amin(ω) ≤ Amax(ω) < ∞, we define the

differential operator

Aωv = −div(A(ω, ·)∇v)).

The following key result, which is based on [51, §4, Theorem 5.26], is proved via

a homotopy method in the proof of [41, Lemma 5.2.5], for s = 1. The proof for

s < 1 is analogous.
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Lemma 2.10. Let m = 1 and ω ∈ Ω. If 0 < s ≤ λ∆(D) and if there exists

Csemi(ω) > 0 such that

‖v‖H1+s(D) ≤ Csemi(ω)‖Aωv‖Hs−1(D), for all v ∈ H1+s(D) ∩H1
0 (D), (2.9)

then Aω is surjective from H1+s(D) ∩H1
0 (D) to Hs−1(D).

Thus, if we can establish (2.9), which essentially means that Aω is semi-

Fredholm as an operator from H1+s(D) ∩ H1
0 (D) to Hs−1(D), for some s ≤

λ∆(D), then we can also conclude on the regularity of solutions of the stochastic

variational problem (2.1). The following lemma essentially follows [41, Lemma

5.2.3]. However, in the case of a random coefficient, we crucially need to make sure

that the constant Csemi(ω) in (2.9) has sufficiently many moments as a random

field on Ω. To ensure this we need to carefully track the dependence on A in the

bounds in [41, Lemma 5.2.5].

Lemma 2.11. Let m ∈ N and let assumptions A1 –A2 hold for some 0 < t ≤ 1.

Then (2.9) holds for all 0 < s < t s.t. s ≤ λ∆(D), s 6= 1
2
, with

Csemi(ω) =
Amax(ω)‖A(ω, ·)‖2

Ct(D,R2×2)

Amin(ω)4
:= C2.11(ω). (2.10)

In the case t = λ∆(D) = 1, (2.9) also holds for s = 1, i.e. for the H2(D)-norm.

Proof. We first consider the case where m = 1 and t = λ∆(D) = 1. For ease

of notation, we suppress the dependence on ω in the coefficient, and denote Aω

simply by A and A(ω, x) by A(x). Furthermore, we denote by A1 the operator

A with coefficients frozen at S1, i.e. A1v = −div (A(S1)∇v).

We will prove (2.9) by combining the regularity results for A in C2 domains

with regularity results of the constant coefficient operator A1 on polygonal do-

mains. Since we assume that Γ is rectilinear near S1, we can find a polyg-

onal domain W such that W ⊂ D and ∂W coincides with Γ near S1. Let

v ∈ H2(D) ∩H1
0 (D) and let η be a smooth cut-off function with support in W ,

such that η ≡ 1 near S1, and then consider ηv and (1− η)v separately. We start

with ηv.
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Let w ∈ H2(W ) ∩H1
0 (W ). We first establish the estimate

‖w‖H2(W ) .
1

Amin

‖A1w‖L2(W ). (2.11)

A proof of this estimate in the special case where A1 = −∆ can be found in [42].

We will follow the same steps. Firstly, by the Poincaré inequality, we have that

‖w‖2
H2(W ) . |w|2H2(W ) + |w|2H1(W ). (2.12)

Using integration by parts and the fact that w = 0 on ∂W , we further have

Amin |w|2H1(W ) .
∫
W

A(S1)∇w · ∇w dx =

∫
W

w∇ · (A(S1)∇w) dx (2.13)

and so via the Cauchy-Schwarz and the Poincaré inequalities

|w|H1(W ) .
1

Amin

‖A1w‖L2(W ) . (2.14)

It remains to prove a bound on |w|2H2(W ). This is easily done by noting that

|w|2H2(W ) :=

∫
W

( ∑
1≤i,j≤d

∂2w

∂xi∂xj

)2

dx

.
1

A2
min

∫
W

( ∑
1≤i,j≤d

Ai,j(S1)
∂2w

∂xi∂xj

)2

dx

=
1

A2
min

‖A1w‖2
L2(W ) . (2.15)

The estimate (2.11) now follows from (2.12)–(2.15), with the hidden constant

only depending on the shape of W . Using (2.11), we have

Amin ‖w‖H2(W ) . ‖Aw‖L2(W ) + ‖Aw − A1w‖L2(W )

= ‖Aw‖L2(W ) + ‖div(A(·)−A(S1))∇w‖L2(W )

= ‖Aw‖L2(W ) +

∥∥∥∥∥
2∑

i,j=1

∂

∂xi

(
Ai,j(·)−Ai,j(S1)

∂w

∂xj

)∥∥∥∥∥
L2(W )

.

Now, using Lemma 2.4 we get
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Amin ‖w‖H2(W )

≤ C
(
‖Aw‖L2(W ) + |A|C1(W,R2×2)|w|H1(W ) + ‖A−A(S1)‖C0(W,R2×2)|w|H2(W )

)
.

(2.16)

Denote now by C the best constant such that (2.16) holds. Since A was

assumed to be in C1(W,R2×2), we can choose W (and hence the support of η)

small enough so that

C‖A−A(S1)‖C0(W,R2×2) ≤
1

2
Amin . (2.17)

By replacing A(S1) by A in (2.13), one can show |w|H1(W ) . ‖Aw‖L2(W )/Amin.

Substituting this and (2.17) into (2.16) and using Amin ≤ Amax we have

Amin ‖w‖H2(W ) ≤ 2C

(
1 +
|A|C1(W,R2×2)

Amin

)
‖Aw‖L2(W )

.
‖A‖C1(W,R2×2)

Amin

‖Aw‖L2(W ) . (2.18)

Since v ∈ H2(D) ∩ H1
0 (D) and W contains the support of η, we have ηv ∈

H2(W ) ∩H1
0 (W ) and so estimate (2.18) applies to ηv. Thus

‖ηv‖H2(D) .
‖A‖C1(W,R2×2)

A2
min

‖A(ηv)‖L2(W ) .

Let us move on to (1 − η)v. Let D′ ⊂ D be a C2 domain that coincides

with D outside of the region where η = 1. This is always possible due to our

assumptions on the geometry of D near S1. Then (1 − η)v ∈ H2(D′) ∩H1
0 (D′),

and using Theorem 2.7 we have

‖(1− η)v‖H2(D) .
Amax‖A‖C1(D

′
,R2×2)

A3
min

‖A ((1− η)v) ‖L2(D′) .

Adding the last two estimates together and using the triangle inequality, we have

‖v‖H2(D) .
‖A‖C1(D,R2×2)

A2
min

(
‖A(ηv)‖L2(W ) +

Amax

Amin

‖A((1− η)v)‖L2(D′)

)
.

(2.19)
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It remains to bound the term in the bracket on the right hand side of (2.19)

in terms of ‖Av‖L2(D). Note that

A(ηv) = η(Av) + 2A∇η · ∇v + (Aη)v .

Thus, applying the triangle inequality and using the fact that η was assumed to

be smooth with 0 ≤ η ≤ 1, we get

‖A(ηv)‖L2(W ) . ‖Av‖L2(W ) + Amax|v|H1(W ) + ‖A‖C1(D,R2×2)‖v‖L2(W ) . (2.20)

The hidden constant depends on ‖∇η‖L∞(W ) and on ‖∆η‖L∞(W ). Finally using

Poincaré’s inequality on all of D, as well as an elliptic estimate similar to (2.14)

for v, i.e. |v|H1(D) ≤ ‖Av‖L2(D)/Amin, leads to

‖A(ηv)‖L2(W ) .
‖A‖C1(D,R2×2)

Amin

‖Av‖L2(D) .

Substituting this and the corresponding bound for ‖A((1−η)v)‖L2(D′) into (2.19),

we finally get

‖v‖H2(D) .
Amax‖A‖2

C1(D,R2×2)

A4
min

‖Av‖L2(D) ,

for all v ∈ H2(D) ∩ H1
0 (D). This completes the proof for the case m = 1 and

t = λ∆ = 1.

The proof for t < 1 and/or λ∆(D) < 1 follows exactly the same lines. As in

(2.14), one can prove the inequality ‖w‖H1(W ) . ‖A1w‖H−1(W )/Amin. Together

with (2.11) and an interpolation argument, this gives the estimate

‖w‖H1+s(W ) .
1

Amin

‖A1w‖Hs−1(W ) , (2.21)

where the hidden constant again only depends on W . Using Lemma 2.5, one can

derive the following equivalent of (2.16), for any 1
2
6= s < t:

Amin ‖w‖H1+s(W )

. ‖Aw‖Hs−1(W ) + |A|Ct(W,R2×2)|w|H1(W ) + ‖A−A(S1)‖C0(W,R2×2)‖∇w‖Hs(W ) .
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As before, the |w|H1(W ) term can be bounded using (2.13), Hölder’s inequality

and the Poincaré inequality:

Amin |w|2H1(W ) ≤ ‖w‖H1−s(W )‖Aw‖Hs−1(W ) ≤ ‖w‖H1(W )‖Aw‖Hs−1(W )

. |w|H1(W )‖Aw‖Hs−1(W ) .

The remainder of the proof requires only minor modifications.

The case m > 1 is treated by repeating the above procedure with a different

cut–off function ηj at each corner Sj. Estimate (2.18) applies to ηjv, for all j =

1, . . . ,m, and the regularity estimate in Theorem 2.7 applies to (1−
∑n

j=1 ηj)v.

We are now ready to prove regularity for Lipschitz polygonal domains D ⊂ R2.

Theorem 2.12. Let assumptions A1-A3 hold for some 0 < t ≤ 1, and let D ⊂ R2

be Lipschitz polygonal. Then u(ω, ·) ∈ H1+s(D) and

‖u(ω, ·)‖H1+s(D) . C2.12(ω),

for almost all ω ∈ Ω and for all 0 < s < t such that s ≤ λ∆(D), where

C2.12(ω) :=
Amax(ω)‖A(ω, ·)‖2

C t(D,R2×2)

Amin(ω)4
×[

‖f(ω, ·)‖Ht−1(D) + ‖A(ω, ·)‖C t(D,R2×2)

m∑
j=1

‖φj(ω, ·)‖Ht+1/2(Γj)

]
.

Moreover, u ∈ Lp(Ω, H1+s(D)), for all p < p∗. If t = λ∆(D) = 1, then u ∈
Lp(Ω, H2(D)) and the above bound holds with s = 1.

Proof. Let us first consider the case φ ≡ 0. In this case, the fact that u ∈
H1+s(D)∩H1

0 (D) and the bound on ‖u‖H1+s(D) follow immediately from Lemmas

2.10 and 2.11, for any s < t and s ≤ λ∆(D), as well as for s = 1 if t = λ∆(D) = 1,

since f = Au.

The case φ 6= 0 now follows from Theorem 2.6. We will only show the proof

for t = λ∆(D) = 1 in detail. Due to assumption A3 we can choose φ ∈ H2(D)

with ‖φ‖H2(D) .
∑m

j=1 ‖φj‖H3/2(Γj), and so f0 := f − Aφ ∈ L2(D). Since u0 :=

u− φ ∈ H1
0 (D) we can apply the result we just proved for the case φ ≡ 0 to the

problem Au0 = f0 to get

28



‖u0‖H2(D) . C2.11(ω)
(
‖Au0‖L2(D) + ‖Aφ‖L2(D)

)
. C2.11(ω)

(
‖f‖L2(D) + ‖A‖C 1(D,R2×2) ‖φ‖H2(D)

)
,

where in the last step we have used Lemma 2.5. The bound C2.12 then follows by

Minkowski’s inequality. That u ∈ Lp(Ω, H2(D)), for any p < p∗, then follows from

assumptions A1-A3, together with Minkowski’s and Hölder’s inequality, since

‖C2.12‖Lp(Ω)

≤ ‖C2.11‖Lp1 (Ω)‖f‖Lp∗ (Ω,L2(D)) +
∥∥∥C2.11 ‖A‖C1(D,R2×2)

∥∥∥
Lp1 (Ω)

m∑
j=1

‖φ‖Lp∗ (Ω,H3/2(D)),

where p1 = p∗−p
p∗p

.

Remark 2.13. (a) In order to establish u ∈ Lp(Ω, H1+s(D)), for some fixed

1 ≤ p < p∗, it would have been sufficient to assume that the constants

C2.11 and C2.11 ‖A‖C t(D,R2×2) in Theorem 2.12 are in Lq(Ω), for q = p∗−p
p∗p

.

In the case p∗ = ∞, q = p is sufficient, which in turn implies that we can

weaken assumption A1 to 1/Amin ∈ Lq(Ω) with q = 4p, or assumption A2

to A ∈ Lq(Ω, Ct(D,R2×2)) with q = 4p, or both assumptions to Lq with

q = 8p.

(b) In the case λ∆(D) = 1, it is also possible to weaken assumption A2 to A ∈
Lp(Ω, C0,1(D,R2×2)), i.e. to assume only Lipschitz continuity instead of dif-

ferentiability of the trajectories of A, and still conclude u ∈ Lp(Ω, H2(D)).

Remark 2.14. (a) The behaviour of the Laplace operator near corners is de-

scribed in detail in [41, 42]. In particular, in the pure Dirichlet case for con-

vex domains we always get λ∆(D) = 1. For non-convex domains λ∆(D) =

minmj=1 π/θj, where θj is the angle at corner Sj. Hence, λ∆(D) ≥ 1/2 for

any Lipschitz polygonal domain.

(b) In a similar manner one can prove regularity of u also in the case of Neu-

mann and mixed Dirichlet/Neumann boundary conditions provided the

boundary conditions are compatible. For example, in order to apply the

same proof technique used here at a point where a Dirichlet and a homo-

geneous Neumann boundary meet, we can first reflect the problem and the
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solution across the Neumann boundary. Then we apply the above theory

on the union of the original and the reflected domain. The regularity for

the Laplacian is in general lower in the mixed Dirichlet/Neumann case than

in the pure Dirichlet case. In particular, full regularity (i.e. λ∆(D) = 1)

is only possible, if all angles where the type of boundary condition changes

are less than π/2. For an arbitrary Lipschitz polygonal domain we can only

guarantee λ∆(D) ≥ 1/4.

(c) The 3D case is similar, but in addition to singularities at corners (for which

the analysis is identical to the above) we also need to consider edge singu-

larities. This is a bit more involved and we refer to [41, §8.2.1] for more

details. However, provided D is convex, we obtain again λ∆(D) = 1 always

in the pure Dirichlet case.

2.4 Transmission problems

We now shift our attention to more general random coefficients. In practice, one is

often interested in models with discontinuous coefficients, e.g. modelling different

rock strata in the subsurface. Such coefficients do not satisfy assumption A2, and

the regularity results from Theorem 2.12 can not be applied directly. However,

the loss of regularity is confined to the interface between different strata, and it

is still possible to prove a limited amount of regularity even globally.

Since the results in this section again crucially make use of regularity results

for operators with (piecewise) constant coefficients, and the known results in

this area are mostly restricted to the case of scalar coefficients, we will for the

remainder of this section assume that A(ω, x) = a(ω, x)Id, for some scalar random

field a(ω, x) : Ω×D → R. Let us consider (2.1) on a Lipschitz polygonal domain

D ⊂ R2 that can be decomposed into disjoint Lipschitz polygonal subdomainsDk,

k = 1, . . . , K. Let PCt(D) ⊂ L∞(D) denote the space of piecewise Ct functions

with respect to the partition {Dk}Kk=1 (up to the boundary of each region Dk).

We replace assumption A2 by the following milder assumption on the coefficient

function a:

A2*. a ∈ Lp(Ω, PCt(D)), for some 0 < t ≤ 1 and for all p ∈ [1,∞).
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Our regularity results for discontinuous coefficients rely on the following result

from [41, 58].

Lemma 2.15. Let v ∈ H1(D) and s < 1/2, and suppose that v ∈ H1+s(Dk), for

all k = 1, . . . , K. Then v ∈ H1+s(D) and

‖v‖H1+s(D) = ‖v‖H1(D) +
K∑
k=1

|v|H1+s(Dk) .

The proof of this result uses the fact that for 0 ≤ s < 1/2, w ∈ Hs(Dk) if

and only if the extension w̃ of w by zero is in Hs(Rd). Thus, we cannot expect

more than H3/2−δ(D) regularity globally in the discontinuous case. However, as

in the case of continuous fields, the regularity of the solution will also depend

on the parameter t in assumptions A2* and A3, as well as on the behaviour

of the operator Aω at any singular points. Since Lemma 2.15 restricts us to

s < 1/2 and since λ∆(D) ≥ 1/2 for any Lipschitz polygonal D ⊂ R2 in the case

of a pure Dirichlet problem, we do not have to worry about corners. Instead

we define the set of singular (or cross) points S× := {S×` : ` = 1, . . . , L} to

consist of all points S×` in D where three or more subdomains meet, as well as

all those points S×` on ∂D where two or more subdomains meet. By the same

arguments as in section 2.3, the behaviour of Aω at these singular points is again

fully described by studying transmission problems for the Laplace operator, i.e.

elliptic problems with piecewise constant coefficients, locally near each singular

point (cf. [57, 17, 58]).

Definition 2.16. Denote by T (α1, . . . , αK) the operator corresponding to the

transmission problem for the Laplace operator with (constant) material param-

eter αk on subdomain Dk, k = 1, . . . , K. Let 0 ≤ λT (D) < 1/2 be such that

T (α1, . . . , αK) is a surjective operator from H1+s(D) ∩ H1
0 (D) to Hs−1(D), for

any choice of α1, . . . , αK and for s ≤ λT (D). In other words, λT (D) is a bound

on the order of the strongest singularity of T (α1, . . . , αK).

Without any assumptions on the partition {Dk}Kk=1 or any bounds on the

constants {αk}Kk=1 it is in general not possible to choose λT (D) > 0. However,

if no more than three regions meet at every interior singular point and no more

than two at every boundary singular point, then we can choose 0 < λT (D) ≤
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1/4. If in addition each of the subregions Dk is convex, then we can choose any

0 < λT (D) < 1/2, which due to the restrictions in Lemma 2.15 is the maximum

we can achieve anyway. See for example [57, 17, 58] for details.

The following is an analogue of Theorem 2.12 on the regularity of the solution

u of (2.1) for piecewise Ct coefficients.

Theorem 2.17. Let D ⊂ R2 be a Lipschitz polygonal domain and let λT (D) > 0.

Suppose assumptions A1, A2* and A3 hold with 0 < t ≤ 1. Then, the solution u

of (2.1) is in Lp(Ω, H1+s(D)), for any 0 < s < t such that s ≤ λT (D) and for all

p < p∗.

Proof. Let us first consider φ ≡ 0 again. Then, the existence of a unique solu-

tion u(ω, ·) ∈ H1(D) of (2.1) follows again from the Lax-Milgram Lemma, for

almost all ω ∈ Ω. Also note that restricted to Dk the transmission operator

T (α1, . . . , αK) = αk∆, for all k = 1, ..., K. Therefore, using assumption A2* we

can prove as in section 2.3 via a homotopy method that u(ω, ·) restricted to Dk

is in H1+s(Dk), for any s < t and s ≤ λT (D), for almost all ω ∈ Ω. The result

then follows from Lemma 2.15 and an application of Hölder’s inequality. The

case φ 6≡ 0 follows as in the proof to Theorem 2.12 via a trace estimate.

Remark 2.18. The results in this section can easily be extended to the case

where also the partitioning {Dk}Kk=1 is random (i.e. depends on ω). The value of

λT (D) will in this case be such that T (α1, . . . , αK) is a surjective operator from

H1+s(D)∩H1
0 (D) to Hs−1(D), for any choice of α1, . . . , αK , for almost all ω ∈ Ω

and for s ≤ λT (D). See section 3.6 for an example of such a random partitioning.

2.5 A dual problem

In this section we briefly discuss some dual problems to the variational problem

(2.4), and show how the regularity results from the previous sections apply in this

case. The dual problems will be used in chapter 3 to prove optimal convergence

rates of the discretisation error.

Denote by Mω : H1(D)→ R some measurable functional on H1(D). Like the

bilinear form bω(·, ·), the functional Mω(·) is again parametrised by ω, and the

analysis is done almost surely in ω. When the functional does not depend on ω,

we will simply write M instead of Mω.
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To give the basic idea, let us assume for the moment that Mω is linear and

bounded on H1(D), i.e. Mω(v) . ‖v‖H1(D), for all v ∈ H1(D). Now, let us

associate with our primal problem (2.4) the following dual problem: find z(ω, ·) ∈
H1

0 (D) such that

bω
(
v, z(ω, ·)

)
= Mω(v) , for all v ∈ H1

0 (D),

where the bilinear form bω(·, ·) again is as in (2.5). Since Mω is linear and

bounded, we can apply the Lax-Milgram Lemma to ensure existence and unique-

ness of a weak solution z(ω, ·) ∈ H1
0 (D), for almost all ω.

For nonlinear functionals, following [59], the dual problem is not defined as

above. Instead, a different functional is chosen on the right hand side (which

reduces to Mω in the linear case). It is related to the derivative of the functional

of interest and so we need to assume a certain differentiability of Mω. We will

assume here that Mω is continuously Fréchet differentiable. In particular, this

implies that Mω is also Gateaux differentiable, with the two derivatives being the

same.

Let v, w ∈ H1(D). Then the Gateaux derivative of Mω at w and in the

direction v is defined as

DvMω(w) := lim
ε→0

Mω(w + εv)−Mω(w)

ε
.

For w1, w2 ∈ H1(D), we define

DvMω(w1, w2) :=

∫ 1

0

DvMω(w1 + θ(w2 − w1)) dθ,

which is in some sense an average derivative of Mω on the path from w1 to w2,

and define the dual problem now as: find z(ω, ·) ∈ H1
0 (D) such that

bω
(
v, z(ω, ·)

)
= DvMω(w1, w2), for all v ∈ H1

0 (D). (2.22)

Note that, for any linear functional Mω, we have DvMω(w1, w2) = Mω(v), for all

v ∈ H1
0 (D).

For our further analysis, we need to make the following assumption on Mω.

F1. Let w1(ω), w2(ω) ∈ H1(D). Let Mω be continuously Fréchet differentiable,
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and suppose that there exists t∗ ∈ [0, 1], q∗ ∈ [1,∞] and CF1 ∈ Lq∗(Ω), such

that

|DvMω(w1(ω), w2(ω))| . CF1(ω)‖v‖H1−t∗ (D) ,

for all v ∈ H1
0 (D) and for almost all ω ∈ Ω.

The random variable CF1 in assumption F1 may depend on ω through the func-

tional Mω, as well as w1(ω) and w2(ω).

As in the linear case, it is sufficient to assume that |DvMω(w1, w2)| is bounded

in H1(D), i.e. that assumption F1 holds with t∗ = 0, to ensure existence and

uniqueness of the dual solution z(ω, ·) ∈ H1
0 (D), for almost all ω ∈ Ω. As in

Lemma 2.1, we then have

‖z(ω, ·)‖H1(D) .
CF1(ω)

Amin(ω)
,

for almost all ω ∈ Ω. However, in order to apply Theorem 2.12 to prove stronger

spatial regularity for z, we need to assume boundedness of |DvMω(w1, w2)| in

H1−t∗(D), for some t∗ > 0. In particular, if assumptions A1–A3 and F1 are

satisfied with t ∈ (0, 1] and t∗ ∈ (0, 1], then by Theorem 2.12 we have for almost

all ω ∈ Ω,

‖z(ω, ·)‖H1+s(D) .
Amax(ω)‖A(ω, ·)‖2

Ct(D,Rd×d)

Amin(ω)4
CF1(ω),

for any 0 < s < min(t, t∗) such that s ≤ λ∆(D) and for almost all ω ∈ Ω.

To finish, let us give some examples of output functionals which fit into the

framework described above. We start with linear functionals.

(a) Point evaluations: Since A(ω, ·) ∈ Ct(D,Rd×d), we know that trajecto-

ries of the solution u are in C1+t(D) (see e.g. [31]), and it is meaningful

to consider point values. Consider M (1)(u) := u(x∗), for some x∗ ∈ D.

For D ⊂ R, i.e. in one space dimension, we have the compact embedding

H1/2+δ(D) ↪→ Cδ(D), for any δ > 0, and so

M (1)(v) = v(x∗) ≤ ‖v‖C0(D) . ‖v‖H1/2+δ(D), for all v ∈ H1(D).

Hence, assumption F1 is satisfied for any t∗ < min(1
2
, t) with CF1 = 1 and
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q∗ =∞.

In space dimensions higher than one, point evaluation of the pressure u

is not a bounded functional on H1(D). One often regularises this type of

functional by approximating the point value by a local average,

M (2)(v) :=
1

|D∗|

∫
D∗
v dx

[
≈ v(x∗)

]
,

where D∗ is a small subdomain of D that contains x∗ [35]. Here, M (2)

satisfies F1 with CF1 = 1, t∗ = 1 and q∗ = ∞, due to the Cauchy-Schwarz

inequality.

Similarly, point evaluations of the flux −A∇v can be approximated by a

local average. However, in this case F1 only holds for t∗ = 0 with CF1(ω) =

Amax(ω) and q∗ =∞.

Next we give some examples of non–linear functionals. The first obvious

example is to estimate higher order moments of linear functionals.

(b) Second moment of average local pressure: Let Mω be an arbitrary

linear functional and let q > 1. Then

Dv

(
Mω(ṽ)q

)
= lim

ε→0

Mω(ṽ + εv)q −Mω(ṽ)q

ε
= qMω(ṽ)q−1Mω(v).

Thus, in case of the second moment of the average local pressure M (3)(v) :=

M (2)(v)2, this gives

DvM
(3)(ṽ) =

2

|D∗|2

(∫
D∗
v dx

) (∫
D∗
ṽ dx

)
,

and so

|DvM (3)(w1(ω), w2(ω))|

=
2

|D∗|2

∣∣∣∣(∫
D∗
v dx

) (∫ 1

0

∫
D∗

(w1(ω) + θ(w2(ω)− w1(ω))) dxdθ

)∣∣∣∣
=

1

|D∗|2

∣∣∣∣(∫
D∗
v dx

) (∫
D∗
w1(ω) + w2(ω) dx

)∣∣∣∣
.
(
‖w1(ω)‖L2(D) + ‖w2(ω)‖L2(D)

)
‖v‖L2(D) .
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So assumption F1 is satisfied for all t∗ ≤ 1 and with q∗ such that CF1(ω) =(
‖w1(ω)‖L2(D) + ‖w2(ω)‖L2(D)

)
∈ Lq∗(Ω).

(c) Outflow through boundary: Consider M
(4)
ω (v) := Lω(ψ)− bω(ψ, v), for

some given function ψ ∈ H1(D). Note that for the solution u of (2.4), by

Green’s formula, we have

M (4)
ω (u) =

∫
D

ψ(x)f(x, ω) dx−
∫
D

A(ω, x)∇ψ(x) · ∇u(ω, x) dx

= −
∫
D

ψ(x)∇ · (A(ω, x)∇u(ω, x)) dx−
∫
D

A(ω, x)∇ψ(x) · ∇u(ω, x) dx

= −
∫

Γ

ψ(x)A(ω, x)∇u(ω, x) · ν ds .

Thus, M
(4)
ω (u) is equal to the outflow through the boundary Γ weighted by

ψ, and so M
(4)
ω can be used to approximate the flux through a part Γout ⊂ Γ

of the boundary, by setting ψ|Γout ≈ 1 and ψ|Γ\Γout ≈ 0, see e.g. [3, 26, 35].

Note that for f 6≡ 0 this functional is only affine, not linear. When f ≡ 0,

then it is linear. In any case,

DvM
(4)
ω (ṽ) := lim

ε→0

M
(4)
ω (ṽ + εv)−M (4)

ω (ṽ)

ε

= lim
ε→0

−
∫
D

A(ω, x)∇ψ(x) · ∇(εv(ω, x)) dx

ε

= −
∫
D

A(ω, x)∇ψ(x) · ∇v(x) dx

=

∫
D

v(x)∇ · (A(ω, x)∇ψ(x)) dx ,

for v, ṽ ∈ H1
0 (D). Since this is independent of ṽ, we have in particular

DvM
(4)
ω (w1(ω), w2(ω)) =

∫
D

v(x)∇ · (A(ω, x)∇ψ(x)) dx,

for any w1(ω), w2(ω) ∈ H1(D). If we now assume that assumptions A1-A3

are satisfied for some 0 < t ≤ 1 and that ψ ∈ H1+t(D), then using Lemmas
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2.4 and 2.5, we have ∇ψ ∈ H t(D) and for any t∗ < t,

|DvM
(4)
ω (w1(ω), w2(ω))| ≤ ‖∇ · (A(ω, ·)∇ψ) ‖Ht∗−1(D)‖v‖H1−t∗ (D)

. ‖ (A(ω, ·)∇ψ) ‖Ht∗ (D)‖v‖H1−t∗ (D)

. ‖A(ω, ·)‖Ct(D,Rd×d)‖∇ψ‖Ht∗ (D)‖v‖H1−t∗ (D).

(2.23)

Hence, assumption F1 is satisfied, for any q∗ <∞ and t∗ < t, with CF1(ω) =

‖A(ω, ·)‖Ct(D,Rd×d). If t = 1, then estimate (2.23) holds with t∗ = t = 1, and

assumption F1 is satisfied with t∗ = 1. Our assumption on ψ is satisfied

for example if ψ is linear, which is a suitable choice for the numerical test

in the next section.

The functional 1
Γout

∫
Γout

A(ω, x)∇u(ω, x) · ν ds (or its regularised equivalent

over a narrow region near Γout), which also approximates the flux through Γout,

can only be bounded in H1(D), and will hence satisfy assumption F1 only with

t∗ = 0.

2.6 Regularity in Hölder spaces

Some error bounds in chapter 3 will require results about the spatial regularity of

u in Hölder spaces. In the special case of scalar coefficients A(ω, x) = a(ω, x)Id,

for some a(ω, x) : Ω×D → R, the following result was proved in [11].

Proposition 2.19. Suppose D ⊂ Rd is a C2–domain, and consider the boundary

value problem

−div (a(ω, x)∇w(ω, x)) = f(ω, x), for x ∈ D,

w(ω, x) = 0, for x ∈ ∂D .

Let assumptions A1-A2 hold with 0 < t < 1, and suppose f ∈ Lp∗(Ω, Lq(D)), for

some p∗ ∈ (0,∞] and q > d/(1− t), q ≥ 2. Then, w(ω, ·) ∈ C1+t(D) for almost

all ω ∈ Ω, and

‖w(ω, ·)‖C1+t(D) . C2.19(ω),
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where

C2.19(ω) := ‖a(ω, ·)‖
2+p+8t−(2+p)t2

2t(1−t)

Ct(D)
amin(ω)−

2+p+(2−p)t−2t2

2t(1−t) ‖f(ω, ·)‖Lq(D).

It follows that u ∈ Lp(Ω, C1+t(D)), for any p < p∗.

Note that it is in general not true that u(ω, ·) ∈ C2(D) if a(ω, ·) ∈ C1(D) and

f(ω, ·) ∈ C0(D).

To conclude on the Hölder regularity of solutions to problems posed on polyg-

onal domains, one would again have to analyse possible corner singularities, as

is done in section 2.3. The regularity of u will again depend on t, as well as the

angles in D. In particular, we have u(ω, ·) ∈ C1+t(D), for almost all ω ∈ Ω, if all

the angles are less than π/(1 + t) (see [31, Theorem 6.2.10]).

Alternatively, one can use the Sobolev embedding theorem (see e.g. [1]), to

conclude from Theorem 2.12 that u(ω, ·) ∈ Cs(D), for any s < t such that

s ≤ λ∆(D), with ‖u(ω, ·)‖Cs(D) ≤ C2.12(ω). However, this approach does not lead

to sharp bounds on the Hölder regularity of u.

2.7 Log–normal random fields

A coefficient of particular interest in subsurface flow applications of (2.1) is a

scalar log-normal random field a(ω, x), where a(ω, x) = exp [g(ω, x)], with g :

Ω×D → R denoting a Gaussian field. We consider homogeneous Gaussian fields

with Lipschitz continuous covariance kernel

C(x, y) := E
[
(g(ω, x)− E[g(ω, x)])(g(ω, y)− E[g(ω, y)])

]
= k
(
‖x− y‖

)
, (2.24)

for some k ∈ C0,1(R+) and some norm ‖ · ‖ in Rd.

With this type of covariance function, it follows from Kolmogorov’s Theorem

[60] that, for all t < 1/2, the trajectories of g belong to Ct(D) almost surely. More

precisely, Kolmogorov’s Theorem ensures the existence of a version g̃ of g (i.e. for

any x ∈ D, we have g(·, x) = g̃(·, x) almost surely) such that g̃(ω, ·) ∈ Ct(D), for

almost all ω ∈ Ω. In particular, we have for almost all ω, that g(ω, ·) = g̃(ω, ·)
almost everywhere. We will identify g with g̃ in what follows.

Built on the Hölder continuity of the trajectories of g and using Fernique’s
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Theorem [60], it was shown in [10] that assumption A1 holds and that a ∈
Lp(Ω, C0(D)), for all p ∈ [1,∞). We will here prove that assumption A2 holds

for log–normal random fields, i.e. that a ∈ Lp(Ω, Ct(D)), for some 0 < t ≤ 1 and

for all p ∈ [1,∞).

Lemma 2.20. Let g be a Gaussian field with covariance (2.24). Then the tra-

jectories of the log-normal field a = exp [g] belong to Ct(D) almost surely, for

all t < 1/2, and

‖a(ω, ·)‖Ct(D) ≤
(

1 + 2 |g(ω, ·)|Ct(D)

)
amax(ω) .

Proof. Fix ω ∈ Ω and t < 1/2. Since the trajectories of g belong to Ct(D) almost

surely, we have

|eg(ω,x) − eg(ω,y)| ≤ |g(ω, x)− g(ω, y)|
(
eg(ω,x) + eg(ω,y)

)
≤ 2 amax(ω) |g(ω)|Ct(D) |x− y|t.

for any x, y ∈ D. Now, amax(ω) |g(ω)|Ct(D) <∞ almost surely, and so the result

follows by taking the supremum over all x, y ∈ D.

Lemma 2.20 can in fact be generalised from the exponential function to any

smooth function of g.

Proposition 2.21. Let g be a mean zero Gaussian field with covariance (2.24).

Then assumptions A1–A2 are satisfied for the log-normal field a = exp [g] with

any t < 1
2
.

Proof. Clearly by definition amin ≥ 0. The proof that 1/amin ∈ Lp(Ω), for all

p ∈ (0,∞), is based on an application of Fernique’s Theorem [60] and can be

found in [10, Proposition 2.3]. To prove assumption A2 note that, for all t < 1/2

and p ∈ (0,∞), g ∈ Lp(Ω, Ct(D)) (cf. [10, Proposition 3.8]) and amax ∈ Lp(Ω)

(cf. [10, Proposition 2.3]). Thus the result follows from Lemma 2.20 and an

application of Hölder’s inequality.

The results in Proposition 2.21 can be extended to log-normal random fields

for which the underlying Gaussian field g(ω, x) does not have mean zero, under

the assumption that this mean is sufficiently regular. Adding a mean µ(x) to g,

39



we have a(ω, x) = exp[µ(x)] exp[g(ω, x)], and assumptions A1-A2 are satisfied if

µ(x) ∈ Ct(D).

A typical example of a covariance function used in practice (cf. [49]) that is

only Lipschitz continuous is the exponential covariance function given by

k(‖x− y‖p) = σ2exp (−‖x− y‖p/λ) , x, y ∈ D, (2.25)

where ‖ · ‖p denotes the `p-norm in Rd and typically p = 1 or 2. The parameters

σ2 and λ denote the variance and the correlation length, respectively, and in

subsurface flow applications typically only σ2 ≥ 1 and λ ≤ diamD will be of

interest. Smoother covariance functions, such as the Gaussian covariance kernel

k(‖x− y‖p) = σ2 exp(−‖x− y‖2
p/λ

2), x, y ∈ D, (2.26)

which is analytic on D × D, or more generally the covariance functions in the

Matérn class with ν > 1, all lead to g ∈ C1(D) and thus assumption A2 is

satisfied for all t ≤ 1.

As an example of a random coefficient that satisfies assumption A2*, we can

consider a piecewise log-normal random field a = exp(g) such that g|Dk := gk, for

all k = 1, . . . , K, where {gk}Kk=1 is a set of independent Gaussian random fields.

If gk has mean µk ∈ C1/2(D) and exponential covariance function (2.25), then

assumption A2* is satisfied for all t < 1/2. Similarly, if we let gk be a Gaussian

field with mean µk ∈ C1(D) and Gaussian covariance function (2.26), we have

assumption A2* satisfied for any t ≤ 1. The mean µk(x), the variance σ2
k and

the correlation length λk can be vastly different from one subregion to another.

An example of a random tensor A(ω, x) that satisfies assumptions A1 and

A2, for all p ∈ [1,∞), is a tensor of the form A = exp(g1)K1 + exp(g2)K2, where

g1 and g2 are scalar Gaussian random fields with a Hölder–continuous mean and

a Lipschitz continuous covariance function, and K1 and K2 are deterministic

tensors satisfying (deterministic versions of) assumptions A1–A2.
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Chapter 3

Discretisation Error Analysis

We now turn to a (spatial) discretisation error analysis of the solution u to model

problem (2.1). As in the previous chapter, we will first establish results for

trajectories of u, i.e. for a fixed ω ∈ Ω, and from this deduce estimates for the

moments of the error. We will mostly consider approximations using standard,

continuous, piecewise linear finite elements on Lipschitz polygonal/polyhedral

domains.

Denote by {Th}h>0 a shape-regular family of simplicial triangulations of the

Lipschitz polygonal/polyhedral domain D, parametrised by its mesh width h :=

maxτ∈Th diam(τ). Associated with each triangulation Th we define the space

Vh,φ :=
{
vh ∈ C0(D) : vh|T linear ∀T ∈ Th, and vh|Γj = φj, for all j = 1, . . . ,m

}
of continuous, piecewise linear functions on D that satisfy the boundary condi-

tions in (2.1). For simplicity we assume that the functions {φj}mj=1 are piecewise

linear with respect to the triangulation Th restricted to Γj. To deal with more

general boundary conditions is a standard exercise in finite element analysis (see

e.g. [7, §10.2]).

The finite element approximation of u in Vh,φ, denoted by uh, is now found

by solving

bω
(
uh(ω, ·), vh

)
= Lω(v) , for all vh ∈ Vh,0, (3.1)

where the bilinear form bω(·, ·) and the linear functional Lω(·) are as in (2.5) and

(2.6), respectively. Since bω is bounded and coercive on H1
0 (D) (cf Lemma 2.1),
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we have

‖uh(ω, ·)‖H1(D) . C2.1(ω).

The remainder of this chapter is devoted to quantifying the error committed

in approximating u by uh. We make the following assumption.

R1. There exist 0 < su ≤ 1 and 1 ≤ pu ≤ ∞ such that for almost all ω ∈ Ω,

‖u(ω, ·)‖H1+su (D) ≤ CR1(ω),

for some CR1 ∈ Lpu(Ω).

Assumption R1 holds under reasonable assumptions on A, f and {φj}mj=1, as

discussed in chapter 2. For examples, see Theorems 2.12 and 2.17.

We start the error analysis by deriving bounds on (moments of) |u−uh|H1(D)

and ‖u− uh‖L2(D) in §3.1. In §3.2, we then use these results to prove a bound on

Mω(u) −Mω(uh), for any continuously differentiable functional Mω. In §3.3, we

establish bounds on ‖u− uh‖W 1,∞(D) and ‖u− uh‖L∞(D) using techniques similar

to those in §3.1. Since the exact computation of the finite element solution

uh is in general not possible in practice, we analyse some variational crimes,

such as quadrature and truncation errors, in §3.4. §3.5 shows how the results

from the previous sections can be used to also prove convergence of finite volume

methods. Some of the results proved in this chapter are then finally demonstrated

numerically in §3.6.

3.1 H1 and L2 error estimates

The key tools in proving convergence of the finite element method are Céa’s

lemma and a best approximation result (cf [7]):

Lemma 3.1 (Céa’s Lemma). Let u and uh be the solutions to (2.4) and (3.1),

respectively, and let 0 < Amin(ω) ≤ Amax(ω) <∞. Then,

|(u− uh)(ω, ·)|H1(D) ≤
(

Amax(ω)

Amin(ω)

)1/2

inf
vh∈Vh,φ

|u(ω, ·)− vh|H1(D).
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Lemma 3.2. Let v ∈ H1+s(D) ∩H1
0 (D), for some 0 < s ≤ 1. Then

inf
vh∈Vh,φ

|v − vh|H1(D) . ‖v‖H1+s(D) h
s,

where the hidden constant is independent of v and h.

An estimate of the error |u− uh|H1(D) now follows.

Theorem 3.3. Let assumptions A1–A2 hold with t = 0, and let assumption R1

hold for some 0 < su ≤ 1 and 1 ≤ pu ≤ ∞. Then, for all p < pu and h > 0, we

have

‖u− uh‖Lp(Ω,H1
0 (D)) . C3.3 h

su , with C3.3 :=

∥∥∥∥∥
(

Amax

Amin

)1/2
∥∥∥∥∥
Lq(Ω)

‖CR1‖Lpu (Ω) ,

where q = pup
pu−p .

Proof. It follows directly from Lemmas 3.2 and 3.1, together with assumption

R1, that for almost all ω ∈ Ω,

|(u− uh)(ω, ·)|H1(D) .

(
Amax(ω)

Amin(ω)

)1/2

CR1(ω)hsu . (3.2)

The claim of the Theorem then follows from assumptions A1-A2 and R1, together

with Hölder’s inequality:

‖u− uh‖Lp(Ω,H1
0 (D)) .

∥∥∥∥∥
(

Amax

Amin

)1/2

CR1 h
su

∥∥∥∥∥
Lp(Ω)

.

∥∥∥∥∥
(

Amax

Amin

)1/2
∥∥∥∥∥
Lq(Ω)

‖CR1‖Lpu (Ω) h
su

. ‖Amax‖1/2
Lq1 (Ω) ‖Amin‖1/2

Lq2 (Ω) ‖CR1‖Lpu (Ω) h
su ,

where q = pup
pu−p and q−1

1 + q−1
2 = q−1. Since we can choose any q1, q2 ∈ [1,∞), it

follows that we can choose any p < pu.

The usual duality (or Aubin–Nitsche) trick leads to a bound on the L2–error.

To this end, denote by z1(ω, ·) ∈ H1
0 (D) the solution to dual problem (2.22) with

Mω(v) = (u− uh, v)L2(D), i.e.

bω
(
v, z1(ω, ·)

)
= ((u− uh)(ω, ·), v)L2(D) , for all v ∈ H1

0 (D). (3.3)
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We make the following assumption on the regularity of z1.

R2. For su as in assumption R1, we have that for almost all ω ∈ Ω,

‖z1(ω, ·)‖H1+su (D) ≤ CR2(ω) ‖(u− uh)(ω, ·)‖L2(D),

for some CR2 ∈ Lp(Ω), for all 1 ≤ p <∞.

Note that this assumption is more specific than assumption R1, due to the explicit

dependence of the bound on ‖(u−uh)(ω, ·)‖L2(D). The constant CR2 is assumed to

be in Lp(Ω), for any p <∞, since it will typically only depend on the coefficient

A. It follows again from Theorem 2.12 that assumption R2 is satisfied for the

model problems considered in chapter 2.

We then have the following estimate on ‖u− uh‖L2(D).

Corollary 3.4. Let assumptions A1–A2 hold with t = 0, let assumption R1 hold

for some 0 < su ≤ 1 and 1 ≤ pu ≤ ∞ and let assumption R2 hold. Then, for all

p < pu and h > 0, we have

‖u− uh‖Lp(Ω,L2(D)) . C3.4 h
2su , with C3.4 =

∥∥∥∥∥CR2 A
3/2
max

A
1/2
min

∥∥∥∥∥
Lq(Ω)

‖CR1‖Lpu (Ω),

where q = pu−p
pu p

.

Proof. Dropping for brevity the dependence on ω, and using the dual problem

(3.3), Galerkin orthogonality and the boundedness of bω(·, ·), we have

‖u− uh‖2
L2(D) = (u− uh, u− uh)L2(D) = inf

zh∈Vh,0
bω(u− uh, z1 − zh)

. Amax |u− uh|H1(D) inf
zh∈Vh,0

|z1 − zh|H1(D).

As in (3.2), we have |u − uh|H1(D) . (Amax/Amin)1/2CR1h
su . It follows from

Lemma 3.2, together with assumption R2, that infzh∈Vh,0 |z1−zh|H1(D) . CR2 ‖u−
uh‖L2(D)h

su . Combining the estimates gives

‖u− uh‖L2(D) . Amax

(
Amax

Amin

)1/2

CR1CR2 h
2su .

The claim of the Corollary then follows by an application of Hölder’s inequality,

together with assumption A1-A2, R1 and R2.
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3.2 Error estimates for functionals

In practical applications, one is often interested in the expected value of function-

als of the solution. A standard technique to prove convergence for finite element

approximations of output functionals is to use a duality argument, similar to

the classic Aubin-Nitsche trick used to prove optimal convergence rates for the

L2-norm.

Denote by Mω(·) : H1(D) → R the functional of interest, and assume Mω

satisfies assumption F1 with w1 = u,w2 = uh and t∗ = 0. Denote by z2(ω, ·) ∈
H1

0 (D) the solution to dual problem (2.22) with w1 = u and w2 = uh, i.e.

bω
(
v, z2(ω, ·)

)
= DvMω(u(ω, ·), uh(ω, ·)), for all v ∈ H1

0 (D).

Denote correspondingly by z2,h(ω, ·) the finite element approximation in Vh,0. We

make the following assumption on the regularity of z2.

R3. There exist 0 ≤ sz ≤ 1 and 1 ≤ pz ≤ ∞ such that for almost all ω ∈ Ω,

‖z2(ω, ·)‖H1+sz (D) ≤ CR3(ω) ,

for some CR3 ∈ Lpz(Ω).

Assumptions R3 again holds under reasonable assumptions on the data A, f and

{φj}mj=1, and for a large class of functionals Mω, as discussed in section 2.5.

Recall that we assumed that the boundary data {φj}mj=1 are piecewise linear

with respect to Th, and so u− uh ∈ H1
0 (D). From the Fundamental Theorem of

Calculus for Fréchet derivatives, it follows that

Mω(u)−Mω(uh) =

∫ 1

0

Du−uhMω(u+ θ(uh − u)) dθ = Du−uhMω(u, uh)

= bω(u− uh, z2). (3.4)

We then have the following error bound.
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Lemma 3.5. For almost all ω ∈ Ω,

|Mω (u(ω, ·))−Mω (uh(ω, ·))|

≤ Amax(ω) |u(ω, ·)− uh(ω, ·)|H1(D) inf
zh∈Vh,0

|z2(ω, ·)− zh(ω, ·)|H1(D) . (3.5)

Proof. Dropping for brevity the dependence on ω and using (3.4), as well as

Galerkin orthogonality for the primal problem (2.4) and the boundedness of bω,

we have

|Mω(u)−Mω(uh)| = |bω(u− uh, z2)| = inf
zh∈Vh,0

|bω(u− uh, z2 − zh)|

≤ Amax(ω) |u− uh|H1(D) inf
zh∈Vh,0

|z2 − zh|H1(D) .

This simple argument will be crucial to obtain optimal convergence rates for

functionals.

Remark 3.6. Continuous Fréchet differentiability is in fact not a necessary con-

dition to obtain the bound in Lemma 3.5. It is sufficient to assume only Lipschitz

continuity of Mω (see e.g.[13]).

We are now ready to prove optimal convergence rates for moments of the finite

element error for Fréchet differentiable (and thus also for linear) functionals as

defined above.

Lemma 3.7. Let assumptions A1–A2 hold with t = 0, let assumption R1 hold

with some 0 < su ≤ 1 and 1 ≤ pu ≤ ∞, and let assumption R3 hold with some

0 ≤ sz ≤ 1 and 1 ≤ pz ≤ ∞. Then, for any p < pupz
pu+pz

, we have

‖Mω(u)−Mω(uh)‖Lp(Ω) . C3.7h
su+sz ,

with

C3.7 :=

∥∥∥∥∥A
3/2
max

A
1/2
min

∥∥∥∥∥
Lq(Ω)

‖CR1‖Lpu (Ω) ‖CR3‖Lpz (Ω),

where q = pu pz p
pupz−pup−pzp .
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Proof. Dropping for brevity the dependence on ω, we have from Lemma 3.5 that

for almost all ω ∈ Ω,

|Mω (u)−Mω (uh)| ≤ Amax |u− uh|H1(D) inf
zh∈Vh,0

|z2 − zh|H1(D) .

As in (3.2), we have |u − uh|H1(D) . (Amax/Amin)1/2CR1h
su . It follows from

Lemma 3.2, together with assumption R3, that infzh∈Vh,0 |z2−zh|H1(D) . CR3 h
sz .

Combining the estimates together gives

|Mω (u)−Mω (uh)| ≤ Amax

(
Amax

Amin

)1/2

CR1 CR3 h
su hsz .

The claim of the Lemma then follows from assumptions A1-A2, R1 and R3,

together with Hölder’s inequality.

3.3 L∞ and W 1,∞ error estimates

The aim of this section is to derive bounds on moments of ‖u− uh‖L∞(D) and

|u−uh|W 1,∞(D). A classical method used to derive these estimates, is the method

of weighted Sobolev spaces by Nitsche. The results presented in this section are

specific to continuous, linear finite elements on quasi-uniform triangulations Th
in R2, but extensions to higher spatial dimensions and/or higher order elements

can be proved in a similar way (see e.g. [14]).

As in the previous sections, the convergence rate of the finite element error

depends on the spatial regularity of u. However, instead of requiring a certain

Sobolev regularity of u, we will now require a certain Hölder regularity. We make

the following assumption.

R4. There exist 0 < su ≤ 1 and 1 ≤ pu ≤ ∞ such that for almost all ω ∈ Ω,

‖u(ω, ·)‖C1+su (D) ≤ CR4(ω),

for some CR4 ∈ Lpu(Ω).

Assumption R4 holds for model problem (2.1) under reasonable assumptions on

the data A, f and {φj}mj=1, as discussed in section 2.6.
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As for the H1 error in section 3.1, the key ingredients in proving the error

bounds in the L∞-norm and W 1,∞-norm are a quasi-optimality result (similar to

Lemma 3.1) and a best approximation result (similar to Lemma 3.2).

To prove quasi-optimality, we will use the method of weighted norms by

Nitsche. For the case A = Id, a full proof can be found in [14, §3.3]. For

simplicity, we shall restrict ourselves to the case u ∈ H1
0 (D), i.e. φ = 0 in model

problem (2.1).

Denote by Ph : H1
0 (D) → Vh,0 the projection operator associated with the

inner product bω, defined for all v ∈ H1
0 (D) by the relations

Phv ∈ Vh,0 and ∀wh ∈ Vh,0, bω(v − Phv, wh) = 0.

We hence in particular have Phu = uh. The main idea of the proof of the quasi-

optimality is then to show that the projection operators Ph can be bounded inde-

pendently of h, provided the norms on H1
0 (D) and Vh,0 are chosen in a particular,

h–dependent way. This gives the following bound.

Lemma 3.8. Let 0 < Amin(ω) ≤ Amax(ω) <∞. For all v ∈ H1
0 (D) ∩W 1,∞(D)

and h sufficiently small, we have

| lnh|−1/2 ‖Phv‖L∞(D) + h |Phv|W 1,∞(D)

.
Amax(ω)

Amin(ω)

(
‖v‖L∞(D) + h | lnh| |v|W 1,∞(D)

)
. (3.6)

Proof. The proof is identical to that of [14, Theorem 3.3.6], with the dependence

of the bound on A made explicit. In particular, the dependence on A enters in

the proof of [14, Theorem 3.3.5], which uses the coercivity and boundedness of

the bilinear form bω.

This now allows us to prove the following quasi–optimality result.

Lemma 3.9. For all h sufficiently small,

| lnh|−1/2 ‖(u− uh)(ω, ·)‖L∞(D) + h |(u− uh)(ω, ·)|W 1,∞(D)

.
Amax(ω)

Amin(ω)
inf

vh∈Vh,0

(
‖u(ω, ·)− vh‖L∞(D) + h| lnh| |u(ω, ·)− vh|W 1,∞(D)

)
.
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Proof. We first note that for any vh ∈ Vh,0, we have the identity

u− uh = u− Phu = (I − Ph)(u− vh), (3.7)

where I denotes the identity operator.

Next, we note that the norm of the identity mapping from H1
0 (D)∩W 1,∞(D)

equipped with the norm v → ‖v‖L∞(D) + h | lnh| |v|W 1,∞(D), into the same space

equipped with the norm v → | lnh|−1/2 ‖v‖L∞(D) + h |v|W 1,∞(D), can be bounded

by | lnh0|−1/2 for all h ≤ min{h0, e−1}, for some h0 > 0. The claim of the Lemma

then follows from (3.7), together with Lemma 3.8.

We have the following result on the best approximation error (see e.g [14, 63]).

Lemma 3.10. Let v ∈ Cr(D), for some 1 < r ≤ 2. Then

inf
vh∈Vh,0

(
‖v − vh‖L∞(D) + h|v − vh|W 1,∞(D)

)
. hr ‖v‖C r(D),

where the hidden constant is independent of v and h.

Proof. Firstly note that for v ∈ Cr(D), the norms ‖v‖Cr(D) and ‖v‖W r,∞(D) are

equivalent (see e.g. [56]). It follows from [14, Theorem 3.1.6] that

inf
vh∈Vh,0

(
‖v − vh‖L∞(D) + h|v − vh|W 1,∞(D)

)
. h2 ‖v‖W 2,∞(D),

and

inf
vh∈Vh,0

(
‖v − vh‖L∞(D) + h|v − vh|W 1,∞(D)

)
. h ‖v‖W 1,∞(D).

By interpolation (see e.g [7, §14]), it then follows that

inf
vh∈Vh,0

(
‖v − vh‖L∞(D) + h|v − vh|W 1,∞(D)

)
. hr ‖v‖W r,∞(D),

for any 1 < r ≤ 2. The claim of the lemma then follows.

Combining Lemmas 3.9 and 3.10, we have the following convergence result.

Theorem 3.11. Suppose Th is a quasi-uniform triangulation of D ⊂ R2, and

suppose φ = 0. Let assumptions A1-A2 hold with t = 0, and let assumption R4
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hold with some 0 < su ≤ 1 and 1 ≤ pu ≤ ∞. Then, for all p < pu, s < su and h

sufficiently small, we have

‖u− uh‖Lp(Ω,L∞(D)) + h|u− uh|Lp(Ω,W 1,∞(D)) . C3.11 h
1+s,

with

C3.11 :=

∥∥∥∥Amax

Amin

∥∥∥∥
Lq(Ω)

‖CR4‖Lpu (Ω) ,

where q = p−pu
pu p

.

Proof. It follows from Lemmas 3.9 and 3.10, together with | lnh| < hδ for any

δ > 0, that, for almost all ω ∈ Ω,

‖(u− uh)(ω, ·)‖L∞(D) .
Amax(ω)

Amin(ω)
h1+s ‖u(ω, ·)‖C 1+su (D),

and

|(u− uh)(ω, ·)|W 1,∞(D) .
Amax(ω)

Amin(ω)
hs ‖u(ω, ·)‖C 1+su (D),

for any h sufficiently small and any s < su. The claim then follows from assump-

tions A1-A2 and R4, together with Minkowski’s and Hölder’s inequality.

3.4 Variational crimes

In practice, the exact computation of the finite element solution uh, as defined

in (3.1), is in general not possible, and further approximations are often required

for the numerical computation. In this section, we discuss two important such

approximations: the use of approximate bilinear forms, resulting for example from

quadrature or other approximations of the coefficient, and the approximation of

non–polygonal boundaries.

3.4.1 Quadrature error

The integrals appearing in the bilinear form bω and in the linear functional Lω

involve realisations of random fields. It will in general be impossible to evaluate

these integrals exactly, and so one generally uses quadrature instead. We will

only explicitly analyse the quadrature error in bω, but the quadrature error in
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approximating Lω can be analysed analogously. We will for simplicity restrict

our attention to scalar coefficients A(ω, x) = a(ω, x) Id, for some a : Ω×D → R,

and to homogeneous boundary conditions φ = 0.

We will analyse the midpoint rule, approximating the integrand by its value

at the midpoint xτ of each simplex τ ∈ Th. The trapezoidal rule, and indeed any

other rule which uses a linear combination of point evaluations of a in τ , can be

analysed analogously. Let us denote the resulting bilinear form that approximates

bω on the grid Th by

b̃ω(wh, vh) =
∑
τ∈Th

a(ω, xτ )

∫
τ

∇wh(x) · ∇vh(x) dx ,

and let ũh(ω, ·) ∈ Vh,0 denote the corresponding solution to

b̃ω(ũh(ω, ·), vh) = Lω(vh) , for all vh ∈ Vh,0.

Clearly the bilinear form b̃ω is bounded and coercive, with the same constants

as the exact bilinear form bω and so we can apply the following classical result

[14] (with explicit dependence of the bound on the coefficients).

Lemma 3.12 (First Strang Lemma). Let 0 < amin(ω) ≤ amax(ω) <∞. Then

|(u− ũh)(ω, ·)|H1(D) ≤ inf
vh∈Vh,0

{(
1 +

amax(ω)

amin(ω)

)
|u(ω, ·)− vh|H1(D)

+
1

amin(ω)
sup

wh∈Vh,0

|bω(vh, wh)− b̃ω(vh, wh)|
|wh|H1(D)

}
.

This gives the following convergence for the approximate finite element solu-

tion ũh.

Proposition 3.13. Suppose A(ω, x) = a(ω, x)Id, and suppose φ = 0. Let as-

sumption R1 hold with some 0 < su ≤ 1 and 1 ≤ pu ≤ ∞, and let assumptions

A1–A3 hold with t ≥ su and p∗ ≥ pu. Then, for all p < pu, we have

‖u− ũh‖Lp(Ω,H1
0 (D)) . C3.13 h

su ,
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with

C3.13 :=

∥∥∥∥∥
(
amax

amin

)3/2
∥∥∥∥∥
Lq(Ω)

‖CR1‖Lpu (Ω) +

∥∥∥∥ |a|Csu (D)

a2
min

∥∥∥∥
Lq(Ω)

‖f‖Lpu (Ω,H−1(D)) ,

where q = p−pu
pu p

.

Proof. We first note that, for all vh, wh ∈ Vh,0,

∣∣∣bω(vh, wh)− b̃ω(vh, wh)
∣∣∣ =

∣∣∣∣∣ ∑
τ∈Th

∫
τ

(a(ω, x)− a(ω, xτ ))∇vh · ∇wh dx

∣∣∣∣∣
≤
∑
τ∈Th

∫
τ

|a(ω, x)− a(ω, xτ )|
|x− xτ |su

|x− xτ |su |∇vh · ∇wh| dx

≤ |a(ω)|Csu (D) h
su |vh|H1(D) |wh|H1(D) .

Dropping for brevity the dependence on ω, it follows from Lemma 3.12 and

amin ≤ amax that, for almost all ω ∈ Ω,

|u− ũh|H1(D) ≤ inf
vh∈Vh,0

{(
amax

amin

)
|u− vh|H1(D) + hsu

|a|Csu (D)

amin

|vh|H1(D)

}
.

Let us now make the particular choice vh := uh ∈ Vh,0, i.e. the solution of

(3.1). Then it follows from (3.2) that

|u− ũh|H1(D) .

((
amax

amin

)3/2

CR1 +
|a|Csu (D)

amin

C2.1

)
hsu .

The result then follows from assumptions A1-A3 and R1, together with Hölder’s

inequality.

Proposition 3.13 shows that the convergence rates of the finite element error

in the H1-norm are not influenced by the use of quadrature. However, the use

of the mesh-dependent bilinear forms b̃ω crucially leads to the loss of Galerkin

orthogonality, and the duality arguments to prove higher convergence rates for the

L2-norm and the error in functionals (cf Corollary 3.4 and Lemma 3.7) are hence

no longer applicable. However, since H1(D) ⊂ L2(D), it follows immediately

from Proposition 3.13 that
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‖u− ũh‖Lp(Ω,L2(D)) . C3.13 h
su ,

for all p < pu. Similarly, using (3.4) and assumption F1 with t∗ = 0 and 1 ≤ q∗ ≤
∞, we have

‖Mω(u)−Mω(ũh)‖Lp(Ω) . ‖CF1‖Lq∗ (Ω)C3.13 h
su ,

for any p < pu q∗
pu+q∗

.

To recover the faster convergence rates for the L2-error and the error in func-

tionals Mω in the case of quadrature, we require additional regularity of the

coefficient a.

3.4.2 Truncation error

We will in this section restrict our attention to the case A(ω, x) = a(ω, x) Id,

where a : Ω×D → R is a log–normal random field as described in section 2.7.

A starting point for many numerical schemes for PDEs with random coeffi-

cients is the approximation of the random field a(ω, x) as a function of a finite

number of random variables, a(ω, x) ≈ a(ξ1(ω), ..., ξR(ω), x). This is true, for ex-

ample, for the stochastic collocation and stochastic Galerkin methods. Sampling

methods, such as Monte–Carlo type methods discussed in chapter 4, do not rely

on such a finite–dimensional approximation as such, but may make use of such

approximations as a way of producing samples of the input random field.

A popular choice to achieve good approximations of this kind for log–normal

fields is the truncated Karhunen-Loève (KL) expansion. Let g : Ω × D → R
be a Gaussian random field such that a = exp[g]. Denote by µ(x) the mean

(or expected value) of g, and by C(x, y) its two-point covariance function (as in

(2.24)). The KL–expansion of g is then given by

g(x, ω) = µ(x) +
∞∑
n=1

√
µn ξn(ω) bn(x), (3.8)

where {µn}n∈N are the eigenvalues and {bn}n∈N the L2(D) orthonormalised eigen-

functions of the covariance operator with kernel function C(x, y) defined in (2.24).

{ξn}n∈N is a set of independent, standard Gaussian random variables. For a more

detailed derivation of the KL–expansion, see e.g. [30]. We will here only sum-
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marise some of its main properties.

• With the kernel function C(x, y) in (2.24), the covariance operator is self-

adjoint, non-negative and compact on L2(D), which implies that the eigen-

values {µn}n∈N are real, non-negative and tend to 0 as n → ∞ and the

eigenfunctions {bn}n∈N form an orthonormal basis of L2(D).

• For the homogeneous random field g, we have

σ2 := V[g] = E

( ∞∑
n=1

√
µn ξn(ω) bn(x)

)2
 =

∞∑
n=1

µn b
2
n(x)

since the random variables ξn are independent with ξnÑ(0, 1). Since the

eigenfunctions bn are orthonormalised in L2(D), it follows that

∞∑
n=1

µn = ‖σ2‖L2(D) = σ2 meas(D),

where meas(D) :=
∫
D

dx.

We shall write the random field a(ω, x) as

a(ω, x) = exp[µ(x)] exp

[
∞∑
n=1

√
µn ξn(ω) bn(x)

]

In practice we have to truncate the expansion (3.8) after a finite number R

of terms. Let gR denote the KL-expansion of g truncated after R terms, and let

aR := exp[gR]. Moreover, we denote by uR,h ∈ Vh,φ the solution to the variational

problem

bRω
(
uR,h(ω, ·), v

)
= Lω(v) , for all v ∈ Vh,0, (3.9)

where the linear functional Lω(·) is as in (2.6), and the bilinear form bRω (·, ·) is

defined as

bRω (u, v) :=

∫
D

aR(ω, x)∇u(x) · ∇v(x) dx, (3.10)

i.e. the bilinear form (2.5) with a replaced by its R-term approximation aR.

Since the bilinear form bRω (·, ·) is bounded and coercive on H1
0 (D) with con-

stants aRmax(ω) := maxx∈D a
R(ω, x) and aRmin(ω) := minx∈D a

R(ω, x) respectively
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(cf Lemma 2.1), we have

‖uR,h‖H1(D) .
‖f(ω, ·)‖H−1(D) + aRmax(ω)‖φ‖H1(D)

aRmin(ω)
=: CR

2.1(ω).

The aim of this section is now to analyse the error committed by approximat-

ing a by aR. More precisely, we will derive a bound on ‖uh − uR,h‖Lp(Ω,H1
0 (D)).

We make the following assumptions on {µn, bn}n∈N :

B1. The eigenfunctions are continuously differentiable, i.e. bn ∈ C1(D) for any

n ∈ N.

B2. We have
∞∑
n=1

µn‖bn‖2
L∞(D) < +∞.

B3. There exists an r ∈ (0, 1) such that,

∞∑
n=1

µn‖bn‖2(1−r)
L∞(D)‖∇bn‖

2r
L∞(D) < +∞.

For r as in assumption B3, let us define

Er
R := max

(∑
n≥R

µn‖bn‖2
L∞(D),

∑
n≥R

µn‖bn‖2(1−r)
L∞(D)‖∇bn‖

2r
L∞(D)

)
. (3.11)

Assumptions B1–B3 are fulfilled, among other cases, for the analytic covari-

ance function (2.26) as well as for the exponential covariance function (2.25)

with 1-norm ‖x‖ =
∑d

i=1 |xi|, since then the eigenvalues and eigenfunctions can

be computed explicitly and we have explicit decay rates for the KL–eigenvalues.

For details see [10, section 7]. In the latter case, on non-rectangular domains D,

we need to use a KL-expansion on a bounding box containing D to get again

explicit formulae for the eigenvalues and eigenfunctions. Strictly speaking this is

not a KL–expansion on D.

The following results were proven in [10].

Proposition 3.14. Let assumptions B1–B3 hold for some 0 < r < 1. Then
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‖a(ω, ·)− aR(ω, ·)‖C0(D) → 0 for almost all ω ∈ Ω, and

‖a− aR‖Lp(Ω,C0(D)) .
√
Er
R,

for any p ∈ [1,∞). Furthermore, ‖aRmax‖Lq(Ω) and ‖1/aRmin‖Lq(Ω) can be bounded

by a constant independent of R, for any q ∈ [1,∞).

Proposition 3.15. We have the following bound on
√
Er
R:

√
Er
R .

 R−ρ, for 1-norm exponential covariance,

R
d−1
2d exp

(
− c1R

1/d
)
, for Gaussian covariance,

for some constant c1 > 0 and for any 0 < ρ < 1/2. The hidden constants are

independent of R.

In [10, 12], the results in Proposition 3.14 were used to bound the truncation

error in the solution u to (2.4), i.e. to bound the error ‖u−uR‖Lp(Ω,H1(D)), where

uR is the solution to the variational problem (2.4) with the bilinear form bω(·, ·)
replaced by its truncated version bRω (·, ·). Following the same lines, one can prove

a bound on ‖uh − uR,h‖Lp(Ω,H1
0 (D)).

Proposition 3.16. Let assumptions B1–B3 hold for some 0 < r < 1. Then for

all p ∈ [1,∞), we have

‖uh − uR,h‖Lp(Ω,H1
0 (D)) . C3.16

√
Er
R, with C3.16 :=

∥∥∥∥C2.1

aRmin

∥∥∥∥
Lq(Ω)

,

for some q < p. Similarly, ‖uh − uR,h‖Lp(Ω,L2(D)) . C3.16

√
Er
R. The hidden

constants are independent of R.

Proof. The proof follows that of [10, Proposition 4.1 and Theorem 4.2]. Dropping

for brevity the dependence on ω, and using the variational problems (2.4) and

(3.9), we have, for almost all ω ∈ Ω,

aRmin |uh − uR,h|2H1(D) ≤
∫
D

aR |∇(uh − uR,h)|2 dx

=

∫
D

(aR − a)∇uh∇(uh − uR,h) dx

≤ ‖a− aR‖C0(D) |uh|H1(D) |uh − uR,h|H1(D)
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It follows that

|uh − uR,h|H1(D) .
1

aRmin

|uh|H1(D) ‖a− aR‖C0(D).

The claim of the Proposition then follows by Hölder’s inequality, Lemma 2.1 and

Proposition 3.14.

As in the previous sections this result can again be extended in a straightfor-

ward way to functionals.

Corollary 3.17. Let assumptions B1-B3 hold for some 0 < r < 1, and let Mω(·)
satisfy assumption F1 with t∗ = 0 for w1 = uh and w2 = uR,h, i.e. there exists

C ′F1 ∈ Lq∗(Ω) s.t. DvMω(uh, uR,h) . C ′F1(ω)|v|H1(D) for any v ∈ H1
0 (D). Then

for all p < q∗,

‖Mω(uh)−Mω(uR,h)‖Lp(Ω) . C3.17

√
Er
R, with C3.17 :=

∥∥∥∥C2.1

aRmin

∥∥∥∥
Lq(Ω)

‖C ′F1‖Lq∗ (Ω),

where q < q∗−p
q∗ p

. The hidden constant is again independent of R.

Proof. Dropping for brevity the dependence on ω, it follows by assumption that

for almost all ω ∈ Ω,

Mω(uh)−Mω(uR,h) = Duh−uR,hMω(uh, uR,h) . C ′F1 |uh − uR,h|H1(D).

The claim of the Corollary then follows from Proposition 3.16 and Hölder’s in-

equality.

Note that in Corollary 3.17, we cannot exploit Galerkin orthogonality to get a

doubling of the convergence rate with respect to R, since uh and uR,h are solutions

to problems with different bilinear forms.

Combining the truncation error analysis with the discretisation error analysis

from sections 3.1–3.2, we get the following total error bounds.

Theorem 3.18. Let a be a log–normal random field s.t. log[a] has 1-norm

exponential covariance, and suppose that assumption R1 is satisfied for some

1 ≤ pu ≤ ∞ and all su < 1/2. Then for all p < pu and 0 < s, ρ < 1/2, we have

‖u− uR,h‖Lp(Ω,H1
0 (D)) .

(
C3.3 h

s + C3.16R
−ρ) .
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Similarly, ‖u − uR,h‖Lp(Ω,L2(D)) . (C3.4h
2s + C3.16R

−ρ). The hidden constants

are independent of h and R.

Proof. This follows directly from Theorem 3.3, Corollary 3.4 and Propositions

3.16 and 3.15, together with Hölder’s inequality.

Corollary 3.19. Let a be a log–normal random field s.t. log[a] has 1-norm

exponential covariance, and suppose Mω satisfies the assumptions of Corollary

3.17 and Lemma 3.7, for all su < 1/2, some 0 ≤ sz < 1/2 and some 1 ≤ pu, pz ≤
∞. Then

‖Mω(u)−Mω(uR,h)‖Lp(Ω) .
(
C3.7 h

s+sz + C3.17R
−ρ) ,

for all p < pu pz
pu+pz

and 0 < s, ρ < 1/2.

Proof. This follows directly from Lemma 3.7, Corollary 3.17 and Proposition

3.15, together with Hölder’s inequality.

Remark 3.20. As already stated in Proposition 3.14, the quantities ‖aRmax‖Lq(Ω)

and ‖1/aRmin‖Lq(Ω) can be bounded by a constant independent of R, for any q ∈
[1,∞). Furthermore, it follows from Lemma 2.20 and [10, Proposition 3.8], that

‖a‖Lq(Ω,Ct(D)) can be bounded independently of R, for any t < 1/2 and q ∈ [1,∞).

It hence follows under the same assumptions as in Corollary 3.19, that

‖Mω(uR)−Mω(uR,h)‖Lp(Ω) . C3.7 h
s+sz ,

for all p < pu pz
pu+pz

and 0 < s < 1/2.

3.4.3 Boundary approximation

We now consider the application of finite element methods to problems posed

on smooth domains D. Since finite element methods use triangulations of the

computational domain, and are hence naturally linked to polygonal/polyhedral

domains, this involves the approximation of D by polygonal domains Dh. For

simplicity, we again consider the case of homogeneous boundary conditions φ = 0.

We denote by {T̂h}h>0 a shape-regular family of simplicial triangulations of

the domain D, parametrised by its mesh width h := maxτ∈bTh diam(τ), such that,

for any h > 0,
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• D ⊂
⋃
τ∈bTh τ , i.e. the triangulation covers all of D, and

• the vertices xτ1, . . . , x
τ
d+1 of any τ ∈ T̂h lie either all in D or all in Rd\D.

Let Dh denote the union of all simplices that are interior to D and Dh its interior,

so that Dh ⊂ D.

Associated with each triangulation T̂h we define the space

V̂h,0 :=
{
vh ∈ C0(D) : vh|τ linear ∀τ ∈ T̂h with τ ⊂ Dh , and vh|D\Dh = 0

}
(3.12)

of continuous, piecewise linear functions on Dh that vanish on the boundary of

Dh and in D\Dh. Let us recall the following standard interpolation result (cf

Lemma 3.2).

Lemma 3.21. Let v ∈ H1+s(Dh), for some 0 < s ≤ 1. Then

inf
vh∈bVh,0 |v − vh|H1(Dh) . ‖v‖H1+s(Dh) h

s. (3.13)

The hidden constant is independent of h and v.

This can easily be extended to an interpolation result for functions v ∈
H1+s(D) ∩ H1

0 (D), by estimating the residual over D\Dh. However, when D

is not convex it requires local mesh refinement in the vicinity of any non-convex

parts of the boundary. We make the following assumption on T̂h:

T1. For all τ ∈ T̂h with τ ∩ Dh = ∅ and xτ1, . . . , x
τ
d+1 ∈ D, we have

diam(τ) . h2.

Lemma 3.22. Let v ∈ H1+s(D)∩H1
0 (D), for some 0 < s ≤ 1, and let assumption

T1 hold. Then
inf

vh∈bVh,0 |v − vh|H1(D) . ‖v‖H1+s(D) h
s. (3.14)

Proof. This result is classical (for parts of the proof see [44, section 8.6] or [68]).

Set Dδ := D\Dh where δ denotes the maximum width of Dδ, and let first s = 1.

Since vh = 0 on Dδ it suffices to show that

|v|H1(Dδ) . ‖v‖H2(D) h . (3.15)

59



The result then follows for s = 1 with Lemma 3.21. The result for s < 1 follows

by interpolation, since trivially, |v|H1(Dδ) ≤ ‖v‖H1(D),

To show (3.15), let w ∈ H2(D). Using a trace result we get

‖w‖H1(Dδ) ≤ ‖w‖H1(Sδ) . δ1/2‖w‖H2(D),

where Sδ = {x ∈ D : dist(x, ∂D) ≤ δ} ⊂ D is the boundary layer of width δ. It

follows from assumption T1 that diam(τ) . h2 wherever the boundary is not

convex. In regions where D is convex it follows from the smoothness assumption

on ∂D that the width of Dδ is O(h2). Hence δ . h2, which completes the proof

of (3.15).

Hence, the bounds on the finite element error hold for smooth domains also,

provided assumption T1 is satisfied.

Proposition 3.23. Let the assumptions of Theorem 3.3 be satisfied, and suppose

assumption T1 holds. Then the bound given in Theorem 3.3 holds also for the

smooth domain D.

Proof. This follows as in Theorem 3.3, using Lemma 3.22 instead of Lemma

3.2.

As in sections 3.1 and 3.2, Proposition 3.23 can now be used to prove optimal

convergence rates of the L2 error and the error in functionals Mω(·).

3.5 Application to finite volume methods

We will now use the finite element error analysis developed earlier in this chapter

to prove convergence of some finite volume discretisations of model problem (2.1).

For simplicity, we shall again restrict our attention to scalar coefficients a(ω, x)

and homogeneous boundary conditions φ ≡ 0.

The starting point of finite volume discretisations is a non-overlapping par-

titioning of the domain D into boxes (or volumes) B. Equation (2.1) is then

integrated over each box B ∈ B, leading to the set of algebraic equations

−
∫
B

div(a(ω, x)∇u(ω, x)) dx =

∫
B

f(ω, x) dx, ∀B ∈ B.
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The volume integral on the left hand side is transformed into a boundary integral

using the Divergence Theorem:

−
∫
∂B

a(ω, x)
∂u

∂n
(ω, x) ds =

∫
B

f(ω, x) dx ∀B ∈ B. (3.16)

The specific finite volume scheme is now determined by the choice of volumes

B, as well as how the integrals in (3.16) are computed. We will here consider

two finite volume schemes: the box method as considered by Hackbusch in [43]

(§3.5.1), and a finite volume method on uniform rectangular meshes (§3.5.2).

3.5.1 Triangular meshes

As before, let {Th}h>0 be a shape-regular family of simplicial triangulations of

the Lipschitz polygonal/polyhedral domain D, parametrised by its mesh width

h := maxτ∈Th diam(τ). Following [43], we restrict ourselves to the case D ⊂ R2

and φ = 0, and define the corresponding box meshes Bh as dual meshes to the

triangulations Th. We introduce the following notation:

C(Th) := {P ∈ D : P is a corner of some τ ∈ Th},

C0(Th) := {P ∈ D : P is an (interior) corner of some τ ∈ Th},

T Ph := {τ ∈ Th : P is a corner in τ}, for P ∈ C(Th).

The polygonal boxes B ∈ Bh are now defined by associating one box, denoted by

BP , to each point P ∈ C(Th) in the following way:

- P ∈ BP for all P ∈ C(Th),

- BP and BQ, for P 6= Q, intersect at most at their boundaries,

-
⋃
P∈C(Th) BP = D,

- BP ⊂
⋃
τ∈T Ph

τ ,

- the boundary ∂BP intersects the edges of τ ∈ T Ph emanating from P at

their midpoints.
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Denote now by uFV
h ∈ Vh,0 the solution to (3.16) with the box mesh described

above, i.e.

−
∫
∂BP

a(ω, x)
∂uFV

h

∂n
(ω, x) ds =

∫
BP

f(ω, x) dx ∀P ∈ C0(Th).

We assume that the integrals above are computed exactly. The following result

is proved in [43].

Lemma 3.24. Let amin(ω) > 0 and f(ω, ·) ∈ L2(D). Then

‖uh(ω, ·)− uFV
h (ω, ·)‖H1(D) ≤

‖f(ω, ·)‖L2(D)√
2amin(ω)

h.

We then immediately have the following convergence result.

Theorem 3.25. Suppose D ⊂ R2, φ = 0 and A(ω, x) = a(ω, x)Id. Let the

assumptions of Theorem 3.3 hold, for some 0 < su ≤ 1 and 1 ≤ pu ≤ ∞, and

suppose f ∈ Lpu(Ω, L2(D)). Then, for all p < pu and h > 0, we have

‖u− uFV
h ‖Lp(Ω,H1

0 (D)) . C3.25 h
su ,

with

C3.25 := max

[
C3.3,

∥∥∥∥ 1

amin

∥∥∥∥
Lq(Ω)

‖f‖Lpu (Ω,L2(D))

]
,

where q = p−pu
p pu

.

Proof. This follows immediately from Theorem 3.3 and Lemma 3.24, together

with Minkowski’s and Hölder’s inequality.

3.5.2 Uniform rectangular meshes

We now consider a finite volume scheme on a uniform square/cubic mesh. For

simplicity, we only consider the case D = (0, 1)2 in detail. For some mesh width

h ≤ 1, the boxes B in Bh are in this case defined by

Bi,j := [x
(i−1)
1 , x

(i)
1 ]⊗ [x

(j−1)
2 , x

(j)
2 ], for i, j ∈ {1, . . . , h−1},
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where x
(k)
1 = x

(k)
2 = kh. To compute the boundary integral on the left hand side

of (3.16), we approximate the permeability a on each of the edges of ∂Bi,j by

a constant. The value of this constant is taken to be the permeability at the

midpoint of this edge. Denote the resulting approximation of the permeability

by aFV(ω, x), and denote by uFV
h ∈ Vh,φ the corresponding solution to

−
∫
∂Bi,j

aFV(ω, x)
∂uFV

h

∂n
(ω, x) ds =

∫
Bi,j

f(ω, x) dx ∀i, j = 1, . . . , h−1. (3.17)

Denote now by uh the bilinear finite element solution on the mesh Bh, as defined

in (3.1). The quasi-optimality result in Lemma 3.1 (Cea’s Lemma) and the best

approximation results in Lemmas 3.2 and 3.12 hold also for the square mesh Bh,
and the error estimate on the finite element error with quadrature in Proposition

3.13 is hence applicable.

It turns out that the finite volume solution uFV
h defined in (3.17) is equivalent

to the (approximate) finite element solution on Bh with a particular quadrature

scheme that is a mixture of the midpoint and trapezoidal rules. In particular,

recall that the computation of the finite element solution requires evaluation of

the integrals ∫
Bi,j

a(ω, x)∇wh(x).∇vh(x) dx,

for wh, vh ∈ Vh,0. Expanding the dot product, the above integral splits into the

sum of two integrals. We approximate the first integral, which involves derivatives

with respect to the first coordinate direction x1, by the midpoint rule in x1 and

the trapezoidal rule in x2:∫
Bi,j

f(x) dx ≈ h2

2

(
f(x

(i−1/2)
1 , x

(j)
2 ) + f(x

(i−1/2)
1 , x

(j+1)
2 )

)
,

where x
(i−1/2)
1 = (i−1/2)h. The second integral, involving derivatives with respect

to x2, is similarly approximated by the midpoint rule in x2 and the trapezoidal

rule in x1. Explicit computations now show that this leads to the same set of

equations as (3.17) (see [14, Exercise 4.1.8] and [8, §3.3] for more details).

We then have the following convergence result.

Lemma 3.26. Let the assumptions of Proposition 3.13 hold for some 0 < su ≤ 1

and 1 ≤ pu ≤ ∞. Then, for all p < pu, we have
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‖u− uFV
h ‖Lp(Ω,H1(D)) . C3.13 h

su .

Proof. This follows immediately from Proposition 3.13, since the quadrature

scheme described in this section uses a linear combination of point evaluations of

a and hence fits into the framework of quadrature schemes discussed in section

3.4.1.

Remark 3.27. The results in this section can easily be extended to three (or

one) spatial dimensions. The quadrature scheme which makes the approximate

finite element and the finite volume solution equivalent, is the one which uses the

midpoint rule in the coordinate direction in which the derivatives are taken, and

the trapezoidal rule in the remaining coordinate directions. See e.g. [8, §3.3] for

more details.

3.6 Numerics

In this section, we want to confirm numerically some of the results proved in

earlier sections. As model the permeability, we choose a scalar (piecewise) con-

tinuous log-normal random field as described in section 2.7. We consider two

different model problems in 2D, both in the unit square D = (0, 1)2: either (2.1)

with f ≡ 1 and φ ≡ 0, i.e.

−∇ · (a(ω, x)∇u(ω, x)) = 1, for x ∈ D, and u(ω, x) = 0 for x ∈ ∂D,
(3.18)

or the mixed boundary value problem

−∇ · (a(ω, x)∇u(ω, x)) = 0, for x ∈ D,

and u
∣∣
x1=0

= 1, u
∣∣
x1=1

= 0,
∂u

∂n

∣∣∣
x2=0

= 0,
∂u

∂n

∣∣∣
x2=1

= 0. (3.19)

To produce samples of fields with exponential covariance function (2.25), we

use a circulant embedding technique [25, 39]. In contrast to a truncated KL-

expansion, this technique gives exact samples of the full field g(ω, x) at the ver-

tices of our spatial grid. Fields with Gaussian covariance (2.26) are approximated

by Karhunen–Loève expansions truncated after R∗ = 170 terms. The eigenpairs

of the covariance operator are computed numerically using a spectral collocation
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method. Similar to the analysis in section 3.4.1, we then use the trapezoidal rule

to approximate the integrals in the stiffness matrix. To estimate the errors, we

approximate the exact solution u by a reference solution uh∗ on a grid with mesh

width h∗ = 1/256.

Let us start with a discontinuous model of the permeability on a fixed (de-

terministic) partitioning of D. A rock formation which is often encountered in

applications is a channelised medium. To simulate this, we divide D = (0, 1)2 into

3 horizontal layers, and model the permeabilities in the 3 layers by 2 different log–

normal distributions. The middle layer occupies the region {1/3 ≤ x2 ≤ 2/3}.
The parameters in the top and bottom layer are taken to be µ1 = 0, λ1 = 0.3 and

σ2
1 = 1, and for the middle layer we take µ2 = 4, λ2 = 0.1 and σ2

2 = 1 (assuming

no correlation across layers). As a test problem we choose the flow cell model

problem (3.19).

We start with the norms ‖uh∗ −uh‖L2(D) and |uh∗ −uh|H1(D). Figures 3-1 and

3-2 show results for fields with exponential and Gaussian covariance functions, re-

spectively. For comparison, we have added the graphs for the case where there is

no “channel”, i.e. where the permeability field is one continuous log–normal field

with µ = µ1 = 0, λ = λ1 = 0.3 and σ2 = σ2
1 = 1. As expected from the global

regularity results in Theorems 2.12 and 2.17, we observe the same convergence

rates for both the continuous and the discontinuous permeability fields in the case

of an exponential covariance in Figure 3-1. We observe O(h1/2) convergence of

the H1(D)–seminorm of the error, and linear convergence of the L2(D)–norm of

the error. The quadrature error seems not to be dominant (cf section 3.4.1). For

the Gaussian covariance, however, we indeed observe slower convergence rates

for the layered medium (Figure 3-2). Whereas we observe O(h1/2) convergence

of the H1(D)–seminorm, and linear convergence of the L2(D)–norm for the lay-

ered medium, we have linear convergence of the H1(D)–seminorm, and quadratic

convergence of the L2(D)–norm for the continuous permeability field. Since the

slower convergence rates are caused by singularities at the interfaces, one could

of course use local mesh refinement near the interfaces in order to recover the

faster convergence rates also for the layered medium.

For the continuous permeability field described above, with 2-norm exponen-

tial covariance function with µ = 0, λ = 0.3 and σ2 = 1, let us now consider

some of the functionals from section 2.5. First, we consider the approximation of
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the second moment of the pressure at the centre of the domain for the Dirichlet

model problem (3.18). As described in §2.5 for functional M (2), we approximate

it by the average of uh over the region D∗, which is chosen to consist of the six

elements (of a uniform grid with h∗ = 1/256) adjacent to the node at (1/2, 1/2).

The results for the estimation of the second moment are shown in the right plot

in Figure 3-3. We see that
∣∣E[M (3)(uh∗)−M (3)(uh)

]∣∣ converges linearly in h, as

predicted by Lemma 4.5 for the exact FE solution. The quadrature error seems

to again not be dominant.

For the mixed model problem (3.19), we consider an approximation of the av-

erage outflow through the boundary Γout := {x1 = 1} computed via the functional

M
(4)
ω in §2.5. As the weight function, we choose the linear function ψ(x) = x1,

which is equal to 1 at all nodes on Γout and equal to 0 at all other Dirichlet

nodes. Thus, M
(4)
ω (u) is exactly equal to the flow through Γout. As predicted we

see again linear convergence in h for
∣∣E[M (4)

ω (uh∗)−M (4)
ω (uh)

]∣∣ in the left plot in

Figure 3-3.

The convergence of ‖uh∗−uh‖L∞(D) for model problem (3.18) with continuous

permeability field with 2-norm exponential covariance with λ = 0.3 and σ2 = 1

is shown in Figure 3-4. Although Proposition 2.19 suggests a convergence rate of

O(h3/2), we observe a slightly slower convergence which is still better than linear

convergence. This lower convergence rate might be due to quadrature error.

Finally, let us finish this section with a model problem where the permeabil-

ity is piecewise constant on a random partitioning of the domain. As before,

we divide D = (0, 1)2 into three horizontal regions. For a given ω, the regions

are constructed by sampling from uniform random variables y1 ∼ Unif(0.8, 0.9),

y2 ∼ Unif(0.6, 0.7), y3 ∼ Unif(0.2, 0.3) and y4 ∼ Unif(0.4, 0.5), and then drawing

straight lines between the points (0, y1) and (1, y2), and (0, y3) and (1, y4), respec-

tively. This ensures that the subregions are always convex. Furthermore, we then

sample from three independent, standard normal random variables z1, z2 and z3,

and then set the permeability values in the three subregions to exp[z1], exp[z2]

and exp[z3], respectively. In Figure 3-5, we observe O(h1/2) convergence of the

H1(D)–seminorm of the error, and (slightly faster than) linear convergence of the

L2(D)–norm of the error, as predicted by the global regularity results in Theorem

2.17.
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Figure 3-1: Left plot: E
[
|uh∗−uh|H1(D)

]
versus 1/h for model problem (3.19) with

d = 2 and 2–norm exponential covariance, with µ = µ1 = 0, µ2 = 4, λ = λ1 = 0.3,
λ2 = 0.1, σ2 = σ2

1 = σ2
2 = 1 and h∗ = 1/256. Right plot: E

[
‖uh∗ − uh‖L2(D)

]
.

The gradient of the dash–dotted (resp. dotted) line is −1/2 (resp. −1).

Figure 3-2: Left plot: E
[
|uh∗−uh|H1(D)

]
versus 1/h for model problem (3.19) with

d = 2 and Gaussian covariance, with µ = µ1 = 0, µ2 = 4, λ = λ1 = 0.3, λ2 = 0.1,
σ2 = σ2

1 = σ2
2 = 1, h∗ = 1/256 and K∗ = 170. Right plot: E

[
‖uh∗ − uh‖L2(D)

]
.

The gradient of the dash–dotted (resp. dotted and dashed) line is −1/2 (resp.
−1 and−2).
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Figure 3-3: Left plot:
∣∣E[M (3)(uh∗) −M (3)(uh)

]∣∣ versus 1/h for model problem
(3.18) with d = 2 and 2-norm exponential covariance with µ = 0, λ = 0.3,

σ2 = 1 and h∗ = 1/256. Right plot:
∣∣E[M (4)

ω (uh∗) − M
(4)
ω (uh)

]∣∣ versus 1/h
for model problem (3.19) with d = 2 and 2-norm exponential covariance with
µ = 0, λ = 0.3, σ2 = 1, ψ = x1 and h∗ = 1/256. The gradient of the dotted line
is −1.

Figure 3-4: E
[
‖uh∗ − uh‖L∞(D)

]
versus 1/h for model problem (3.18) with d = 2

and 2-norm exponential covariance with µ = 0, λ = 0.3, σ2 = 1 and h∗ = 1/256.
The gradient of the (non-marked) solid line is −3/2.
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Figure 3-5: Left plot: E
[
|uh∗ − uh|H1(D)

]
versus 1/h for model problem (3.19)

with d = 2 and piecewise constant permeability on random subdomains. Right
plot: E

[
‖uh∗ − uh‖L2(D)

]
. The gradient of the dash–dotted (resp. dotted) line is

−1/2 (resp. −1).
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Chapter 4

Multilevel Monte Carlo methods

We will now apply the discretisation error analysis in chapter 3, to give a rigorous

bound on the cost of the multilevel Monte Carlo method applied to (2.1), and

to establish its superiority over the classical Monte Carlo method. We start by

describing the classical Monte Carlo (MC) and multilevel Monte Carlo (MLMC)

algorithms for PDEs with random coefficients.

In the Monte Carlo framework, we are usually interested in finding the ex-

pected value of some functional Q = G(u) of the solution u to our model problem

(2.1). This may be a single component or a norm of u, or it may be a more

complicated nonlinear functional (e.g. a higher order moment). Since u is not

easily accessible, Q is often approximated by the quantity Qh := G(uh), where

uh denotes a discretised solution on a sufficiently fine spatial grid Th. This could

for example be the finite element or finite volume solution described in chapter

3, and can include further approximations, such as the truncated solution uR,h

described in section 3.4.2.

We assume that the expected value E[Qh] → E[Q] as h → 0, and that (in

mean) the order of convergence is α, i.e.

|E[Qh −Q]| . hα.

Thus, to estimate E [Q], we compute approximations (or estimators) Q̂h to E [Qh],

and quantify the accuracy of our approximations via the root mean square error

(RMSE)

e(Q̂h) :=
(
E
[
(Q̂h − E(Q))2

])1/2

.
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The computational cost of the estimator, denoted by C(Q̂h), is then quantified

by the number of floating point operations that are needed to compute it. The

computational cost of the estimator to achieve a RMSE of e(Q̂h) ≤ ε will be

referred to as the ε–cost and denoted by Cε(Q̂h).

4.1 Standard Monte Carlo simulation

The classical Monte Carlo (MC) estimator for E [Qh] is

Q̂MC
h,N :=

1

N

N∑
i=1

Q
(i)
h , (4.1)

where Q
(i)
h is the ith sample of Qh and N independent samples are computed in

total. We assume that the cost to compute one sample Q
(i)
h of Qh is

C(Q(i)
h ) . h−γ, for some γ > 0.

There are two sources of error in the estimator (4.1): the approximation of

Q by Qh, which is related to the spatial discretisation in the case of our PDE

application, and the sampling error due to replacing the expected value by a finite

sample average. The contribution of both of these errors becomes clear when we

expand the mean square error (MSE):

e(Q̂MC
h,N)2 = E

[(
Q̂MC
h,N − E[Q̂MC

h,N ] + E[Q̂MC
h,N ]− E[Q]

)2
]

= E
[
(Q̂MC

h,N − E[Q̂MC
h,N ])2

]
+
(
E[Q̂MC

h,N ]− E[Q]
)2

= V[Q̂MC
h,N ] +

(
E[Q̂MC

h,N ]− E[Q]
)2

. (4.2)

It is well known for standard MC that

E[Q̂MC
h,N ] = E[Qh] and V[Q̂MC

h,N ] = N−1 V[Qh] .

Substituting this in (4.2) we get

e(Q̂MC
h,N)2 = N−1V[Qh] +

(
E[Qh −Q]

)2

. (4.3)
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So the first term in the MSE is the variance of the MC estimator, which represents

the sampling error and decays inversely with the number of samples. The second

term is the square of the error in mean between Qh and Q.

Hence, a sufficient condition to achieve a RMSE of ε with this estimator is

that both of the terms are less than ε2/2. Under the assumption that V(Qh)

is constant independent of h, this can be achieved by choosing N & ε−2 and

h . ε1/α, where the convergence rate α is as defined previously and problem

dependent. In other words, we need to take a large enough number of samples

N , as well as a small enough value for h, so that Q̂MC
h,N is a sufficiently accurate

approximation of our quantity of interest E[Q].

Since the cost to compute one sample of Qh was assumed to satisfy C(Q(i)
h ) .

h−γ, we have C(Q̂MC
h,N) . Nh−γ and so the total computational cost of achieving

a RMSE of O(ε) is

Cε(Q̂MC
h,N) . ε−2−γ/α.

4.2 Multilevel Monte Carlo simulation

The main idea of multilevel Monte Carlo (MLMC) simulation is very simple. We

sample not just from one approximation Qh of Q, but from several. Let us recall

the main ideas and the main theorem from [33, 15].

Let {h`}`=0,...,L be the mesh widths of a sequence of increasingly fine triangu-

lations Th` with h := hL, the finest mesh width, and assume for simplicity that

there exists an s ∈ N\{1} such that

h` = s−1 h`−1 , for all ` = 1, . . . , L. (4.4)

As for multigrid methods applied to discretised (deterministic) PDEs, the key

is to avoid estimating E[Qh` ] directly on level `, but instead to estimate the

correction with respect to the next lower level, i.e. E[Y`] where Y` := Qh`−Qh`−1
.

Linearity of the expectation operator then implies that

E[Qh] = E[Qh0 ] +
L∑
`=1

E[Qh` −Qh`−1
] =

L∑
`=0

E[Y`], (4.5)

where for simplicity we have set Y0 := Qh0 .
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Hence, the expectation on the finest level is equal to the expectation on the

coarsest level, plus a sum of corrections adding the difference in expectation

between simulations on consecutive levels. The multilevel idea is now to inde-

pendently estimate each of these expectations such that the overall variance is

minimised for a fixed computational cost.

Let now Ŷ` be an unbiased estimator for E[Y`]. The multilevel estimator is

then simply defined as

Q̂ML
h :=

L∑
`=0

Ŷ`. (4.6)

A possible choice for the estimators Ŷ` are the standard Monte Carlo estimators

Ŷ MC
0,N0

:= Q̂MC
h0,N0

, and Ŷ MC
`,N`

:=
1

N`

N∑̀
i=1

(
Q

(i)
h`
−Q(i)

h`−1

)
, for ` ≥ 1 . (4.7)

The resulting multilevel estimator is denoted by Q̂MLMC
h,{N`} and referred to as the

multilevel Monte Carlo estimator. It is important to note that the quantity

Q
(i)
h`
−Q(i)

h`−1
in (4.7) comes from using the same random sample ω(i) ∈ Ω on both

levels ` and `− 1.

Since all the expectations E[Y`] are estimated independently, the variance of

the MLMC estimator is V[Q̂ML
h ] =

∑L
`=0 V[Ŷ`], and expanding as in (4.2-4.3) in

the previous section leads again to the following form for the MSE:

e(Q̂MLMC
h,{N`} )

2 := E
[(
Q̂MLMC
h,{N`} −E[Q]

)2
]

=
L∑
`=0

N−1
` V[Y`] +

(
E[Qh−Q]

)2

. (4.8)

As in the single level MC case before, we see that the MSE consists of two terms,

the variance of the estimator and the approximation error. Note that the second

term is exactly the same as before in (4.2), and so it is again sufficient to choose

h = hL . ε1/α. To then achieve an overall RMSE of ε, the first term in (4.8) has

to be less than ε2/2 as well. We claim that this is cheaper to achieve in MLMC

for two reasons:

• If Qh converges to Q not just in mean, but also in mean square, then

V[Y`] = V[Qh` − Qh`−1
] → 0 as ` → ∞, and so it is possible to choose

N` → 1 as `→∞.
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• The coarsest level ` = 0 and thus h0 can be kept fixed for all ε, and so the

cost per sample on level ` = 0 does not grow as ε→ 0.

In practical applications, h0 must be chosen sufficiently small to provide a

minimal level of resolution of the problem. In our PDE application, this cut-off

point is related to the spatial regularity of the solution u, which in turn depends

on the regularity of the covariance function of the random coefficient and on the

correlation length λ. We will return to this point in section 4.4.

The computational cost of the multilevel Monte Carlo estimator is

C(Q̂MLMC
h,{N`} ) =

L∑
`=0

N` C`.

where C` := C(Y (i)
` ) represents the cost of a single sample of Y`. Treating the N`

as continuous variables, the variance of the MLMC estimator is minimised for a

fixed computational cost by choosing

N` h
√

V[Y`]/C` , (4.9)

with the constant of proportionality chosen so that the overall variance is ε2/2.

The total cost on level ` is then proportional to
√

V[Y`] C` and hence

C(Q̂MLMC
h,{N`} ) .

L∑
`=0

√
V[Y`] C`.

If the variance V[Y`] decays faster with ` than C` increases, the dominant term

will be on level 0. Since N0 h ε−2, the cost savings compared to standard MC

will in this case be approximately C0/CL h (hL/h0)γ h εγ/α, reflecting the ratio

of the costs of samples on level 0 compared to samples on level L.

If the variance V[Y`] decays slower than the cost C` increases, the dominant

term will be on the finest level L, and the cost savings compared to standard

MC will be approximately V[YL]/V[Y0] which is O(ε2), if we have truncated the

telescoping sum in (4.5) with h0 such that V[Y0] h V[Q0]. Hence, in both cases

we have a significant gain.

This outline analysis is made more precise in the following section. Let us

finish this section by discussing how the MLMC algorithm can be implemented
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in practice.

The (optimal) values of L and {N`}L`=0 can be computed “on the fly” from the

sample averages and the (unbiased) sample variances of Y`. To do this we need

to assume further that there exists an h′ ∈ N such that the decay in |E[Qh −Q]|
is actually monotonic for h ≤ h′ and satisfies

|E[Qh −Q]| h hα.

This ensures (via the triangle inequality) that |E[YL]| h hα (since s > 1 in (4.4)),

and thus |ŶL| h hα for NL sufficiently large, providing us with a computable error

estimator to determine whether h is sufficiently small or whether the number of

levels L needs to be increased. It can in fact even be used to further improve

the MLMC estimate by eliminating the leading order bias term via Richardson

extrapolation (see [33, §4.2] for details).

Putting these ideas together, the MLMC algorithm can be implemented in

practice as follows:

1) Start with L=0.

2) Estimate V[YL] by the sample variance of an initial number of samples.

3) Calculate the optimal N`, ` = 0, 1, . . . , L using (4.9).

4) Evaluate extra samples at each level as needed for the new N`.

5) If L ≥ 1, test for convergence using ŶL h hα.

6) If not converged, set L = L+ 1 and go back to 2.

Note that in the above algorithm, step 3 aims to make the variance of the

MLMC estimator less than 1
2
ε2, while step 5 tries to ensure that the remaining

bias is less than 1√
2
ε.

4.3 Convergence analysis

4.3.1 Abstract convergence theorem

We give a convergence analysis for general multilevel estimators Q̂ML
h based on

unbiased estimators Ŷ` on each level. Theorem 4.1 below contains a parameter
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δ, which determines the convergence of the variance of the estimator Ŷ` with

respect to the total number of samples N`. More precisely, δ is such that V[Ŷ`] =

N
−1/δ
` V [Y`]. In the case of the standard Monte Carlo estimators defined in (4.7),

we have δ = 1 (cf (4.8)). If the multilevel estimator Q̂ML
h is built using Quasi-

Monte Carlo estimators on each level, then it possible to achieve any δ ∈ (1/2, 1]

(see e.g. [39, 38] for more details).

Theorem 4.1. Let ε < exp[−1]. Suppose the sequence {h`}`=0,1,... satisfies

(4.4), and suppose there are constants α, β, γ, δ, cM1, cM2, cM4 > 0 such that α ≥
1
2

min(β, δ−1γ) and δ ∈ (1/2, 1]. Under the assumptions

M1. |E[Qh` −Q]| ≤ cM1 h
α
`

M2. V[Ŷ`] ≤ cM2 N
−1/δ
` hβ`

M3. E[Ŷ`] =

 E[Q0], ` = 0

E[Qh`−Qh`−1
], ` > 0

M4. C(Ŷ`) ≤ cM4 N` h
−γ
`

there exists a sequence {N`}L`=0 such that

e(Q̂ML
h )2 := E

[(
Q̂ML
h − E[Q]

)2
]
< ε2,

where h = hL, and

C(Q̂ML
h ) ≤ c


ε−2δ, if δβ > γ,

ε−2δ(log ε)1+δ, if δβ = γ,

ε−2δ−(γ−δβ)/α, if δβ < γ.

The constant c depends on cM1, cM2 and cM4.

Proof. Recall that, by (4.4), we have

h` = s−1 h`−1 , for all ` = 1, . . . , L,

for some s ∈ N\{1}. Without loss of generality, we shall also assume that h0 = 1.

If this is not the case, this will only scale the constants cM1, cM2 and cM4.
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Then, using the notation dxe to denote the unique integer n satisfying the

inequalities x ≤ n < x+1, we start by choosing L to be

L =
⌈
α−1 logs(

√
2 cM1 ε

−1)
⌉
< α−1 logs(

√
2 cM1 ε

−1) + 1 , (4.10)

so that

s−α
ε√
2
< cM1 s

−αL ≤ ε√
2
, (4.11)

and hence, due to assumptions M1 and M3,(
E[Q̂ML

h ]− E[Q]
)2

≤ 1
2
ε2.

This 1
2
ε2 upper bound on the square of the bias error, together with the 1

2
ε2

upper bound on the variance of the estimator to be proved later, gives an ε2

upper bound on the estimator MSE.

Using the left-hand inequality in (4.11), we obtain the following inequality

which will be used later,

L∑
`=0

sγ ` <
sγL

1−s−γ
<

sγ (
√

2 cM1)
γ/α

1−s−γ
ε−γ/α. (4.12)

We now need to consider the different possible values for β.

a) If δβ=γ, we set N` =
⌈
2δ ε−2δ (L+1)δ cδM2 s

−βδ `⌉ so that

V[Q̂ML
h ] =

L∑
`=0

V[Ŷ`] ≤
L∑
`=0

cM2N
−1/δ
` s−β ` ≤ 1

2
ε2 1

L+ 1

L∑
`=0

s(β−β)` ≤ 1
2
ε2,

which is the required upper bound on the variance of the estimator. Since

N` ≤ 2δ ε−2δ (L+1)δ cδM2 s
−βδ ` + 1,
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the computational complexity is bounded by

C(Q̂ML
h ) ≤ cM4

L∑
`=0

N` s
γ `

. ε−2δ(L+1)1+δ +
L∑
`=0

sγ `

For ε < e−1 < 1 we have 1 < log ε−1 and ε−γ/α ≤ ε−2δ ≤ ε−2δ(log ε)1+δ since

α ≥ 1
2
δ−1γ. Hence, using the inequalities in (4.10) and (4.12), it follows that

C(Q̂ML
h ) . ε−2δ(log ε)1+δ.

b) For δβ>γ, we set N` =
⌈
2δ ε−2δ cδM2

(
1−s−(δβ−γ)/(δ+1)

)−δ
s−(β+γ)δ`/(δ+1)

⌉
so

that
L∑
`=0

V[Ŷ`] ≤ 1
2
ε2
(
1−s−(δβ−γ)/(δ+1)

) L∑
`=0

s−(δβ−γ)`/(δ+1) ≤ 1
2
ε2.

Since

N` < 2δ ε−2δ cδM2

(
1−s−(δβ−γ)/(δ+1)

)−δ
s−(β+γ)δ`/(δ+1) + 1,

the computational complexity is bounded by

C(Q̂ML
h ) ≤ cM4

(
2δ ε−2δ cδM2

(
1−s−(δβ−γ)/(δ+1)

)−δ L∑
l=0

s−(β+γ)δ`/(δ+1) sγ `+
L∑
l=0

sγ `

)

. ε−2δ +
L∑
l=0

sγ `.

Again for ε < e−1 < 1, we have ε−γ/α ≤ ε−2δ since α≥ 1
2
δ−1γ, and hence due to

inequality (4.12) we have C(Q̂ML
h ) . ε−2δ.

c) For δβ<γ, we set

N`=
⌈
2δ ε−2δ cδM2 s

(γ−δβ)δL/(δ+1)
(
1−s−(γ−δβ)/(δ+1)

)−δ
s−(β+γ)δ`/(δ+1)

⌉
so that

L∑
`=0

V[Ŷ`] ≤ 1
2
ε2 s−(γ−δβ)L/(δ+1)

(
1−s−(γ−δβ)/(δ+1)

) L∑
`=0

s(γ−δβ)δ`/(δ+1) ≤ 1
2
ε2.
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Since

N`<2δ ε−2δ cδM2s
(γ−δβ)δL/(δ+1)

(
1−s−(γ−δβ)/(δ+1)

)−δ
s−(β+γ)δ`/(δ+1) + 1,

the computational complexity is bounded by

C(Q̂ML
h )

≤ cM4

(
L∑
`=0

2δ ε−2δ cδM2 s
(γ−δβ)δ/L(δ+1)

(
1−s−(γ−δβ)/(δ+1)

)−δ L∑
`=0

s(γ−δβ)`/(δ+1)

+
L∑
`=0

sγ`

)

. ε−2δs(γ−δβ)L +
L∑
`=0

sγ`

Using the first inequality in (4.11),

s(γ−δβ)L <
(√

2 cM1

)(γ−δβ)/α

s(γ−δβ) ε−(γ−δβ)/α.

Also, for ε<e−1< 1 we have ε−γ/α ≤ ε−2δ−(γ−δβ)/α since α ≥ 1
2
β. Hence, due to

inequality (4.12), we have C(Q̂ML
h ) . ε−2δ−(γ−δβ)/α.

Remark 4.2. The geometric growth condition (4.4) is not necessary, and the

conclusions of Theorem 4.1 hold provided {h`}`=0,...,L satisfies k1 ≤ h`−1/h` ≤ k2,

for all ` = 1, . . . , L and some 1 < k1 ≤ k2 <∞.

4.3.2 Application of abstract convergence theorem

We will now verify assumptions M1 and M2 in Theorem 4.1 for a variety of

functionals G(u). For this, we use the results from chapter 3 on the discretisation

error. Since for the multilevel Monte Carlo estimator Q̂MLMC
h,{N`} , it is well known

that V[Ŷ MC
`,N`

] = N−1
` V[Y`], to prove assumption M1 and M2 we only need to prove

|E[Q−Q`]| ≤ cM1 h
α
` and V[Y`] ≤ cM2 h

β
` , for some α, β, cM1, cM2 > 0.

We will start with the simple functionals ‖u‖L2(D) and |u|H1(D).

Proposition 4.3. Suppose that the assumptions of Theorem 3.3 hold, for some

0 < su ≤ 1 and pu > 2, and let Q = |u|qH1(D), for some 1 ≤ q < pu/2. Then
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assumptions M1–M2 in Theorem 4.1 hold with α = su and β = 2su.

Proof. Let Qh` := |uh`|
q
H1(D). Using the expansion aq−bq = (a−b)

∑q−1
j=0 a

jbq−1−j,

for a, b ∈ R and q ∈ N, we get

|Q(ω)−Qh`(ω)|

. |u(ω, ·)− uh`(ω, ·)|H1(D) max
{
|u(ω, ·)|q−1

H1(D), |uh`(ω, ·)|
q−1
H1(D), 1

}
,

almost surely. This also holds for non-integer values of q > 1. Now, it follows

from Lemma 2.1 and Theorem 3.3 that

|Q(ω)−Qh`(ω)| .

(
Amax(ω)

Amin(ω)

)1/2

CR1(ω)Cq−1
2.1 (ω)hsu` , almost surely.

Taking the expectation on both sides and applying Hölder’s inequality, since

q < pu, it follows from assumptions A1–A2 and R1 that assumption M1 holds

with α = su.

To prove assumption M2, let us consider Y` = Qh` − Qh`−1
. As above, it

follows from Lemma 2.1 and Theorem 3.3 together with the triangle inequality

that

|Yh`(ω)|

. |uh`(ω, ·)− uh`−1
(ω, ·)|H1(D) max

{
|uh`(ω, ·)|

q−1
H1(D), |uh`−1

(ω, ·)|q−1
H1(D), 1

}
.

(
Amax(ω)

Amin(ω)

)1/2

CR1(ω)Cq−1
2.1 (ω)hsu` , almost surely.

where the hidden constant depends on s from (4.4). Since q < pu/2 and V[Yh` ] ≤
E[Y 2

h`
], it follows again from assumptions A1-A2 and R1, together with Hölder’s

inequality, that assumption M2 holds with β = 2su.

Proposition 4.4. Suppose that the assumptions of Corollary 3.4 hold, for some

0 < su ≤ 1 and pu > 2, and let Q := ‖u‖qL2(D), for some 1 ≤ q < pu/2. Then

assumptions M1 and M2 in Theorem 4.1 hold with α = 2su and β = 4su.

Proof. This can be shown in the same way as Proposition 4.3, using Corollary

3.4 instead of Theorem 3.3.

Let us now consider functionals as discussed in section 3.2.
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Proposition 4.5. Suppose the assumptions of Lemma 3.7 hold for some 0 < su ≤
1, pu > 2, 0 ≤ sz ≤ 1 and pz >

2pu
pu−2

, and let Q = Mω(u). Then assumptions M1

and M2 in Theorem 4.1 hold with α = su + sz and β = 2(su + sz).

Proof. This follows immediately from Lemma 3.7, together with the triangle in-

equality and V[Yh` ] ≤ E[Y 2
h`

].

Finally, let us consider ‖u‖L∞(D) and |u|W 1,∞(D).

Proposition 4.6. Suppose that the assumptions of Theorem 3.11 hold, for some

0 < su ≤ 1 and pu > 2, and let Q := ‖u‖L∞(D). Then assumptions M1 and M2

in Theorem 4.1 hold with α = 1 + s and β = 2(1 + s), for any s < su.

Proof. Using the reverse triangle inequality, we have almost surely

|Q(ω)−Qh(ω)| . ‖(u− uh)(ω, ·)‖L∞(D).

The claim then follows from Theorem 3.11, the triangle inequality and V[Yh` ] ≤
E[Y 2

h`
].

It is easy to show that the convergence rates in Proposition 4.6 hold not only

for the L∞-norm, but in fact for any point evaluation u(x∗), for some x∗ ∈ D.

Since both u and uh are almost surely continuous ([31]), it is meaningful to

consider point evaluations, and it follows from the reverse triangle inequality

that

||u(ω, x∗)| − |uh(ω, x∗)|| ≤ |u(ω, x∗)− uh(ω, x∗)| ≤ ‖(u− uh)(ω, ·)‖L∞(D).

Proposition 4.7. Suppose that the assumptions of Theorem 3.11 hold, for some

0 < su ≤ 1 and pu > 2, and let Q := |u|W 1,∞(D). Then assumptions M1 and M2

in Theorem 4.1 hold with α = s and β = 2s, for any s < su.

Proof. This follows exactly as in Proposition 4.6.

Similar to point evaluations of u, Proposition 4.7 can be used to prove con-

vergence rates for point evaluations of the norm of the Darcy flux A∇u, or the

value of the Darcy flux in any given coordinate direction. Since u is almost surely

continuously differentiable, and uh is continuously differentiable in the interior of

each element, it is meaningful to consider point evaluations of the fluxes A∇u
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α = 1/2, β = 1 α = 1, β = 2 α = 3/2, β = 3 α = 2, β = 4
d MC MLMC MC MLMC MC MLMC MC MLMC

1 ε−4 ε−2 ε−3 ε−2 ε−8/3 ε−2 ε−5/2 ε−2

2 ε−6 ε−4 ε−4 ε−2 ε−10/3 ε−2 ε−3 ε−2

3 ε−8 ε−6 ε−5 ε−3 ε−4 ε−2 ε−7/2 ε−2

Table 4.1: Theoretical upper bounds for the ε-costs of classical and multilevel
Monte Carlo from Theorem 4.1. (For simplicity we wrote ε−p, instead of ε−p−ρ

with ρ > 0.)

and A∇uh at any point x∗ ∈ D which is not on the boundary of any element

τ ∈ Th. The reverse triangle inequality again gives

||A∇u(ω, x∗)| − |A∇uh(ω, x∗)|| ≤ Amax(ω)‖(u− uh)(ω, ·)‖W 1,∞(D).

Substituting the convergence rates from Propositions 4.3–4.7 into Theorem

4.1, we can get theoretical upper bounds for the ε-costs of classical and multilevel

Monte Carlo, as shown in Table 4.1. We assume here that su = 1/2− δ, for any

δ > 0, as is the case for log-normal random fields with exponential covariance. We

assume that we can obtain individual samples in optimal cost C` . h−d` log(h−1
` )

via a multigrid solver, i.e. γ = d+ρ for any ρ > 0. We clearly see the advantages

of the multilevel Monte Carlo method. Note that for small values of α and β, even

though the actual computational cost of the estimator is larger, the savings from

using the multilevel estimator are also larger, especially in low spatial dimensions.

Note also that since β = 2α, we have that the cost of the multilevel estimator

in the case β < γ is proportional to ε−γ/α. This is of the same order as the cost

of obtaining one sample on the finest grid, i.e. solving one deterministic PDE

with the same regularity properties to accuracy ε. This implies that the method

is optimal.
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4.4 Level dependent estimators

The key ingredient in the multilevel Monte Carlo algorithm is the telescoping

sum (4.5),

E[Qh] = E[Qh0 ] +
L∑
`=1

E[Qh` −Qh`−1
].

We are free to choose how to approximate Q on the different levels, without

violating the above identity, as long as the approximation of Qh` is the same in

the two terms in which it appears on the right hand side, for ` = 0, ..., L− 1. In

particular, this implies that we can approximate the coefficient a(ω, x) differently

on each level. Even though this strategy does not introduce any additional bias

in the final result E[Qh], it may influence the values of the convergence rates α

and β in Theorem 4.1. One has to be careful not to introduce any additional

model/approximation errors that decay at a slower rate than the discretisation

error.

It is particularly useful when the random field a(ω, x) is highly oscillatory

and varies on a fine scale. Coarse grids will not be able to resolve the coefficient

well. As a consequence of this, one needs to choose the coarsest grid size h0

smaller than a certain threshold to get the MLMC estimator with the smallest

absolute cost. Numerical investigations in [15], for example, show that for log-

normal random fields with underlying exponential, 1-norm covariance function

and correlation length λ, the optimal choice is h0 ≈ λ. This limits the benefit

that the MLMC estimator potentially offers. A possible solution to this problem

is to use smoother approximations of the coefficient on the coarser levels. We

will present one way of doing this, by using level-dependent truncations of the

Karhunen-Lòeve expansion of a(ω, x).

As an exemplary case, let us now consider log-normal random fields a, where

log[a] has exponential, 1-norm covariance, i.e. covariance function (2.25) with

‖x‖ = ‖x‖1 :=
∑d

i=1 |xi|.
Since the convergence with respect to R is quite slow (see §3.4.2), to get

a good approximation to E[Qh] we need to include a large number of terms

on the finest grid, both in the case of the standard and the MLMC estimator.

The eigenvalues {µn}n∈N are all non–negative with
∑

n≥1 µn < +∞, and if they

are ordered in decreasing order of magnitude, the corresponding eigenfunctions
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{bn}n∈N will be ordered in increasing order of oscillations over D. By truncating

the KL-expansion after fewer terms, we are hence disregarding the contributions

of the most oscillatory eigenfunctions, leading to smoother problems that can be

solved more accurately on the coarser levels. In order to determine a suitable

strategy for the level dependent truncation of the KL–expansion, we make use of

Theorem 3.18 and Corollary 3.19.

These results suggest that to balance out the two error contributions, we

should choose R` as a power of h`. Note that a similar strategy was also suggested

in the context of the related Brinkman problem in [37]. However, there, a certain

decay rate for the error with respect to the number of KL-modes R was assumed.

Here we make no such assumption and instead use Corollary 3.19 for the 1-norm

exponential covariance. We have the following results for the multilevel Monte

Carlo convergence rates in Theorem 4.1.

Proposition 4.8. Provided assumption R3 is satisfied with sz ≥ 1
2
, and R` &

h−2
` , for all ` = 0, . . . , L, then the convergence rate of the multilevel Monte Carlo

method in §4.2 does not deteriorate when approximating the functional Mω(uh`) by

Qh` := Mω(uR`,h`) on each level `. In particular, let the assumptions of Corollary

3.19 be satisfied with pu > 2 and pz > 2pu
pu−2

. Then assumptions M1–M2 in

Theorem 4.1 hold for any α < 1 and β < 2. If assumption R3 is satisfied only

for some sz < 1/2, then R` & h
−(1+2sz)
` is a sufficient condition.

Proof. The proof is analogous to that of Proposition 4.5, using Corollary 3.19.

As before, in the presence of quadrature error (cf. §3.4.1), we will not be able

to get O(hsu+sz) convergence for the (spatial) discretisation error for the approx-

imate finite element solution ũR,h. Due to the loss of Galerkin orthogonality for

the primal problem, it is in general only possible to prove

‖Mω(u)−Mω(ũR,h)‖Lp(Ω) = O
(
hsu +R−ρ

)
,

for any su, ρ < 1/2. Thus with the quadrature error taken into account the

optimal choice is R` & h−1
` for all functionals which satisfy assumption R3 with

sz ≥ 1/2 and we will always use that in our numerical tests in section 4.5.3.

However, these results are asymptotic results, as h` → 0, and thus they only

guarantee that level-dependent truncations do not deteriorate the performance
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of the multilevel Monte Carlo method asymptotically as the tolerance ε → 0.

The real benefit of using level-dependent truncations is in absolute terms for a

fixed tolerance ε, since the smoother fields potentially allow the use of coarser

levels and thus significant gains in the absolute cost of the algorithm. In section

4.5.3, we see that this is in fact the case and we show the gains that are possible,

especially for covariance functions with short correlation length λ.

4.5 Numerics

In this section, we want to confirm numerically some of the results proved in this

chapter. We first confirm the values of α and β in Theorem 4.1, and then examine

the cost of the various multilevel estimators. We again consider the two model

problems (3.18) and (3.19) on D = (0, 1)2. Throughout this section, we model

the permeability as a continuous log-normal random field a(ω, x), s.t. log[a] has

mean zero and exponential covariance function (2.25).

4.5.1 Convergence rates

We want to confirm the rate of decay of |E [Q−Qh] | and V [Qh −Q2h], for various

quantities Q as considered in section 4.3.2. To estimate the error, we again

approximate the solution u by a reference solution uh∗ on a fine mesh of width

h∗ = 1/256. We choose the 2-norm exponential covariance function for log[a]

with λ = 0.3 and σ2 = 1.

We start with the simple functionalsQ := ‖u‖L2(D) andQ = |u|H1(D) for model

problem (3.18). We observe linear convergence for |E
[
‖uh∗‖L2(D) − ‖uh‖L2(D)

]
|,

and quadratic convergence for V
[
‖uh‖L2(D) − ‖u2h‖L2(D)

]
in Figure 4-1, as pre-

dicted by Proposition 4.4. For Q = |u|H1(D), we in fact observe convergence

rates which are slightly better that those proved in Proposition 4.3. We ob-

serve slightly faster than O(h1/2) convergence for |E
[
|uh∗|H1(D) − |uh|H1(D)

]
|, and

slightly faster than linear convergence for V
[
|uh|H1(D) − |u2h|H1(D)

]
.

Let us now move on to more complicated functionals. As already described in

section 3.6, we consider the approximation of the second moment of the pressure

at the centre of the domain for the Dirichlet model problem (3.18), and the

approximation of the average outflow through the boundary Γout := {x1 = 1}
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Figure 4-1: Left: Plot of |E
[
‖uh∗‖L2(D) − ‖uh‖L2(D)

]
|, for model problem (3.18)

with d = 2, λ = 0.3, σ2 = 1 and h∗ = 1/256. Right: Corresponding plot of the
variance V

[
‖uh‖L2(D) − ‖u2h‖L2(D)

]
. The gradient of the dotted (resp. dashed)

line is −1 (resp. −2).

Figure 4-2: Left plot: |E
[
|uh∗ |H1(D) − |uh|H1(D)

]
|, for model problem (3.18) with

d = 2 and 2–norm exponential covariance with λ = 0.3, σ2 = 1 and h∗ =
1/256. Right plot : V

[
|uh|H1(D) − |u2h|H1(D)

]
. The gradient of the dash-dotted

(resp. dotted) line is −1/2 (resp. −1).
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computed via the functional M
(4)
ω for the mixed problem (3.19). It follows from

the plots in Figure 3-3 that α = 1 is observed numerically in both cases. In Figure

4-3, we further see that both V
[
M (3)(uh)−M (3)(u2h)

]
for the Dirichlet problem

and V
[
M

(4)
ω (uh)−M (4)

ω (u2h)
]

for the mixed problem converge quadratically in h,

as predicted by Proposition 4.5.

Finally, let us consider the point evaluation of the horizontal Darcy flux a ∂u
∂x1

at the point x∗ = (3
4

+ 1
512
, 3

4
+ 1

512
). This is not a grid point in any of the

meshes used for computation. The gradient ∂uh
∂x1

at x∗ is easily computed using

uh, and the permeability a is approximated using the average of the permeability

values at the nodes of the element containing x∗. Proposition 4.7 suggests that

we should observe α = 1/2 and β = 1. However, we see in Figure 4-4, that both∣∣E[a∂uh∗
∂x1

(x∗)− a∂uh
∂x1

(x∗)
]∣∣ and V

[
a∂uh
∂x1

(x∗)− a∂u2h

∂x1
(x∗)

]
converge linearly in h.

4.5.2 Computational cost

We now want to compare the cost of the standard (single-level) MC estimator

and the multilevel MC estimator as described in section 4.2. We again consider

model problem (3.18) and the simple functional Q = ‖u‖L2(D), and choose the

2-norm exponential covariance function for log[a]. The grid hierarchy in the

multilevel estimator is chosen as h0 = 1/8, and h` = h`−1/2, for ` = 1, . . . , L. The

performance of the MC and MLMC estimators in estimating ‖u‖L2(D) is shown

in Figure 4-5. The accuracy ε is scaled by the expected value of the quantity of

interest, E
[
‖u1/256‖L2(D)

]
≈ 0.045, for λ = 0.3, σ2 = 1. We see a clear advantage

of the multilevel Monte Carlo method. The cost on the vertical axis of the right

plot is calculated as N0 +
∑L

`=1N`
M`+M`−1

M0
, where M` = h−2

` , and so represents

a standardised cost assuming an optimal linear solver (γ = d = 2). Figure 4-5

confirms the ε-cost of order ε−2 predicted by Table 4.1 for α = 1, β = 2.

We now want to analyse the gains of increasing the number of levels in the

MLMC algorithm in more detail. The quantity of interest is again Q = ‖u‖L2(D),

but for model problem (3.18) with (rougher) 2-norm exponential covariance with

λ = 0.1, σ2 = 1. We quantify the cost of the different estimators with CPU-times,

calculated using a MATLAB implementation running on a 3GHz Intel Core 2 Duo

E8400 processor with 3.2GByte of RAM. As linear solver we use the standard

backslash operation, which we numerically found to have γ ≈ 2.4 in 2D. The
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Figure 4-3: Left plot: V
[
M (3)(uh) −M (3)(u2h)

]
versus 1/h for model problem

(3.18) with d = 2 and 2-norm exponential covariance with λ = 0.3, σ2 = 1 and

h∗ = 1/256. Right plot: V
[
M

(4)
ω (uh)−M (4)

ω (u2h)
]

versus 1/h for model problem
(3.19) with d = 2 and 2-norm exponential covariance with λ = 0.3, σ2 = 1,
ψ = x1 and h∗ = 1/256. The gradient of the dashed line is −2.

Figure 4-4: Left plot:
∣∣E[a∂uh∗

∂x1
(x∗) − a∂uh

∂x1
(x∗)

]∣∣ for model problem (3.18) with

d = 2 and 2-norm exponential covariance with λ = 0.3, σ2 = 1 and h∗ = 1/256.
Right plot: V

[
a∂uh
∂x1

(x∗)− a∂u2h

∂x1
(x∗)

]
. The gradient of the dotted line is −1.
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results are shown in Figure 4-6.

In the left plot, we fix the standard deviation of the estimators (scaled by

E
[
‖u1/256‖L2(D)

]
≈ 0.041 for λ = 0.1, σ2 = 1) to 10−4/0.041 = 2.4 ∗ 10−3, and

study how the cost of the different estimators grows with M = h−2. To achieve

the required standard deviation, the standard MC estimator is as costly on a grid

of size M = 322 as the 5-level method on a grid of size M = 2562. The standard

MC method would be 100 times more costly on the M = 2562 grid.

In the right plot in Figure 4-6, we fix the spatial discretisation to M = 2562,

and study how the cost of the estimators increases as we decrease the required

scaled standard deviation of the estimator. The horizontal line represents the

scaled discretisation error at h = 1/256. We see that the time needed to get

a standard deviation of the same size as the spatial discretisation error is 20

minutes for the standard MC estimator, while it is only 20 seconds for the 4-level

estimator.

4.5.3 Level dependent estimators

Finally, let us now present some numerical results with the level-dependent esti-

mators described in section 4.4. To be able to deal with very short correlation

lengths in a reasonable time, we start with the 1D equivalent of model problem

(3.18), on D = (0, 1). We take a to be a log–normal random field, with log[a]

having exponential covariance function (2.25) with λ = 0.01 and σ2 = 1. The

results in Figure 4-7 are for point evaluation of the pressure at x∗ = 2049/4096.

Similar gains can be obtained for other quantities of interest.

In the left plot in Figure 4-7, we study the behaviour of V[Qh` − Qh`−1
] and

V[Qh` ]. When V[Qh` −Qh`−1
] ≥ V[Qh` ], there is no benefit including level `− 1

in the multilevel estimator, since it would only increase the cost of the estimator.

We can see that if we approximate a with a (large) fixed number of modes on

each level (labelled “keep” in Figure 4-7), we should not include any levels coarser

than h0 = 1/64 (≈ λ) in the estimator, as was already observed in [15]. With the

level–dependent regime (labelled “drop”), however, it is viable to include levels

as coarse as h0 = 1/2. This leads to significant reductions in computational cost,

as is shown in the right plot in Figure 4-7.

In Figure 4-7, we fix the required tolerance for the sampling error (i.e. the
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Figure 4-5: Left: Number of samples N` per level. Right: Plot of the cost scaled
by ε−2 of the MLMC and standard MC estimators for d = 2, with λ = 0.3 and
σ2 = 1. The coarsest mesh size in all tests is h0 = 1/8.

Figure 4-6: Left plot: CPU-time versus 1/h for a fixed maximum scaled standard
deviation 2.4∗10−3, for model problem (3.18) with d = 2 and 2-norm exponential
covariance with λ = 0.1 and σ2 = 1. Right plot: Standard deviation versus CPU-
time, for a fixed finest mesh h = hL = 1/256.
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standard deviation of the estimator) at δ = 10−3, and look at how the cost of the

different estimators grows as we decrease the mesh size h := hL of the finest grid,

with each line in the plot using a fixed number of grid levels in the multilevel

simulation (e.g. 4L means 4 levels). The computational cost of the multilevel

estimator is calculated as N0h
−1
0 +

∑L
`=1 N`(h

−1
` +h−1

`−1) work units, since we know

that γ = 1 in M4 for d = 1. To make the estimators comparable, for each finest

grid hL, the standard Monte Carlo estimator is computed with RL = h−1
L modes,

the ”MLMC keep” estimator is computed with R` = h−1
L modes on all levels, and

the ”MLMC drop” estimator is computed with a varying number R` = h−1
` modes

on the levels. We clearly see the benefit of using the level–dependent multilevel

estimator. For example, on the grid of size h = 1/2048, the cheapest multilevel

estimator with a fixed number of modes is the 4 level estimator, which has a cost

of 8.6 × 105 work units. The cheapest level–dependent multilevel estimator, on

the other hand, is the 7 level estimator, whose computational cost is only 1.8×105

units. For comparison, the cost of the single–level MC estimator on this grid is

2.8× 106 units.

An important point we would like to make here, is that not only do the level–

dependent estimators have a smaller absolute cost than the estimators with a

fixed number of modes, they are also a lot more robust with respect to the coarse

grids included. On the h = 1/2048 grid, the 11 level estimator (i.e. h0 = 1/2)

with fixed R, costs 1.1× 107 units, which is 4 times the cost of the standard MC

estimator. The 11 level estimator with level–dependent R` costs 2.4× 105 units,

which is only marginally more than the best level–dependent estimator (the 7

level estimator).

For practical purposes, the real advantage of the level–dependent approach

is evident on coarser grids. We see in Figure 4-7 that on grids coarser than

h = 1/256, all multilevel estimators with a fixed number of modes are more

expensive than the standard MC estimator. With the level–dependent multilevel

estimators on the other hand, we can make use of (and benefit from) multilevel

estimators on grids as coarse as h = 1/64. This is very important, especially in the

limit as the correlation length λ → 0, as eventually all computationally feasible

grids will be ”coarse” with respect to λ. With the level–dependent estimators,

we can benefit from the multilevel approach even for very small values of λ.

Let us now move on to a model problem in d = 2. We will study the flow
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cell model problem (3.19), and take the outflow functional M
(4)
ω (u) with weight

function ψ = x1 as our quantity of interest. We choose a to be a log–normal

random field s.t. log[a] has 1-norm exponential covariance function (2.25), with

λ = 0.1 and σ2 = 1.

The left plot in Figure 4-8 is similar to the left plot in Figure 4-7. We again

see that the level–dependent regime allows for much coarser grids. In the right

plot, we see the gains in computational cost that are possible with the level–

dependent estimators. Since we do not know the value of γ in (M4) theoretically,

we quantify the cost of the estimators by the CPU–time. The results shown are

again calculated with a MATLAB implementation on a 3GHz Intel Core 2 Duo

E8400 processor with 3.2GByte of RAM, using the sparse direct solver provided

in Matlab through the standard backslash operation to solve the linear systems

for each sample. On the finest grid h = 1/256, we clearly see a benefit from

the level–dependent estimators. The cheapest multilevel estimator with a fixed

number of modes is the 5 level estimator, with takes 13.5 minutes. The cheapest

level–dependent estimator is the 7 level estimator, which takes only 2.5 minutes.

For comparison, the standard MC estimator takes more than 7.5 hours.
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Figure 4-7: Left: Plot of V
[
M (1)(uh)

]
and V

[
M (1)(uh) −M (1)(u2h)

]
, for (3.18)

with d = 1, λ = 0.01, σ2 = 1, R` = h−1
` , h∗ = 1/4096, R∗ = 4096 and x∗ =

2049/4096. Right: Plot of cost versus 1/h for a fixed tolerance of the sampling
error of δ = 10−3, for the same model problem.

Figure 4-8: Left: Plot of V
[
M

(4)
ω (uh)

]
and V

[
M

(4)
ω (uh) −M (4)

ω (u2h)
]
, for (3.19)

with d = 2, λ = 0.1, σ2 = 1, ψ = x1, R` = 4h−1
` , h∗ = 1/256 and R∗ = 1024.

Right: Plot of cost CPU-time versus 1/h for a fixed tolerance of the sampling
error of δ = 10−3, for the same model problem.
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Chapter 5

Multilevel Markov chain Monte

Carlo methods

In this chapter, we consider the setting where we have some real-world dynamic

data (or observations) Fobs available, and want to incorporate this information

into our simulation in order to reduce the overall uncertainty. We will use the

Bayesian framework, and assign a prior distribution to the model input. To get

a better representation of the input, we condition the prior on the data Fobs,

leading to the posterior distribution.

In most situations, the posterior distribution is intractable in the sense that

exact sampling from it is unavailable. One way to circumvent this problem, is to

generate samples using a Metropolis–Hastings type Markov chain Monte Carlo

(MCMC) approach [46, 55, 61], which consists of two main steps: (i) given the

previous sample, a new sample is generated according to some proposal distri-

bution, such as a random walk; (ii) the likelihood of this new sample (i.e. the

model fit to Fobs) is compared to the likelihood of the previous sample. Based

on this comparison, the proposed sample is then either accepted and used for

inference, or it is rejected and we use instead the previous sample again, leading

to a Markov chain.

A major problem with MCMC is the high cost of the likelihood calculation

for large–scale applications, which involves the (accurate) numerical solution of

model problem (2.1). Due to the slow convergence of Monte Carlo averaging, the

number of samples is also large and moreover, the likelihood has to be calculated

not only for the samples that are eventually used for inference, but also for the
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samples that end up being rejected. Altogether, this leads to an often impossibly

high overall complexity, particularly in the context of high-dimensional parameter

spaces (typically needed in subsurface flow applications), where the acceptance

rate of the algorithm can be very low. We show here how the computational cost

of the standard Metropolis-Hastings algorithm can be reduced significantly by

using the multilevel approach already introduced in chapter 4.

Before we go on to describe the standard MCMC and new multilevel MCMC

methods, let us describe the mathematical setting for the remainder of this chap-

ter. We will assume that a is a (scalar) log-normal random field as described

in section 2.7, such that assumptions B1-B3 are satisfied. Recall the Karhunen-

Loève expansion of the Gaussian random field g = log[a] from (3.8):

g(x, ω) =
∞∑
n=1

√
µn ξn(ω) bn(x) ,

where we for simplicity have assumed that g(ω, x) has mean zero. Denote ϑ :=

{ξn}n∈N ∈ RN. We will work with prior and posterior measures on the space

RN. To this end, we equip RN with the product sigma algebra B :=
⊗

n∈N B1(R),

where B1(R) denotes the sigma algebra of Borel sets of R. We denote by ρ0

the prior measure on RN, defined by {ξn}n∈N being independent and identically

distributed (i.i.d) N(0, 1) random variables,

ρ0 =
⊗
n∈N

g(ξn) dξn, (5.1)

where g : R→ R+ is the Lebesgue density of a N(0, 1) random variable and dξn

denotes the one dimensional Lebesgue measure.

We assume that the observed data Fobs is finite dimensional, with Fobs ∈ Rm,

for some m ∈ N. We further assume that

Fobs = F(u(ϑ)) + η, (5.2)

where F : H1(D) → Rm is continuous, u is the (weak) solution model problem

(2.1) which depends on ϑ through a, and the observational noise η is assumed

to be a realisation of a N(0, σ2
F Im) random variable (independent of ϑ). The

parameter σ2
F is a fidelity parameter that indicates the level of observational
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noise present in Fobs.

With ρ0 as in (5.1), we have ρ0(RN) = 1. Furthermore, it follows from the

assumption that F is continuous, together with assumptions B1-B3 and the con-

tinuous dependence of u on ϑ (see [10, Propositions 3.6 and 4.1] or Lemmas 2.20

and 5.13), that the map F(u(·)) : RN → Rm is continuous. The posterior dis-

tribution, which we will denote by ρ, is then known to be absolutely continuous

with respect to the prior and satisfies

∂ρ

∂ρ0

(ϑ) h exp

[
−‖Fobs −F(u(ϑ))‖2

2σ2
F

]
=: exp [−Φ(ϑ;Fobs)] , (5.3)

where ‖ · ‖ denotes the Euclidean norm on Rm, and the hidden constant depends

only on Fobs and is generally not known (see [64] and the references therein for

more detail). The right hand side of (5.3) is often referred to as the likelihood.

In practical computations, since the exact solution u(ϑ) is not available, the

likelihood exp [−Φ(ϑ;Fobs)] needs to be approximated. We will use the approx-

imation F(u(ϑ)) ≈ F(uR,h(ϑ)), where uR,h is the finite element approximation

of the truncated model problem defined in (3.9). We may also change the value

of σ2
F to σ2

F,h (see section 5.2.3 for a reason why we might want to do this). We

denote the resulting approximate posterior measure correspondingly by ρh,R, with

∂ρh,R

∂ρ0

(ϑ) h exp

[
−‖Fobs −F(uR,h(ϑ))‖2

2σ2
F,h

]
=: exp

[
−Φh,R(ϑ;Fobs)

]
. (5.4)

Since F(uR,h(ϑ)) only depends on θ := {ξn}Rn=1, the first R components of ϑ,

and since the prior measure can be factorised as ρ0 = ρR0 ⊗ ρ⊥0 , the approximate

posterior measure can be factorised as ρh,R = νh,R ⊗ ρ⊥, where

∂νh,R

∂ρR0
(θ) h exp

[
−Φh,R(θ;Fobs)

]
, (5.5)

and ρ⊥ = ρ⊥0 [20]. Note that νh,R is a measure on the finite dimensional space

RR. Denoting by πh,R and πR0 the densities with respect to the R dimensional

Lebesgue measure of νh,R and ρR0 , respectively, it follows from (5.5) that

πh,R(θ) h exp
[
−Φh,R(θ;Fobs)

]
πR0 (θ) . (5.6)
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ALGORITHM 1. (Metropolis Hastings MCMC)

Choose θ0. For n ≥ 0:

• Given θn, generate a proposal θ′ from a given proposal density q(θ′|θn).

• Accept θ′ as a sample with probability

αh,R (θ′|θn) = min

{
1,
πh,R(θ′) q(θn|θ′)
πh,R(θn) q(θ′|θn)

}
(5.7)

i.e. θn+1 = θ′ with probability αh,R and θn+1 = θn with probability
1− αh,R.

We are interested in approximating the expected value (with respect to the

posterior ρ) of a quantity Q = G(u(ϑ)), for some continuous G : H1(D) → R.

We denote this expected value by Eρ[Q] :=
∫

RN G(u(ϑ)) ρ(dϑ). We assume that,

as h→ 0 and R→∞,

Eνh,R [Qh,R]→ Eρ[Q],

where Eνh,R [Qh,R] :=
∫

RR G(uR,h(θ)) ν
h,R(dθ) is a finite dimensional integral. To

estimate Eρ[Q], we hence construct estimators of Eνh,R [Qh,R], for h sufficiently

small and R sufficiently large.

5.1 Standard Markov chain Monte Carlo

We will start in this section with a review of the standard Metropolis Hastings al-

gorithm. As already mentioned, the posterior measure νh,R is usually intractable.

In order to generate samples for inference on Eνh,R [Qh,R], we will use the Metropo-

lis Hastings MCMC algorithm in Algorithm 1.

Algorithm 1 creates a Markov chain {θn}n∈N, and the states θn are used in

the usual way as samples for inference in a Monte Carlo sampler. The proposal

density q(θ′|θn) is what defines the algorithm. A common choice is a simple

random walk. However, as outlined in [45], the basic random walk does not lead

to dimension R independent convergence, and a better choice is a preconditioned

Crank-Nicolson (pCN) algorithm [19]. Below we will see that the proposal density
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is also the crucial ingredient in our multilevel Metropolis-Hastings algorithm.

When the proposal density is symmetric, i.e. when q(θn|θ′) = q(θ′|θn), then the

formula for αh,R (θ′|θn) in (5.7) simplifies. Note that the acceptance probability

αh,R is computable, since the unknown normalising constant in (5.6) appears in

both the numerator and denominator and hence cancels.

Under reasonable assumptions, one can show that sample averages computed

with these samples converge to expected values with respect to the desired tar-

get distribution νh,R (see Theorem 5.2). The first several samples of the chain

{θn}n∈N, say θ0, . . . , θn0 , are not usually used for inference, since the chain needs

some time to get close to the target distribution νh,R. This is referred to as the

burn–in of the MCMC algorithm. Although the length of the burn-in is cru-

cial for practical purposes, and largely influences the behaviour of the resulting

MCMC estimator for finite sample sizes, statements about the asymptotics of the

estimator are usually independent of the burn-in. We will therefore denote our

MCMC estimator by

Q̂MC
N :=

1

N

N+n0∑
n=n0+1

Q
(n)
h,R =

1

N

N+n0∑
n=n0+1

G (uR,h(θ
n)) , (5.8)

for any n0 ≥ 0, and only explicitly state the dependence on n0 where needed.

5.1.1 Abstract convergence analysis

We will now give a brief overview of the convergence properties of the Metropolis-

Hastings algorithm, which we will need below in the analysis of the multilevel

variant. For more details we refer the reader, e.g., to [61]. Let

K(θ′|θn) := αh,R(θ′|θn) q(θ′|θn) +

(
1−

∫
RR
αh,R(θ′′|θn) q(θ′′|θn) dθ′′

)
δ(θn − θ′)

denote the transition kernel of the Markov chain {θn}n∈N, with δ(·) the Dirac

delta function, and denote

E = {θ : πh,R(θ) > 0},

D = {θ′ : q(θ′|θ) > 0 for some θ ∈ E}.
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The set E contains all values of θ which have a positive posterior probability,

and is the set that Algorithm 1 should sample from. The set D, on the other

hand, consists of all samples which can be generated by the proposal density q,

and hence contains the set that Algorithm 1 will actually sample from. For the

algorithm to fully explore the target distribution, we therefore crucially require

E ⊂ D. The following results are classical, and can be found in [61].

Lemma 5.1. Provided E ⊂ D, νh,R is a stationary distribution of the chain

{θn}n∈N.

Note that the condition E ⊂ D is sufficient for the transition kernel K(·|·) to

satisfy the usual detailed balance condition K(θ′|θn) πh,R(θn) = K(θn|θ′) πh,R(θ′).

Theorem 5.2. Suppose that Eνh,R [|Qh,R|] <∞ and

q(θ′|θ) > 0, for all (θ, θ′) ∈ E × E . (5.9)

Then

lim
N→∞

Q̂MC
N = Eνh,R [Qh,R] , for any θ0 ∈ E and n0 ≥ 0.

The condition (5.9) is sufficient for the chain {θn}n∈N to be irreducible, and

it is satisfied for example for the random walk sampler or for the pCN algorithm

(cf. [45]). Lemma 5.1 and Theorem 5.2 above ensure that asymptotically, sample

averages computed with samples generated by Algorithm 1 converge to the desired

expected value. In particular, we note that stationarity of {θn}n∈N is not required

for Theorem 5.2, and the above convergence results hence hold true for any burn–

in n0 ≥ 0, and for all initial values θ0 ∈ E .

Now that we have established the (asymptotic) convergence of the MCMC

estimator (5.8), let us establish a bound on the cost of this estimator. We will

quantify the accuracy of our estimator via the root mean square error (RMSE)

e(Q̂MC
N ) :=

(
EΘ

[(
Q̂MC
N − Eρ(Q)

)2
])1/2

, (5.10)

where EΘ denotes the expected value not with respect to the target measure

νh,R, but with respect to the joint distribution of Θ := {θn}n∈N as generated by

Algorithm 1. We denote by Cε(Q̂MC
N ) the computational ε-cost of the estimator,
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that is the number of floating point operations that are needed to achieve a RMSE

of e(Q̂MC
N ) < ε.

Classically, the mean square error (MSE) can be written as the sum of the

variance of the estimator and its bias squared,

e(Q̂MC
N )2 = VΘ

[
Q̂MC
N

]
+
(
EΘ

[
Q̂MC
N

]
− Eρ [Q]

)2

.

Here, VΘ is again the variance with respect to the approximating measure gener-

ated by Algorithm 1. Using the triangle inequality and linearity of expectation,

we can further write this as

e(Q̂MC
N )2

≤ VΘ

[
Q̂MC
N

]
+ 2

(
EΘ

[
Q̂MC
N

]
− Eνh,R

[
Q̂MC
N

])2

+ 2 (Eνh,R [Qh,R]− Eρ [Q])2 .

(5.11)

The three terms in (5.11) correspond to the three sources of error in the MCMC

estimator. The third (and last) term in (5.11) is the discretisation error due to

approximating Q by Qh,R and ρ by νh,R. The other two terms are the errors

introduced by using an MCMC estimator for the expected value; the first term

is the error due to using a finite sample average and the second term is due to

the samples in the estimator not all being perfect (i.i.d.) samples from the target

distribution νh,R.

Let us first consider the two MCMC related error terms. Quantifying, or

even bounding, the variance and bias of an MCMC estimator in terms of the

number of samples N is not an easy task, and is in fact still a very active area of

research. The main issue with bounding the variance is that the samples used in

the MCMC estimator are not independent, which means that knowledge of the

covariance structure is required in order to bound the variance of the estimator.

Asymptotically, the behaviour of the MCMC related errors (i.e. Terms 1 and 2

on the right hand side of (5.11)) can be described using the following Central

Limit Theorem, which can be found in [61, Theorem 4.7.7].

Let θ̃0 ∼ νh,R. Then the auxiliary chain Θ̃ := {θ̃n}n∈N constructed by Algo-

rithm 1 starting from θ̃0 is stationary, i.e. θ̃n ∼ νh,R for all n ≥ 0. Note that

the covariance structure of Θ̃ is still implicitly defined by Algorithm 1 as for
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Θ. However, now V eΘ[Q̃n
h,R] = Vνh,R [Q̃h,R] and E eΘ[Q̃n

h,R] = Eνh,R [Q̃h,R], for any

n ≥ 0, and

Cov eΘ
[
Q̃0
h,R, Q̃

n
h,R

]
= E eΘ

[(
Q̃0
h,R − Eνh,R [Qh,R]

)(
Q̃n
h,R − Eνh,R [Qh,R]

)]
,

where Q̃n
h,R := G(uR,h(θ̃

n)). We now define the so called asymptotic variance of

the MCMC estimator

σ2
Q := Vνh,R

[
Q̃h,R

]
+ 2

∞∑
n=1

Cov eΘ
[
Q̃0
h,R, Q̃

n
h,R

]
.

Note that stationarity of the chain is assumed only in the definition of σ2
Q, i.e.

for Θ̃, and it is not necessary for the samples Θ actually used in the computation

of Q̂MC
N .

Theorem 5.3 (Central Limit Theorem). Suppose σ2
Q <∞, (5.9) holds, and

P
[
αh,R = 1

]
< 1. (5.12)

Then we have
1√
N

(
Q̂MC
N − Eνh,R [Qh,R]

)
D−→ N (0, σ2

Q),

where
D−→ denotes convergence in distribution.

The condition (5.12) is sufficient for the chain Θ to be aperiodic. It is difficult

to prove theoretically. In practice, however, this condition is always satisfied,

since not all proposals in Algorithm 1 will agree with the observed data and thus

be accepted.

Theorem 5.3 holds again for any burn-in n0 ≥ 0 and any starting value θ0 ∈ E .

It shows that asymptotically, the sampling error of the MCMC estimator decays

at the same rate as the sampling error of an estimator based on i.i.d. samples.

Note that this includes both sampling errors, and so the constant σ2
Q is in general

larger than in the i.i.d. case where it is simply Vνh,R [Qh,R].

Since we are interested in a bound on the MSE of our MCMC estimator for

a fixed number of samples N , we make the following assumption:
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C1. For any N ∈ N,

VΘ

[
Q̂MC
N

]
+
(
EΘ

[
Q̂MC
N

]
− Eνh,R

[
Q̂MC
N

])2

.
Vνh,R [Qh,R]

N
, (5.13)

with a constant that is independent of h, R and N .

Non-asymptotic bounds such as in assumption C1 are difficult to obtain, but

have recently been proved for certain Metropolis–Hastings algorithms, see e.g.

[45, 62, 48]. These results require that the chain is sufficiently burnt–in. The

hidden constant usually depends on quantities such as the covariances appearing

in the asymptotic variance σ2
Q.

To complete the error analysis, let us now consider the last term in the MSE

(5.11), the discretisation bias. As before, we assume Eνh,R [Qh,R]−Eρ [Q]→ 0 as

h→ 0 and R →∞, and we furthermore assume that we have a certain order of

convergence, i.e.

|Eνh,R [Qh,R]− Eρ [Q]| . hα +R−α
′
, (5.14)

for some α, α′ > 0. The rates α and α′ will be problem dependent. Let now

R = h−α/α
′
, such that the two error contributions in (5.14) are balanced. Then

it follows from (5.11), (5.13) and (5.14) that the MSE of the MCMC estimator

can be bounded by

e(Q̂MC
N )2 .

Vνh,R [Qh,R]

N
+ hα. (5.15)

Under the assumption that Vνh,R [Qh,R] ≈ constant, independent of h and R, it

is hence sufficient to choose N & ε−2 and h . ε1/α to get a RMSE of O(ε).

Let us now give a bound on the computational cost to achieve this error,

the so called ε-cost. For this, assume that the cost to compute one sample Qn
h,R

satisfies C(Qn
h,R) . h−γ, for some γ > 0. Thus, with N & ε−2 and h . ε1/α, the

ε–cost of our MCMC estimator can be bounded by

Cε(Q̂MC
N ) . Nh−γ . ε−2−γ/α. (5.16)

In practical applications, especially in subsurface flow, the discretisation pa-

rameter h needs to very small and the dimension R needs to be very large in order

for Eνh,R [Qh,R] to be a good approximation to Eρ [Q]. Moreover, from the analy-

sis above, we see that we need to use a large number of samples N in order to get
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an accurate MCMC estimator with a small MSE. Since each sample requires the

evaluation of the likelihood exp
[
−Φh,R(θ;Fobs)

]
, and this is very expensive when

h is very small and R is very large, the standard MCMC estimator (5.8) is often

extraordinarily expensive in practical situations. Additionally, the acceptance

rate of the algorithm can be very low when R is very large. This means that

the covariance between the different samples will decay more slowly, which again

makes the hidden constant in assumption C1 larger, and the number of samples

we have to take in order to get a certain accuracy increases even further.

To overcome the prohibitively large computational cost of the standard MCMC

estimator (5.8), we will now introduce a new multilevel version of the estimator.

5.2 Multilevel Markov chain Monte Carlo

As in section 4.2, let now {h` : ` = 0, . . . , L} be a sequence of mesh widths

satisfying the geometric growth condition (4.4), for some s ∈ N \ {1}:

h` = s−1 h`−1 , for all ` = 1, . . . , L.

In addition, we choose a (not necessarily strictly) increasing sequence

{R`}L`=0 ⊂ N, i.e. R` ≥ R`−1, for all ` = 1, . . . , L. For each level `, we denote by

θ` := {ξn}R`n=1 the first R` entries of ϑ. We denote correspondingly the coefficient

by a` := aR` , the solution by u` := uR`,h` , the quantity of interest by Q` := Qh`,R`

and the resulting posterior distribution on RR` by ν` := νh`,R` , with density π`.

Since in the context of MCMC simulations, the target distribution ν` de-

pends on `, the new multilevel MCMC (MLMCMC) estimator has to be defined

carefully. We will use the identity

EνL [QL] = Eν0 [Q0] +
L∑
`=1

(Eν` [Q`]− Eν`−1 [Q`−1]) (5.17)

as a basis. Note that in the case where all the distributions are the same, the

above reduces to the telescoping sum (4.5) used for Monte Carlo estimators based

on i.i.d samples.

As before, the idea of the multilevel estimator is now to estimate each of the

terms on the right hand side of (5.17) independently, in a way that minimises

103



the variance of the estimator for a fixed computational cost. In particular, we

will estimate each term in (5.17) by an MCMC estimator. The first term Eν0 [Q0]

can be estimated using the standard MCMC estimator described in Algorithm 1,

i.e. Q̂MC
0,N0

as in (5.8) with N0 samples. We need to be more careful in estimating

the differences Eν` [Q`] − Eν`−1 [Q`−1], and build an effective two-level version of

Algorithm 1. For ` ≥ 1, we again denote Y` := Q`(θ`) − Q`−1(Θ`−1) and define

the estimator on level ` as

Ŷ MC
`,N`

:=
1

N`

n`0+N`∑
n=n`0+1

Y
(n)
` =

1

N`

n`0+N`∑
n=n`0+1

Q`(θ
n
` )−Q`−1(Θn

`−1),

where n`0 again denotes the burn-in of the estimator, N` is the number of samples

on level ` and Θ`−1 has the same dimension as θ`−1. The main ingredient in this

two level estimator is a judicious choice of the two Markov chains θn` and Θn
`−1

(to be described later). The full MLMCMC estimator is now defined as

Q̂ML
L,{N`} := Q̂MC

0,N0
+

L∑
`=1

Ŷ MC
`,N`

, (5.18)

where it is important (i) that the L + 1 estimators in (5.18) are independent,

and (ii) that the two chains {θn` }n∈N and {Θn
` }n∈N, that are used in Ŷ MC

`,N`
and in

Ŷ MC
`+1,N`+1

respectively, are drawn from the same posterior distribution ν`, so that

Q̂ML
L,{N`} is a consistent estimator of EνL [QL].

There are two main ideas underlying the reduction in computational cost

associated with the multilevel estimator. Firstly, samples of Q`, for ` < L, are

cheaper to compute than samples of QL, reducing the cost of the estimators on

the coarser levels for any fixed number of samples. Secondly, if the variance of

Y` = Q`(θ`) − Q`−1(Θ`−1) tends to 0 as ` → ∞, we need only a small number

of samples to obtain a sufficiently accurate estimate of the expected value of Y`

on the fine grids, and so the computational effort on the fine grids is also greatly

reduced.

By using the telescoping sum (5.17) and by sampling from the posterior dis-

tribution ν` on level `, we ensure that a sample of Q`, for ` < L, is indeed

cheaper to compute than a sample of QL. It remains to ensure that the variance

of Y` = Q`(θ`) − Q`−1(Θ`−1) tends to 0 as ` → ∞. This will be ensured by the
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ALGORITHM 2. (Metropolis Hastings MCMC for Q` −Q`−1)

Choose initial states Θ0
`−1 and θ0

` := [Θ0
`−1 , θ

0
`,F ]. For n ≥ 0:

• On level `−1: Given Θn
`−1 generate Θn+1

`−1 using Algorithm 1 with some
proposal density q`,C(Θ′`−1 |Θn

`−1) and acceptance probability

α`,C(Θ′`−1 |Θn
`−1) = min

{
1,
π`−1(Θ′`−1) q`,C(Θn

`−1|Θ′`−1)

π`−1(Θn
`−1) q`,C(Θ′`−1|Θn

`−1)

}
.

• On level `: Given θn` generate θn+1
` using Algorithm 1 with the specific

proposal density q`(θ′` | θn` ) induced by taking θ′`,C := Θn+1
`−1 and by gen-

erating a proposal for θ′`,F from some proposal density q`,F (θ′`,F | θn`,F ).
The acceptance probability is

α`(θ′` | θn` ) = min

{
1,
π`(θ′`) q

`(θn` |θ′`)
π`(θn` ) q`(θ′`|θn` )

}
.

choice of θn` and Θn
`−1.

5.2.1 The estimator for Y` = Q` −Q`−1

Let us for the moment fix 1 ≤ ` ≤ L. The challenge is now to generate the

chains {θn` }n∈N and {Θn
`−1}n∈N such that the variance of Y` is small. To this end,

we partition the chain θ` into two parts: the entries which are present already

on level ` − 1 (the “coarse” modes), and the new entries on level ` (the “fine”

modes):

θ` = [θ`,C , θ`,F ],

where θ`,C has length R`−1, i.e. the same length as Θ`−1. θ`,F has length R`−R`−1.

An easy way to construct θn` and Θn
`−1 such that V[Y`] is small, would be to

generate θn` first, and then simply use Θn
`−1 = θn`,C . This is what was done in

section 4.2. However, since we require Θn
`−1 to come from a Markov chain with

stationary distribution ν`−1, and θn` comes from the distribution ν`, this approach

is not permissible. We will, however, use this general idea in Algorithm 2.

The coarse sample Θn+1
`−1 is generated using the standard MCMC algorithm
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given in Algorithm 1, using, e.g., a random walk or the pCN proposal density

[19] for q`,C . Based on the outcome on level `− 1, we then generate θn+1
` , using a

new two-level proposal density in conjunction with the usual accept/reject step

from Algorithm 1. The proposal density q`,F for the fine modes in that step can

again be a simple random walk or the pCN algorithm.

At each step in Algorithm 2, there are four different outcomes, depending on

whether we accept on both, one or none of the levels. The different possibilities

are given in Table 5.1. Observe that when we accept on level `, we always have

θn+1
`,C = Θn+1

`−1 , i.e. the coarse modes are the same. If, on the other hand, we reject

on level `, we crucially return to the previous state θn` on that level, which means

that the coarse modes of the two states may differ. They will definitely differ if

we accept on level `− 1 and reject on level `. If both proposals are rejected then

it depends on the decision made at the previous state whether the coarse modes

differ or not.

Level `− 1 test Level ` test Θn+1
`−1 θn+1

`,C

reject accept Θn
`−1 Θn

`−1

accept accept Θ′`−1 Θ′`−1

reject reject Θn
`−1 θn`,C

accept reject Θ′`−1 θn`,C

Table 5.1: Possible states of Θn+1
`−1 and θn+1

`,C in Algorithm 2.

In general, this “divergence” of the coarse modes could mean that the variance

of Y` is not small. For the setting considered in this chapter, however, we will

prove in section 5.2.3 that the variance of Y` does in fact go to 0 as `→∞.

The specific proposal density q` in Algorithm 2 can be computed very eas-

ily and at no additional cost, leading to a simple formula for the “two-level”

acceptance probability α`.

Lemma 5.4. Let ` ≥ 1. Then

α`(θ′` | θn` ) = min

{
1,
π`(θ′`) π

`−1(θn`,C) q`,F (θn`,F |θ′`,F )

π`(θn` ) π`−1(θ′`,C) q`,F (θ′`,F |θn`,F )

}
.
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If we further suppose that the proposal densities q`,C and q`,F are symmetric, then

α`,C(Θ′`−1 |Θn
`−1) = min

{
1,
π`−1(Θ′`−1)

π`−1(Θn
`−1)

}
and

α`(θ′` | θn` ) = min

{
1,
π`(θ′`) π

`−1(θn`,C)

π`(θn` ) π`−1(θ′`,C)

}
.

Proof. Let θa` and θb` be any two admissible states on level `. Since the proposals

for the coarse modes θ`,C and for the fine modes θ`,F are generated independently,

the transition probability q`(θb` |θa` ) can be written as a product of transition

probabilities on the two parts of θ`. For the coarse level transition probability,

we have to take into account the decision that was made on level `− 1. Hence,

q`(θb`|θa` ) = α`,C(θb`,C |θa`,C) q`,C(θb`,C |θa`,C) q`,F (θb`,F |θa`,F ). (5.19)

and so

q`(θa` |θb`)
q`(θb`|θa` )

=
min

{
1,

π`−1(θa`,C)q`,C(θb`,C |θ
a
`,C)

π`−1(θb`,C)q`,C(θa`,C |θ
b
`,C)

}
q`,C(θa`,C |θb`,C)q`,F (θa`,F |θb`,F )

min
{

1,
π`−1(θb`,C)q`,C(θa`,C |θ

b
`,C)

π`−1(θ`,C)q`,C(θb`,C |θ
a
`,C)

}
q`,C(θb`,C |θa`,C)q`,F (θb`,F |θa`,F )

=
π`−1(θa`,C)q`,F (θa`,F |θb`,F )

π`−1(θb`,C)q`,F (θb`,F |θa`,F )
.

This completes the proof of the first result, if we choose θa` := θn` and θb` := θ′`.

The corollary for symmetric densities q`,C and q`,F follows by definition.

Remark 5.5 (Recursive algorithm). Note that one particular choice for the

coarse level proposal density in Step 1 of Algorithm 2 on each of the levels ` ≥ 1 is

q`,C := q`−1, i.e. the “two-level” proposal density defined in Step 2 of Algorithm

2 on level ` − 1. We can apply this strategy recursively on every level and set

q0 to be, e.g., the pCN proposal density. So proposals for Q`−1 and for Q` get

“pre-screened” at all coarser levels, starting always at level 0. The formula for

the acceptance probability α` in Lemma 5.4 does not depend on q`,C and so it

remains the same. However, this choice did not prove advantageous in practice.

It requires ` + 1 evaluations of the likelihood on level ` instead of two and it

does not improve the acceptance probability. Instead, we found that choosing
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the pCN algorithm for q`,C (as well as for q`,F ) worked better.

A simplified version of Algorithm 2, making use of the symmetry of the pCN

proposal density and of the formulae derived in Lemma 5.4, is given in Section

5.3 and will be used for the numerical computations.

5.2.2 Abstract convergence analysis

Let us now move on to convergence properties of the multilevel estimator. As in

the standard MCMC case, let

K`(θ
′
` | θn` ) := α`(θ′` | θn` ) q`(θ′` | θn` )+

(
1−

∫
RR`

α`(θ′′` | θn` ) q`(θ′′` | θn` ) dθ′′`

)
δ(θn`−θ′`),

denote the transition kernel of {θn` }n∈N, and define, for all ` = 0, . . . , L, the sets

E ` = {θ` : π`(θ`) > 0},

D` = {θ′` : q`(θ′` | θ`) > 0 for some θ` ∈ E `}.

The following convergence results follow from the classical results, due to the

telescoping sum property (5.17) and the algebra of limits.

Lemma 5.6. Provided E ` ⊂ D`, ν` is a stationary distribution of the chain

{θn` }n∈N.

Theorem 5.7. Suppose that for all ` = 0, . . . , L, Eν` [|Q`|] <∞ and

q`(θ` | θ′`) > 0, for all (θ`, θ
′
`) ∈ E ` × E `. (5.20)

Then

lim
{N`}→∞

Q̂ML
L,{N`} = EνL [QL] , for any θ0

` ∈ E ` and n`0 ≥ 0.

Let us have a closer look at the irreducibility condition (5.20). As in (5.19),

we have

q`(θ`|θ′`) = α`,C(θ`,C |θ′`,C) q`,C(θ`,C |θ′`,C) q`,F (θ`,F |θ′`,F )

and thus (5.20) holds, if and only if, for all (θ`, θ
′
`) ∈ E ` × E `, π`−1(θ`,C),

q`,C(θ′`,C |θ`,C), q`,C(θ`,C |θ′`,C) and q`,F (θ`,F |θ′`,F ) are all positive. The final three
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terms are positive for common choices of proposal distributions, such as the

random walk sampler or the pCN algorithm. The first term is assured to be

positive by our choice of prior density π`0 := πR`0 .

We finish the abstract discussion of the new, hierarchical multilevel Metropolis-

Hastings MCMC algorithm with the main theorem that establishes a bound on

the ε-cost of the multilevel estimator under certain assumptions on the MCMC

error, on the (weak) model error, on the strong error between the states on level

` and on level ` − 1 (in the two-level estimator for Y`), as well as on the cost C`
to advance Algorithm 2 by one state from n to n + 1 (i.e. one evaluation of the

likelihood on level ` and one on level ` − 1). This is the equivalent of Theorem

4.1 in the case of Markov chain Monte Carlo estimators.

To state our assumption on the MCMC error and to define the mean square

error of the estimator, we introduce the following notation. We define Θ` :=

{θn` }n∈N ∪ {Θn
`−1}n∈N, for ` ≥ 1, and Θ0 := {θn0}n∈N , and define by EΘ`

(re-

spectively VΘ`
) the expected value (respectively variance) with respect to the

distribution of Θ` generated by Algorithm 2. Furthermore, let us for ` ≥ 1 de-

note by ν`,`−1 the joint stationary distribution of θ` and Θ`−1. ν`,`−1 is defined by

the marginals of θ` and Θ`−1 being ν` and ν`−1, respectively, and the correlation

being determined by Algorithm 2. For ` = 0 define ν0,−1 := ν0.

Theorem 5.8. Let ε < exp[−1]. Suppose the sequence {h`}`=0,1,... satisfies (4.4),

suppose there are positive constants α, α′, β, β′, γ, cM1, cM2, cM3, cM4 > 0 such that

α ≥ 1
2

min(β, γ) and R` & h
−max{α/α′,β/β′}
` . Under the following assumptions,

M1. |Eν` [Q`]− Eρ[Q]| ≤ cM1

(
hα` +R−α

′

`

)
M3. Vν`,`−1 [Y`] ≤ cM2

(
hβ`−1 +R−β

′

`−1

)
M3. VΘ`

[Ŷ MC
`,N`

] + (EΘ`
[Ŷ MC
`,N`

]− Eν`,`−1 [Ŷ MC
`,N`

])2 ≤ cM3 N
−1
` Vν`,`−1 [Y`]

M4. C` ≤ cM4 h
−γ
` ,

there exists a number of levels L and a sequence {N`}L`=0 such that

e(Q̂ML
L,{N`})

2 := E∪`Θ`

[(
Q̂ML
L,{N`} − Eρ[Q]

)2
]
< ε2,
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and

Cε(Q̂ML
L,{N`}) .


ε−2 | log ε|, if β > γ,

ε−2 | log ε|3, if β = γ,

ε−2−(γ−β)/α | log ε|, if β < γ.

Proof. The proof of this theorem is very similar to the proof of the complexity

theorem in the case of multilevel estimators based on i.i.d samples (cf. Theorem

4.1). First note that by assumption we have R−α
′

` . hα` and R−β
′

` . hβ` .

Furthermore, similar to (5.11), we can expand

e(Q̂ML
L,{N`})

2 ≤ V∪`Θ`

[
Q̂ML
L,{N`}

]
+ 2

(
E∪`Θ`

[
Q̂ML
L,{N`}

]
− EνL

[
Q̂ML
L,{N`}

])2

+ 2
(
EνL [QL]− Eρ[Q]

)2

.

Since the second term in the MSE above can be bounded by(
E∪`Θ`

[
Q̂ML
L,{N`}

]
− EνL

[
Q̂ML
L,{N`}

])2

=

( L∑
l=0

(
EΘ`

[
Ŷ MC
`,N`

]
− Eν`,`−1 [Ŷ MC

`,N`
]
))2

≤ (L+ 1)
L∑
l=1

(
EΘ`

[
Ŷ MC
`,N`

]
− Eν`,`−1 [Ŷ MC

`,N`
]
)2

,

it follows from assumption M3 that

e(Q̂ML
L,{N`})

2 . (L+ 1)
L∑
`=0

N−1
` Vν`,`−1 [Y`] +

(
EνL [QL]− Eρ[Q]

)2

. (5.21)

In contrast to the MSE for multilevel estimators based on i.i.d samples considered

in section 4.2, we hence have a factor (L+1) multiplying the sampling error term

on the right hand side of (5.21). This implies that in order to make this term

less than ε2/2, the number of samples N` needs to be increased by a factor of

(L + 1) compared to the i.i.d. case. The cost of the multilevel estimator is

correspondingly also increased by a factor of (L+ 1). The remainder of the proof

remains identical.

Since L is chosen such that the second term in (5.21) (the bias of the multilevel
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estimator) is less than ε2/2 (cf (4.10)), it follows from assumptions M1 that

L + 1 . log ε−1. The bounds on the ε-cost then follow as in Theorem 4.1 with

δ = 1, but with an extra | log ε| factor.

Assumptions M1 and M4 are the same assumptions as in the single level case,

and are related to the bias in the model (due to discretisation) and to the cost

per sample, respectively. Assumption M3 is similar to assumption C1, in that it

is a non-asymptotic bound for the sampling errors of the MCMC estimator Ŷ MC
`,N`

.

For this assumption to hold, it is in general necessary that the chains have been

sufficiently burnt in, i.e. that the values n`0 are sufficiently large.

5.2.3 Application of abstract convergence analysis

Let us now move on to quantifying the cost of the multilevel MCMC estimator,

by verifying that the assumptions in Theorem 5.8 hold for our model problem. As

mentioned earlier, assumption M3 involves bounding the mean square error of an

MCMC estimator, and a proof of M3 is beyond the scope of this thesis. Results

of this kind can be found in e.g. [62, 45]. We will also not address M4, which

is an assumption on the cost of obtaining one sample of Q`. In the best case,

with an optimal linear solver to solve the discretised (finite element) equations

for each sample, M4 is satisfied with γ ≈ d.

We will address assumptions M1 and M2, which are the assumptions related

to the discretisation errors in the quantity of interest Q. However, assumption

M1 also involves the discretisation error in the measure ρ. Using the triangle

inequality, we have

|Eν` [Q`]− Eρ[Q]| ≤
∣∣Eν` [Q` −QR` ]

∣∣ +
∣∣Eν` [Q

R` ]− Eρ[Q]
∣∣ , (5.22)

where QR` := G(uR`(θ`)) is the approximation of Q resulting from the approx-

imation a = a` in the (exact) solution to model problem (2.1). We make the

following assumption on the second term on the right hand side of (5.22).

C2. There exist constants η, η′, cC2 > 0 such that

∣∣Eν` [Q
R` ]− Eρ[Q]

∣∣ ≤ cC2

(
hη` +R−η

′

`

)
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Assumption C2 can be proved by proving that dHell(ν
`, ρ) ≤ cC2

(
hη` +R−η

′

`

)
,

where dHell denotes the Hellinger distance [64]. This proof is again beyond the

scope of the thesis, but bounds of this type have been proven for similar model

problems in [64, 18, 20, 48]. In particular, it follows from [48] that for model

problem (2.1) with uniformly bounded and coercive coefficients a(ω, x), assump-

tion C2 holds with the same convergence rates as for F(u(ϑ))−F(u`(θ`)), which

for the case considered in this section would suggest the rates given in Lemma

3.7 and Corollary 3.17.

For ease of presentation, we will for the remainder of this section assume

that g = log[a] has mean zero and exponential covariance function (2.25) with

p = 1, and that {φj}mj=1 and f in (2.1) are deterministic, with φj ∈ H1(Γj) and

f ∈ H−1/2(D). This implies that the solution u to (2.1) is in Lp(Ω, H1/2−δ), for

any δ > 0. Accordingly, we shall assume that the functionals G and F , where G is

such thatQ = G(u(ϑ)) and F is as in (5.2), satisfy assumption F1 in section 2.5 for

some t∗ > 1/2 and any q∗ <∞. In particular, this implies that |G(u)− G(u`)| ≤
CG(ω)‖(u− u`)(ω, ·)‖H1(D) and |F(u)−F(u`)| ≤ CF(ω)‖(u− u`)(ω, ·)‖H1(D), for

some CG(ω), CF(ω) ∈ Lq(Ω), for any 1 ≤ q <∞.

Under the above assumptions, it follows from Remark 3.20 that for ρ`0 := ρR`0

(defined in (5.1) and (5.5)), we have

Eρ`0

[
|QR` −Q`|q

]1/q ≤ Ca,f,φ,q h
1−δ
` , (5.23)

for any δ > 0, where the (generic) constant Ca,f,φ,q (here and below) depends on

the data a, f , φ and on q, but is independent of any other parameters.

The aim is now to generalise the convergence result in (5.23) to include the

framework of the new MLMCMC estimator. There are two issues which need

to be addressed. Firstly, the bounds in assumptions M1 and M2 in Theorem

5.8 involve moments with respect to the posterior distributions ν`, which are

not known explicitly, but are related to the prior distribution ρ`0 through (5.6).

Secondly, the samples which are used to compute the differences Y` = Q` −Q`−1

are generated by Algorithm 2, and may differ not only due to the truncation

order, but also because they come from different Markov chains (i.e. Θn
`−1 is not

necessarily equal to θn`,C , as seen in Table 5.1).

To circumvent the problem of the intractability of the posterior distribution,
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we have the following lemma, which relates moments with respect to the posterior

distribution ν` to moments with respect to the prior distribution ρ`0.

Lemma 5.9. For any random variable Z = Z(θ`) and for any q s.t. Eρ`0
[|Z|q] <

∞, we have

|Eν` [Zq] | . Eρ`0
[|Z|q] .

Proof. Using (5.6), we have

|Eν` [Zq] | h
∣∣∣∣∫

RR`
Zq(θ`) exp

[
−Φh,R(θ`;Fobs)

]
π`0(θ`) dθ`

∣∣∣∣
h sup

θ`

{
exp

[
−Φh,R(θ`;Fobs)

]} ∫
RR`
|Z(θ`)|q π`0(θ`) dθ`.

The claim of the Lemma then follows, since the above supremum can be bounded

by 1.

Note that a bound on the first term on the right hand side of (5.22) follows

immediately from Lemma 5.9, together with (5.23):
∣∣Eν` [Q` −QR` ]

∣∣ ≤ Ca,f,φh
1−δ
` ,

for any δ > 0. In order to prove M3, we further have to analyse the situation

where the two samples θn` and Θn
`−1 used to compute Y n

` “diverge”, i.e. when

Θn
`−1 6= θn`,C .

Recall that the coarser levels in our multilevel estimator are introduced only

to accelerate the convergence and that the multilevel estimator is still a consistent

estimator of the expected value ofQL with respect to the posterior νL on the finest

level L. Hence, the posterior distributions on the coarser levels ν`, ` = 0, . . . , L−1,

do not have to model the measured data as faithfully as νL. In particular, this

means that we can choose larger values of the fidelity parameter σ2
F,` := σ2

F,h`
on

the coarse levels, which will increase the acceptance probability on the coarser

levels, since it is easier to match the model response F(u`(θ`)) with the data Fobs.

As we will see below (cf. assumption C3), the growth in σ2
F,` has to be controlled.

Typically, we will choose σ2
F,L = σ2

F .

We need to make the following two assumptions on the parameters σ2
F,` in the

likelihood and on the growth of the dimension R`.
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C3. The dimension R` →∞ as `→∞ and

(R` −R`−1)(2π)−
R`−R`−1

2 . R
−1/2+δ
`−1 , for all δ > 0.

C4. The sequence of fidelity parameters {σ2
F,`}∞`=0 satisfies

σ−2
F,` − σ

−2
F,`−1 . max

(
R
−1/2+δ
`−1 , h1−δ

`−1

)
, for all δ > 0.

For C3 to be satisfied it suffices that R` −R`−1 grows logarithmically with R`−1.

Assumption C4 holds for example, if we choose the fidelity parameter to be equal

to σ2
F for all ` ≥ `0, for some `0 ≥ 0. Note that for assumption C2 to hold, one

usually requires σ2
F,` → σ2

F as `→∞.

Under these assumptions we can now prove that assumption M2 in Theorem

5.8 is satisfied, with β = 1− δ and β′ = 1/2− δ, for any δ > 0.

Lemma 5.10. Let θ` and Θ`−1, with joint distribution ν`,`−1, be such that Y` =

Q`(θ`)−Q`−1(Θ`−1). Let (5.23), as well as assumptions C3 and C4 hold. Then

Vν`,`−1 [Y`] ≤ Ca,f,φ

(
h1−δ
`−1 +R

−1/2+δ
`−1

)
, for any δ > 0.

To prove Lemma 5.10, we first need some preliminary results. Firstly, note

that for Θn
`−1 6= θn`,C to be the case, the proposal generated for θn` had to be re-

jected. Given the proposal θ′` and the previous state θn−1
` , the probability of this

rejection is given by 1−α`(θ′`|θn−1
` ). We need to quantify this probability. Before

we can do so, we need to specify the (marginal) distribution of the proposal θ′`.

When θ` and Θ`−1 are jointly distributed as ν`,`−1, it follows from the construction

of Algorithm 2 that the first R`−1 entries of θ′` are distributed as ν`−1, since they

come from Θ`−1. The remaining R` − R`−1 dimensions are (independent of the

first R`−1 dimensions) distributed according to the prior distribution ρ0 restricted

to these dimensions. This is in fact the posterior distribution ρ`−1 := ρh`−1,R`−1

(on RN) restricted to RR` , and we shall denote this distribution by ρ`−1
` . Using

the same proof technique as in Lemma 5.9, together with the relation (5.4), we

establish the following.
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Lemma 5.11. For any random variable Z = Z(θ`) and for any q s.t. Eρ`0
[|Z|q] <

∞, we have ∣∣∣Eρ`−1
`

[Zq]
∣∣∣ . Eρ`0

[|Z|q] .

We now have the following crucial result.

Theorem 5.12. Suppose θ′` and θ′′` have joint distribution f(θ′`, θ
′′
` ), with marginal

distributions f(θ′′` ) = ν` and f(θ′`) = ρ`−1
` . Suppose C3 and C4 hold. Then

lim
`→∞

α`(θ′` | θ′′` ) = 1, for almost all θ′`, θ
′′
` .

Furthermore,

Ef

[
(1− α`)q

]1/q ≤ Ca,f,φ,q

(
h1−δ
`−1 +R

−1/2+δ
`−1

)
,

for any q ∈ [1,∞) and δ > 0.

Proof. We will first derive a bound on 1− α`(θ′` | θ′′` ), for ` > 1 and for θ′` and θ′′`
given. First note that if

π`(θ′`)π
`−1(θ′′`,C)

π`(θ′′` )π`−1(θ′`,C)
≥ 1, then 1 − α`(θ′` | θ′′` ) = 0. Otherwise,

we have

1− α`(θ′` | θ′′` ) =

(
1− π`(θ′`)

π`−1(θ′`,C)

)
+

(
π`(θ′`) π

`−1(θ′′`,C)

π`(θ′′` ) π
`−1(θ′`,C)

)(
1− π`(θ′′` )

π`−1(θ′′`,C)

)

≤

∣∣∣∣∣1− π`(θ′`)

π`−1(θ′`,C)

∣∣∣∣∣+

∣∣∣∣∣1− π`(θ′′` )

π`−1(θ′′`,C)

∣∣∣∣∣ . (5.24)

Let us consider either of these two terms and set θ` = (ξj)
R`
j=1 to be either θ′` or

θ′′` . Using (5.6), as well the prior (5.1) we have

π`(θ`)

π`−1(θ`,C)
=

π`0(θ`) exp[−Φ`(θ`;Fobs)]

π`−1
0 (θ`,C) exp[−Φ`−1(θ`,C ;Fobs)]

= exp

− (2π)−
R`−R`−1

2

R∑̀
j=R`−1+1

ξ2
j

2
− ‖Fobs −F(u`(θ`))‖2

σ2
F,`

+
‖Fobs −F(u`−1(θ`,C))‖2

σ2
F,`−1

)
. (5.25)

Denoting F` := F(u`(θ`)) and F`−1 := F(u`−1(θ`,C)), and using the triangle
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inequality, we have that

‖Fobs − F`‖2

σ2
F,`

− ‖Fobs − F`−1‖2

σ2
F,`−1

≤

(
‖Fobs − F`−1‖+ ‖F` − F`−1‖

)2

σ2
F,`

− ‖Fobs − F`−1‖2

σ2
F,`−1

= ‖Fobs − F`−1‖2
(
σ−2
F,` − σ

−2
F,`−1

)
+

2‖Fobs − F`−1‖+ ‖F` − F`−1‖
σ2
F,`

‖F` − F`−1‖.

By our assumptions on F , it follows from Proposition 3.16 that

‖F` − F`−1‖ . C(θ`)
(
‖a` − a`−1‖C0(D) + h1−δ

`−1

)
,

for almost all θ` and for a constant C(θ`) <∞ that depends on θ` only through

a`. Since ‖F`−1‖ can be bounded independently of `, for almost all θ` (again by

assumption on F), and since ‖Fobs − F`−1‖ ≤ ‖Fobs‖ + ‖F`−1‖, we can deduce

that

‖Fobs − F`‖2

σ2
F,`

− ‖Fobs − F`−1‖2

σ2
F,`−1

. C(θ`)
(

(σ−2
F,` − σ

−2
F,`−1) + ‖a` − a`−1‖C0(D) + h1−δ

`−1

)
.

Finally, substituting this into (5.25) and using the inequality |1 − exp(x)| ≤
|x| exp |x| we have∣∣∣∣1− π`(θ`)

π`−1(θ`,C)

∣∣∣∣
. C(θ`)

(
(2π)−

R`−R`−1
2 ζ` + (σ−2

F,` − σ
−2
F,`−1) + ‖a` − a`−1‖C0(D) + h1−δ

`−1

)
, (5.26)

for almost all θ`, where ζ` :=
∑R`

j=R`−1+1 ξ
2
j , i.e. a realisation of a χ2-distributed

random variable with R` −R`−1 degrees of freedom.

Now as `→∞, by assumption C3 we have R` →∞ and (2π)−(R`−R`−1)/2ζ` →
0, almost surely. Moreover, h` → 0 and it follows from Proposition 3.14 that
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‖a` − a`−1‖C0(D) → 0, almost surely. Hence, using also C4 we have

lim
`→∞

∣∣∣∣1− π`(θ`)

π`−1(θ`,C)

∣∣∣∣ = 0, for almost all θ`.

The first claim of the Theorem then follows immediately from (5.24).

For the bound on the moments of 1 − α`, we use that all finite moments of

C(θ`) can be bounded independently of ` (cf. Proposition 3.14). It also follows

from Propositions 3.14 and 3.15 that

Eρ`0

[
‖a` − a`−1‖qC0(D)

]1/q

. R
−1/2+δ
`−1 , for any δ > 0, q <∞.

Finally, since ζ` under the prior ρ`0 is χ2-distributed with R` − R`−1 degrees of

freedom, we have

Eρ`0
[ζq` ] = 2q

Γ
(

1
2
(R` −R`−1) + q

)
Γ
(

1
2
(R` −R`−1)

) . (R` −R`−1)q , for any δ > 0, q <∞.

To bound the qth moment of 1−α`, we now use (5.24). Since (a+ b)q . aq + bq,

where the hidden constant depends only on q, it suffices to prove bounds on the

qth moments of the two terms on the right hand side of (5.24). Minkowski’s

inequality, together with the definition of f , gives

Ef

[
(1− α`)q

]1/q
. Ef

[∣∣∣∣∣1− π`(θ′`)

π`−1(θ′`,C)

∣∣∣∣∣
q]1/q

+ Ef

[∣∣∣∣∣1− π`(θ′′` )

π`−1(θ′′`,C)

∣∣∣∣∣
q]1/q

= Eρ`−1
`

[∣∣∣∣∣1− π`(θ′`)

π`−1(θ′`,C)

∣∣∣∣∣
q]1/q

+ Eν`

[∣∣∣∣∣1− π`(θ′′` )

π`−1(θ′′`,C)

∣∣∣∣∣
q]1/q

.

The bound on the qth moment of 1 − α` then follows from (5.26), assumptions

C3 and C4, Minkowski’s and Hölder’s inequality and Lemmas 5.9 and 5.11.

We will further need the following result.

Lemma 5.13. For any θ`, let a`(θ`) := exp
(∑R`

j=1

√
µjφjξj

)
and κ(θ`) :=
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minx∈D a`(·, x). Let θ′`, θ
′′
` be as in Theorem 5.12. Then

|u`(θ′`)− u`(θ′′` )|H1(D) .
CR`

2.1(θ′′` )

κ(θ′`)
‖a`(θ′`)− a`(θ′′` )‖C0(D), for almost all θ′`, θ

′′
` ,

(5.27)

and
Ef

[
|u`(θ′`)− u`(θ′′` )|

q
H1(D)

]1/q

. 1, (5.28)

for any q <∞, where the hidden constants are independent of ` and u`.

Proof. Using the definition of κ(θ′`), as well as the identity∫
D

a`(θ
′
`)∇u`(θ′`) · ∇v dx =

∫
D

fv dx =

∫
D

a`(θ
′′
` )∇u`(θ′′` ) · ∇v dx,

for all v ∈ H1
0 (D), (deduced from (2.4)) we have

κ(θ′`)|u`(θ′`)− u`(θ′′` )|2H1(D)

≤
∫
D

a`(θ
′
`)∇ (u`(θ

′
`)− u`(θ′′` )) · ∇ (u`(θ

′
`)− u`(θ′′` )) dx

≤
∫
D

(a`(θ
′
`)− a`(θ′′` )) ∇u`(θ′′` ) · ∇ (u`(θ

′
`)− u`(θ′′` )) dx.

Due to the estimate |u`(θ′′` )|H1(D) . CR`
2.1(θ′′` ) this implies (5.27).

It follows from Proposition 3.14 that Ef

[
‖a`(θ′′` )− a`(θ′`)‖

q

C0(D)

]
and

Ef [κ(θ′′` )
−q] and can be bounded independently of `. The result then follows from

an application of the Minkowski and Hölder’s inequalities, together with Lemmas

5.9 and 5.11.

Using Theorem 5.12 and Lemma 5.13, we are now ready to prove Lemma

5.10.

Proof of Lemma 5.10. Firstly, we have

Vν`,`−1

[
Q`(θ

n
` )−Q`−1(Θn

`−1)
]

. Eν`,`−1

[(
Q`(θ

n
` )−Q`−1(Θn

`−1)
)2
]
. (5.29)

Let us denote by θ′` the proposal generated for θn` by Algorithm 2, with θ′`,C =

Θn
`−1 and with some θ′`,F . Note that θn` 6= θ′` only if this proposal was rejected. It
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follows from (5.29), together with Minkowski’s inequality, that

Vν`,`−1

[
Q`(θ

n
` )−Q`−1(Θn

`−1)
]

. Ef

[
(Q`(θ

n
` )−Q`(θ

′
`))

2
]

+ Eρ`−1
`

[(
Q`(θ

′
`)−Q`−1(θ′`,C)

)2
]
, (5.30)

where, by construction, the joint distribution f(θn` , θ
′
`) is such that the marginal

distributions are f(θn` ) = ν` and f(θ′`) = ρ`−1
` , and we have used that θ′`,C = Θn

`−1.

A bound on the second term follows immediately from (5.23) and Lemma 5.11,

i.e.

Eρ`−1
`

[(
Q`(θ

′
`)−Q`−1(Θn

`−1)
)2
]
≤ Ca,f,φ

(
h2−δ
`−1 +R−1+δ

`−1

)
. (5.31)

The first term in (5.30) is nonzero only if θn` 6= θ′`. We will now use Theorem 5.12

and Lemma 5.13, as well as the characteristic function I{θn` 6=θ′`} ∈ {0, 1} to bound

it. Firstly, Hölder’s inequality gives

Ef

[
(Q`(θ

n
` )−Q`(θ

′
`))

2
]

= Ef

[
(Q`(θ

n
` )−Q`(θ

′
`))

2 I{θn` 6=θ′`}
]

≤ Ef

[
(Q`(θ

n
` )−Q`(θ

′
`))

2q1
]1/q1

Ef

[
I{θn` 6=θ′`}

]1/q2 , (5.32)

for any q1, q2 s.t. q−1
1 +q−1

2 = 1. By our assumptions on G, it follows from Lemma

5.13 that the term Ef

[
(Q`(θ

n
` )−Q`(θ

′
`))

2q1
]1/q1 in (5.32) can be bounded by a

constant independent of `, for any q1 < ∞. Moreover, using the law of total

expectation, we have

Ef

[
I{θn` 6=θ′`}

]
= Ef

[
P [θn` 6= θ′` | θn` , θ′`]

]
.

Since θn` 6= θ′` only if the proposal θ′` has been rejected on level ` at the nth step,

and in this case θn−1
` = θn` , the probability that this happens can be bounded by

1− α`(θ′`|θn` ), and so it follows by Theorem 5.12 that

Ef

[
I{θn` 6=θ′`}

]
≤ Ef

[
1− α`(θ′`|θn` )

]
. h1−δ

`−1 +R
−1/2+δ
`−1 (5.33)

Combining (5.30)-(5.33) the claim of the Lemma then follows.

We now collect the results in the preceding lemmas to state our main result

of this section.
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Theorem 5.14. Let a, f, φ, F and G be as described at the beginning of this

section, and suppose assumption C2 holds with η = 1 − δ and η′ = 1/ − δ, for

any δ > 0. Under the same assumptions as in Lemma 5.10, the assumptions M1

and M2 in Theorem 5.8 are satisfied, with α = β = 1− δ and α′ = β′ = 1/2− δ,
for any δ > 0.

If we assume that we can obtain individual samples in optimal cost C` .

h−d` log(h−1
` ), e.g. via a multigrid solver, we can satisfy assumption M5 with

γ = 1 + δ, for any δ > 0. We assume that assumptions M1 and M4 hold, with

α′ = β′ = 1− δ. Then it follows from Theorems 5.8 and 5.14, as well as equation

(5.16), that we can get the following theoretical upper bounds for the ε-costs of

classical and multilevel MCMC applied to model problem (2.1) with log-normal

coefficients a, respectively:

Cε(Q̂MC
N ) . ε−(d+2)−δ and Cε(Q̂ML

L,{N`}) . ε−(d+1)−δ, for any δ > 0. (5.34)

We clearly see the advantages of the multilevel method, which gives a saving

of one power of ε compared to the standard MCMC method. Note that for

multilevel estimators based on i.i.d samples, the savings of the multilevel method

over the standard method are two powers of ε for d = 2, 3. The larger savings

stem from the fact that β = 2α in this case, compared to β = α in the MCMC

analysis above. The numerical results in the next section for d = 2 show that in

practice we do seem to observe β ≈ 1 ≈ 2α, suggesting Cε(Q̂ML
L,{N`}) = O(ε−d).

However, we do not believe that this is a lack of sharpness in our theory, but

rather a pre-asymptotic phase. The constant in front of the leading order term in

the bound of Vν`,`−1 [Y`], namely the term Ef

[
(Q`(θ

n
` )−Q`(θ

′
`))

2q1
]1/q1 in (5.32),

depends on the difference between Q`(θ
n
` ) and Q`(θ

′
`). In the case of the pCN

algorithm for the proposal distributions q`,C and q`,F (as used in Section 5.3

below) this difference will be small, since θn` and θ′` will in general be very close

to each other. However, the difference is bounded from below and so we should

eventually see the slower convergence rate for the variance as predicted by our

theory.
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5.3 Numerics

In this section we describe the implementation details of the MLMCMC algorithm

and examine the performance of the method in estimating the expected value of

some quantity of interest. We start by presenting in Algorithm 3 a simplified

version of Algorithm 2 given in Section 5.2 using symmetric proposal distributions

for q`,C and q`,F , describing in some more detail the evolution of the multilevel

Markov chains used to compute samples of Y`.

Implementation Details

Given the general description of the multilevel sampling in Algorithm 3, it remains

to describe several computational details of the method, such as the choice of the

symmetric transition densities q`,C(Θ′`−1|Θn
`−1) and q`,F (θ′`,F |θn`,F ), the values R`

defining the partition of the KL modes over the multilevel hierarchy, as well as

various MCMC tuning parameters.

For all our symmetric proposal densities q(θ′|θn) we use the so-called precon-

ditioned Crank-Nicholson (pCN) random walk proposed by Cotter et al. in [19].

Given the current state θn, the jth entry of the proposal is obtained by

θ′j =
√

1− β2 θnj + β ζj,

where ζj ∼ N (0, 1) and β is a tuning parameter used to control the size of the

step in the proposal, that may be chosen level dependent, i.e. β = β`. In the

numerical experiments, we typically choose β` < β0 for ` = 1, . . . , L.

The other free parameters in Algorithm 3 are the parameters σ2
F,` found in

the likelihood model described in (5.4). The value of σ2
F,` controls the fidelity

with which we require the model response to match the observed data on level

`. In our implementation we fix the fine-level likelihood variance σ2
F,L to a value

consistent with traditional single level MCMC simulations (i.e. the measurement

error associated with Fobs in a practical application), and then allow the remaining

parameters to increase on coarser levels. In particular, we choose

σ2
F,` = (1 + hl)σ

2
F,`+1, ` = 0, . . . , L− 1.

To reduce dependence of the simulation on the initial state of the Markov

121



ALGORITHM 3. (Simplified Metropolis Hastings MCMC for Y`,
` > 0)

Choose initial states Θ0
`−1 and θ0

` . For n ≥ 0:

• On level `− 1:

– Given Θn
`−1, generate Θ′`−1 from a symmetric distribution

q`,C(Θ′`−1|Θn
`−1).

– Compute

α`,C(Θ′`−1|Θn
`−1) = min

{
1,
π`−1(Θ′`−1)

π`−1(Θn
`−1)

}
.

– Set Θn+1
`−1 =

{
Θ′`−1 with probability α`,C(Θ′`−1|Θn

`−1)

Θn
`−1 with probability 1− α`,C(Θ′`−1|Θn

`−1).

• On level `:

– Given θn` , let θ′`,C = Θn+1
`−1 and draw θ′`,F from a symmetric distri-

bution q`,F (θ′`,F |θn`,F ).

– Compute

α`(θ′`|θn` ) = min

{
1,
π`(θ′`)

π`(θn` )

π`−1(θn`,C)

π`−1(θ′`,C)

}
.

– Set θn+1
` =

{
θ′` ≡ [Θn+1

`−1 , θ
′
`,F ] with probability α`(θ′`|θn` )

θn` with probability 1− α`(θ′`|θn` ).

• Compute

Y n+1
` = Q`

(
θn+1
`

)
−Q`−1

(
Θn+1
`−1

)
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chain, and to aid in the exploration of the potentially multi-modal stochastic

space, we simulate multiple parallel chains simultaneously. The variance of the

multilevel estimator VΘ`
[Ŷ MC
`,N`

] is approximated on each grid level by s2
`,N using the

method of Gelman and Rubin [29]. Finally, due to the very high-dimensional pa-

rameter space in our numerical experiments, both the single-level and multilevel

samplers displayed poor mixing properties. As such, we use a thinning process to

decrease the correlation between consecutive samples, whereby we include only

every T th sample in the approximation of the level-dependent estimator, where T

is some integer thinning parameter [61]. Then, after discarding n0 initial burn-in

samples, the approximation of E
ν`,`−1 [Y`] is computed by

Ŷ MC
`,N`

:=
1

N`

n0+N`∑
n=n`0+1

Y
(nT )
` .

After the initial burn-in phase, the multilevel MCMC simulation is run until

the sum of the sample variances of the L+ 1 estimators satisfies

L∑
`=0

s2
`,N`

N`

≤ ε2

2

for some user prescribed tolerance ε. The number of samples on each level is

chosen to satisfy

N` ∝
√

Vν`,`−1 [Y`] /C` ≈
√
s2
`,N`

/C`, (5.35)

as described in (4.9), where C` is the cost of generating a single sample of Y` on

level `. We assume this cost can be expressed as

C` = C∗ηγ` h
−γ
` ,

where the constant C∗ may depend on the parameters σ2 and λ in (2.25), but does

not depend on `. The factors η` reflect the additional cost for the auxiliary coarse

solve required on grid `−1. For the experiments presented below, with geometric

coarsening by a factor of 2, we have η0 = 1 and η` = 1.25, for ` = 1, . . . , L.

When an optimal linear solver (e.g. algebraic multigrid) is used to perform the

forward solves in the simulation we can take γ ≈ d. For a given accuracy ε, the
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(standardised) total cost of the multilevel estimator can be written as

Cε
(
Q̂ML
L,{N`}

)
:= N0 +

L∑
`=1

N` η
γ
`

(
M`

M0

)γ
, (5.36)

where M` = h−2
` .

Numerical experiments

We consider the mixed problem

−∇ · (a(ω, x)∇u(ω, x)) = 1, for x ∈ D,

and u
∣∣
x1=0

= 1, u
∣∣
x1=1

= 0,
∂u

∂n

∣∣∣
x2=0

= 0,
∂u

∂n

∣∣∣
x2=1

= 0, (5.37)

defined on the domain D = (0, 1)2. The quantity of interest is the average outflow

through the boundary {x1 = 1} computed via the functional M
(4)
ω in section 2.5.

The (prior) conductivity field is modelled as a log-normal random field with

1-norm exponential covariance function (2.24). The “observed” data Fobs is ob-

tained synthetically by generating a reference conductivity field from the prior,

solving the forward problem, and evaluating the pressure at 9 randomly selected

points in the domain. The grid hierarchy in the multilevel estimator is chosen as

h0 = 1/16, and h` = h`−1/2, for ` = 1, . . . , L. Five parallel chains are used in

each estimator Ŷ MC
`,N`

.

Figure 5-1 shows the results of a four-level simulation with λ = 0.5 and σ2 = 1.

The partitioning of the KL modes was such that R0 = 96, R1 = 121, R2 = 153,

and R3 = 169. The fidelity parameter in the likelihood on the finest grid was

taken to be σ2
F,L = 10−4. The top two plots show the variance (respectively the

mean) of Q` and Y` on each level. The variance and mean of Y` seem to decay with

O(h2
`) and O(h`), respectively. This suggests that at least in the pre-asymptotic

phase our theoretical result on the variance which predicts O(h`) (in Theorem

5.14) is not sharp (see comments at the end of Section 5.2). The result on the

bias seems to be confirmed.

The bottom right plot in Figure 5-1 shows the number of samples N` required

on each level of the multilevel MCMC sampler. The bottom left plot compares

the (standardised) computational cost of the standard and multilevel MCMC
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Figure 5-1: Performance plots for λ = 0.5, σ2 = 1, RL = 169, and h0 = 1/16.
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samplers for varying values of accuracy ε. The vertical axis is scaled by ε2. It is

clear that the multilevel sampler attains a dramatic reduction in computational

cost over the standard MCMC sampler. The precise speedup of the multilevel

over the standard algorithm can be evaluated by taking the ratio of the total cost

of the respective estimators, as defined by (5.35)-(5.36). When an optimal linear

solver (such as AMG, with γ ≈ d) is used for the forward solves in the four-level

simulation with ε = 8 × 10−4 (as in Figure 5-1), the computational cost of the

simulation is reduced by a factor of 50. When a suboptimal linear solver is used

(say, γ ≈ 1.5d for a sparse direct method) the computational cost is reduced by

a factor of 275 for the same value of ε.

Figure 5-2 (left) confirms that the average acceptance rates α` of the fine-level

samplers – the three right most data points in Figure (5-2) (left) – tend to 1 as

` increases, and E[1 − α`] ≈ O(h`), as predicted in Theorem 5.12. Finally, the

results in Figure 5-2 (right) demonstrate the good agreement between the MLM-

CMC estimate Q̂ML
L,{N`} and the standard MCMC estimate Q̂MC

N of the quantity

of interest M
(4)
ω (u) for nine distinct sets of reference data with three levels of

fine-grid resolution. As before, the coarse grid in each case was defined with

h0 = 1/16, the tolerance for both estimators was ε = 8 × 10−4 and the model

for the log-normal conductivity field is parametrised by λ = 0.5, σ2 = 1 and

RL = 169 on the finest grid.
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Chapter 6

Conclusion

Multilevel Monte Carlo methods have the potential to significantly outperform

standard Monte Carlo methods in a variety of contexts. In this thesis, we con-

sidered the application of multilevel Monte Carlo methods to elliptic PDEs with

random coefficients, in the practically relevant and technically demanding case

where realisations of the diffusion coefficient have limited spatial regularity and

are not uniformly bounded or elliptic. Our setting includes, for example, log-

normal coefficients with very short correlation lengths.

Since the analysis of the discretisation error of the multilevel Monte Carlo

estimator requires knowledge of the regularity of the solution, the first chapter

of this thesis was devoted to establishing regularity results for the solution of a

linear, second-order elliptic PDE with random coefficients. For a wide class of co-

efficients, we showed that the solution lies in the Bochner space Lp(Ω, H1+s(D)),

where the value of s is determined by the Hölder regularity of the coefficient,

as well as the geometry of the spatial domain. For log-normal coefficients with

exponential covariance, we can for example choose any s < 1/2 for any Lipschitz

polygonal domain. Our regularity results are optimal in the sense that the value

of s is the same as if we would replace the random coefficient by a deterministic

coefficient with the same spatial regularity. There is no loss in regularity due to

the randomness.

Using these new regularity results, we then furnished a complete finite element

error analysis using classical tools such as Cea’s lemma and a best approximation

result. We proved that all finite moments of the error in the natural H1-norm

converge with O(hs), where s is as in the regularity estimate above. This rate is
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optimal with respect to the regularity of the solution. Rates of convergence were

established also for the error in other spatial norms and the error in functionals.

The discretisation error analysis was finally used to give a rigorous bound on

the computational cost of multilevel Monte Carlo estimators. In the case of log-

normal random coefficients with exponential covariance function, for example, we

showed that the savings of multilevel Monte Carlo compared to standard Monte

Carlo are in most cases 2 powers of ε, if the aim is to achieve a mean square

error of ε2. For the multilevel Markov chain Monte Carlo estimator, with log-

normal random coefficient with exponential covariance function chosen as prior

distribution, the corresponding savings are 1 power of ε.
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Appendix A

Detailed Regularity proof

In this appendix, we give more detailed proofs of Theorem 2.7 and Lemmas 2.8

and 2.9. The proofs follow those of Hackbusch [44, Theorems 9.1.8, 9.1.11 and

9.1.16], making explicit the dependence of all the constants that appear on the

PDE coefficient A. The proof follows the classical Nirenberg translation method

and consists of three main steps.

A.1 Step 1 – The Case D = Rd

Proof of Lemma 2.8. In this proof we will use the norm on Hs(Rd) provided by

the Fourier transform, ‖u‖2
Hs(Rd)

:= ‖û(ξ)(1 + |ξ|2)s/2‖L2(Rd), which is equivalent

to the norm defined previously and defines the same space.

For any h > 0, we define the fractional difference operator (in direction i =

1, . . . , d) by

Ri
h(v)(x) := h−s

+∞∑
µ=0

e−µh(−1)µ
(
s

µ

)
v(x+ µhei),

where ei is the ith unit vector in Rd,(s
0

)
= 1 and

(
s

µ

)
(−1)µ =

−s(1− s)(2− s)...(µ− 1− s)
µ!

.

Let us recall here some properties of Ri
h from [44, Proof of Theorem 9.1.8]:

• (Ri
h)
∗(v)(x) = h−s

∑+∞
µ=0 e

−µh(−1)µ
(
s
µ

)
v(x− µhei).
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• For any τ ∈ R and v ∈ Hτ+s(Rd),

‖Ri
hv‖Hτ (Rd) ≤ ‖v‖Hτ+s(Rd) and ‖(Ri

h)
∗v‖Hτ (Rd) ≤ ‖v‖Hτ+s(Rd). (A.1)

• R̂i
hv(ξ) = [(1−e−h+iξjh)/h]sv̂(ξ) and (̂Ri

h)
∗v(ξ) = [(1−e−h−iξjh)/h]sv̂(ξ).

We define for u, v ∈ H1(Rd) the bilinear form

d(u, v) :=

∫
Rd

T∇u∇Ri
h(v) dx−

∫
Rd

T∇(Ri
h)
∗u∇v dx

=
∞∑
µ=1

h−se−µh(−1)µ
(
s

µ

)∫
Rd

(T(x− µhei)−T(x))∇u(x− µhei)∇v dx.

Hence,

|d(u, v)| . |T |Ct(Rd,Rd×d) |u|H1(Rd) |v|H1(Rd),

where the hidden constant is proportional to

∞∑
µ=1

h−se−µh(−1)µ
(
s

µ

)
(µh)t,

which is finite, since
(
s
µ

)
= O(µ−s−1) and thus

∑∞
µ=1 e

−µhµt−s−1 = O(hs−t). The

three spaces H1−s(Rd) ⊂ L2(Rd) ⊂ Hs−1(Rd) form a Gelfand triple, so that we

can deduce, using (A.1), that

Tmin|(Ri
h)
∗w|2H1(Rd) ≤

∫
Rd

T∇(Ri
h)
∗w∇(Ri

h)
∗w dx

= −d(w, (Ri
h)
∗w) + 〈F,Ri

h(R
i
h)
∗w〉Hs−1(Rd),H1−s(Rd)

≤ |d(w, (Ri
h)
∗w)|+ ‖F‖Hs−1(Rd)‖Ri

h(R
i
h)
∗w‖H1−s(Rd)

. |T|Ct(Rd,Rd×d) |w|H1(Rd) |(Ri
h)
∗w|H1(Rd) + ‖F‖Hs−1(Rd) ‖(Ri

h)
∗w‖H1(Rd),
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therefore we get

Tmin‖(Ri
h)
∗w‖2

H1(Rd)

. |T|Ct(Rd,Rd×d) |w|H1(Rd) |(Ri
h)
∗w|H1(Rd) + ‖F‖Hs−1(Rd) ‖(Ri

h)
∗w‖H1(Rd)

+ Tmin‖(Ri
h)
∗w‖2

L2(Rd)

. |T|Ct(Rd,Rd×d) |w|H1(Rd) |(Ri
h)
∗w|H1(Rd) + ‖F‖Hs−1(Rd) ‖(Ri

h)
∗w‖H1(Rd)

+ Tmin‖(Ri
h)
∗w‖H−1(Rd)‖(Ri

h)
∗w‖H1(Rd),

and finally, using (A.1) once more,

‖(Ri
h)
∗w‖H1(Rd) .

1

Tmin

(
|T|Ct(Rd,Rd×d) |w|H1(Rd) + ‖F‖Hs−1(Rd)

)
+ ‖w‖L2(Rd).

For any 1 ≥ h > 0, since |1 − e−h−iξih|2 ≥ |Im(1 − e−h−iξih)|2 = e−2h sin(ξih)2 ≥
e−2 sin(ξih)2, and since sin2(ξh) ≥

(
2
π
ξh
)2

, for all |ξ| ≤ 1/h, we have conversely

that

d∑
i=1

‖(Ri
h)
∗w‖2

H1(Rd) ≥
∫
|ξ|≤1/h

(1 + |ξ|2)
d∑
i=1

| ̂(Ri
h)
∗w(ξ)|2dξ

=

∫
|ξ|≤1/h

(1 + |ξ|2)
d∑
i=1

∣∣∣∣1− e−h−iξihh

∣∣∣∣2s |ŵ(ξ)|2dξ

≥ e−2

∫
|ξ|≤1/h

(1 + |ξ|2)
d∑
i=1

∣∣∣∣sin(ξih)

h

∣∣∣∣2s |ŵ(ξ)|2dξ

&
∫
|ξ|≤1/h

(1 + |ξ|2)|ξ|2s|ŵ(ξ)|2dξ.

Hence, for any 0 < h ≤ 1, we obtain

‖w‖2
H1+s(Rd) ≤

∫
Rd

(1 + |ξ|2)|ξ|2s|ŵ(ξ)|2dξ +

∫
Rd

(1 + |ξ|2)|ŵ(ξ)|2dξ

≤
d∑
i=1

‖(Ri
h)
∗w‖2

H1(Rd) + ‖w‖2
H1(Rd)
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and so

‖w‖H1+s(Rd) .
1

Tmin

(
|T|Ct(Rd,Rd×d) |w|H1(Rd) + ‖F‖Hs−1(Rd)

)
+ ‖w‖H1(Rd)

< +∞.

A.2 Step 2 – The Case D = Rd
+

Proof of Lemma 2.9. First we extend the solution w by 0 on Rd \Rd
+ and denote

the extension w̃ ∈ H1(Rd). Take 1 ≤ i ≤ d−1. Similarly to the previous section,

we define for u, v ∈ H1(Rd)

d(u, v) :=

∫
Rd+

T∇u∇Ri
h(v) dx−

∫
Rd+

T∇(Ri
h)
∗u∇v dx

and deduce again that

|d(u, v)| . |T|Ct(Rd+,Rd×d)
|u|H1(Rd+) |v|H1(Rd+) .

We now note that, since i 6= d, (Ri
h)
∗w ∈ H1

0 (Rd
+) and (Ri

h)
∗w̃ ∈ H1(Rd) is equal

to the extension by 0 on Rd \ Rd
+ of (Ri

h)
∗w. We deduce, similarly to the proof

in Section A.1 using (A.1), that

‖(Ri
h)
∗w̃‖H1(Rd) .

1

Tmin

(
|T|Ct(Rd+,Rd×d)

|w|H1(Rd+) + ‖F‖Hs−1(Rd+)

)
+ ‖w‖H1(Rd+)

=: B(w).

(Note that we added |w|H1(Rd+) to the bound to simplify the notation later.)

Hence, by the same token as in the previous section, we get∫
Rd

(1 + |ξ|2)(|ξ1|2 + ...+ |ξd−1|2)s| ̂̃w(ξ)|2dξ . B(w)2. (A.2)
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In particular, this implies that, for 1 ≤ i ≤ d and 1 ≤ j ≤ d− 1, we have

∫
Rd

∣∣∣∣∣ ∂̂2w̃

∂xi∂xj
(ξ)

∣∣∣∣∣
2

(1 + |ξ|2)s−1dξ =

∫
Rd
|ξi|2|ξj|2| ̂̃w(ξ)|2(1 + |ξ|2)s−1dξ

. B(w)2,

which means that ∂2w̃
∂xi∂xj

∈ Hs−1(Rd) and
∥∥∥ ∂2w̃
∂xi∂xj

∥∥∥
Hs−1(Rd)

. B(w). In particu-

lar, for all (i, j) 6= (d, d), this further implies that ∂2w
∂xi∂xj

∈ Hs−1(Rd
+) and that∥∥∥ ∂2w

∂xi∂xj

∥∥∥
Hs−1(Rd+)

. B(w). Using Lemma 2.5 we deduce that ∂w
∂xj
∈ Hs(Rd

+) and

that ∥∥∥∥ ∂w∂xj
∥∥∥∥
Hs(Rd+)

. B(w), for all 1 ≤ j ≤ d− 1. (A.3)

It remains to bound
∥∥∥ ∂w∂xd∥∥∥Hs(Rd+)

, which is rather technical. To achieve it we will

use the PDE (2.7), Lemma 2.4 and the following result.

Lemma A.1. For almost all xd ∈ R, we have ∂w̃
∂xd

(., xd) ∈ Hs(Rd−1) and∫
R

∥∥∥ ∂w̃
∂xd

(., xd)
∥∥∥2

Hs(Rd−1)
dxd =

∫
Rd

(1 + |ξ′|2)s|ξd|2
∣∣∣̂̃w(ξ)

∣∣∣2 dξ . B(w)2.

Proof. This follows from Fubini’s theorem and Plancherel’s formula, together

with (A.2).

From this we deduce that ∂w
∂xd

(., xd) ∈ Hs(Rd−1), for almost all xd ∈ R+, and

that ∫
R+

∥∥∥ ∂w
∂xd

(., xd)
∥∥∥2

Hs(Rd−1)
dxd . B(w)2.

Let 1 ≤ i ≤ d − 1. Using Lemma 2.4 we deduce that Tid
∂w
∂xd

(., xd) ∈ Hs(Rd−1),

for almost all xd ∈ R+, and that∥∥∥∥(Tid
∂w

∂xd

)
(., xd)

∥∥∥∥
Hs(Rd−1)

. |Tid(., xd)|Ct(Rd−1)

∥∥∥∥ ∂w∂xd (., xd)

∥∥∥∥
L2(Rd−1)

+ ‖Tid(., xd)‖C0(Rd−1)

∥∥∥∥ ∂w∂xd (., xd)

∥∥∥∥
Hs(Rd−1)

.

134



Therefore, since by definition ‖Tid‖C0(Rd) ≤ Tmax, we get∫
R+

∥∥∥Tid
∂w

∂xd

∥∥∥2

Hs(Rd−1)
dxd . |Tid|2Ct(Rd+)

|w|2H1(Rd+) + T2
max B(w)2

. T2
max B(w)2.

Since ∂
∂xi

is linear continuous from H1−s(Rd−1) to H−s(Rd−1) (cf. [44, Remark

6.3.14(b)]) we can deduce from this that ∂
∂xi

(
Tid

∂w
∂xd

)
∈ Hs−1(Rd

+) and that

∥∥∥∥ ∂

∂xi

(
Tid

∂w

∂xd

)∥∥∥∥
Hs−1(Rd+)

. Tmax B(w), for all 1 ≤ i ≤ d− 1 . (A.4)

To see this take ϕ ∈ D(Rd
+). Then∣∣∣∣∣

〈
∂

∂xi

(
Tid

∂w

∂xd

)
, ϕ

〉
D′(Rd+),D(Rd+)

∣∣∣∣∣ =

∥∥∥∥Tid
∂w

∂xd
(x′, xd)

∂ϕ

∂xi
(x′, xd)

∥∥∥∥
L2(R+,Hs(Rd−1))

≤
∥∥∥∥Tid

∂w

∂xd

∥∥∥∥
L2(R+,Hs(Rd−1))

∥∥∥∥ ∂ϕ∂xi (x′, xd)
∥∥∥∥
L2(R+,H−s(Rd−1))

≤
∥∥∥∥Tid

∂w

∂xd

∥∥∥∥
L2(R+,Hs(Rd−1))

‖ϕ‖L2(R+,H1−s(Rd−1)).

Using (A.3) and Lemma 2.4, we deduce in a similar way that ∂
∂xi

(
Tij

∂w
∂xj

)
∈

Hs−1(Rd
+) and that for all 1 ≤ i ≤ d and 1 ≤ j ≤ d− 1,∥∥∥∥ ∂

∂xi

(
Tij

∂w

∂xj

)∥∥∥∥
Hs−1(Rd+)

. Tmax B(w). (A.5)

We can now use the PDE (2.7) to get a similar bound for (i, j) = (d, d). Since

F ∈ Hs−1(Rd
+), it follows from (A.4) and (A.5) that ∂

∂xd

(
Tdd

∂w
∂xd

)
∈ Hs−1(Rd

+)

and that∥∥∥∥ ∂

∂xd

(
Tdd

∂w

∂xd

)∥∥∥∥
Hs−1(Rd+)

. Tmax B(w) + ‖F‖Hs−1(Rd+) . Tmax B(w) .
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Analogously to (A.4) we can prove that∥∥∥∥ ∂

∂xi

(
Tdd

∂w

∂xd

)∥∥∥∥
Hs−1(Rd+)

. Tmax B(w), for all 1 ≤ i ≤ d− 1.

Hence, we can finally apply Lemma 2.5 to get that Tdd
∂w
∂xd
∈ Hs(Rd

+) and that

∥∥∥∥Tdd
∂w

∂xd

∥∥∥∥2

Hs(Rd+)

.
d∑
i=1

∥∥∥∥ ∂

∂xi

(
Tdd

∂w

∂xd

)∥∥∥∥2

Hs−1(Rd+)

+

∥∥∥∥Tdd
∂w

∂xd

∥∥∥∥2

L2(Rd+)

. T2
max B(w)2 .

By applying Lemma 2.4 again, this time with b := 1/Tdd and v := Tdd
∂w
∂xd

, we

deduce that ∂w
∂xd
∈ Hs(Rd

+) and that∥∥∥∥ ∂w∂xd
∥∥∥∥
Hs(Rd+)

.

∣∣∣∣ 1

Tdd

∣∣∣∣
Ct(Rd+)

∥∥∥∥Tdd
∂w

∂xd

∥∥∥∥
L2(Rd+)

+
1

Tmin

∥∥∥∥Tdd
∂w

∂xd

∥∥∥∥
Hs(Rd+)

.
|Tdd|Ct(Rd+)

T2
min

Tmax |w|H1(Rd+) +
1

Tmin

∥∥∥∥Tdd
∂w

∂xd

∥∥∥∥
Hs(Rd+)

.
Tmax

Tmin

B(w) .

To finish the proof we use this bound together with (A.3) and apply once more

Lemma 2.5 to show that w ∈ H1+s(Rd
+) and

‖w‖H1+s(Rd+) .
Tmax

T2
min

(
|T|Ct(Rd+,Rd×d)

|w|H1(Rd+) + ‖F‖Hs−1(Rd+)

)
+

Tmax

Tmin

‖w‖H1(Rd+).

A.3 Step 3 – The Case D Bounded

We can now prove Theorem 2.7 using Lemmas 2.8 and 2.9 in two successive steps.

We recall that D was supposed to be C2. Let (Di)0≤i≤p be a covering of D such

that the (Di)0≤i≤p are open and bounded, D ⊂ ∪pi=0Di, ∪pi=1(Di ∩ ∂D) = ∂D,

D0 ⊂ D.
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Let (χi)0≤i≤p be a partition of unity subordinate to this cover, i.e. we have

χi ∈ C∞(Rd,R+) with compact support supp(χi) ⊂ Di , such that
∑p

i=0 χi = 1

on D. We denote by u the solution of (2.4) and split it into u =
∑p

i=0 ui, with

ui = uχi. We treat now separately u0 and then ui, 1 ≤ i ≤ p, using Lemma 2.8

and 2.9, respectively.

Lemma A.2. u0 belongs to H1+s(D) and

‖u0‖H1+s(D) .
‖A‖Ct(D,Rd×d)

A2
min

‖f‖Hs−1(D) .

Proof. Since supp(u0) ⊂ D0, we have that u0 ∈ H1
0 (D) and it is the weak solution

of the new equation −div(A∇u0) = F on D, where

F := fχ0 + A∇u · ∇χ0 + div(uA∇χ0) on D.

To apply Lemma 2.8 we will now extend all terms to Rd, but continue to denote

them the same. The terms u0 and fχ0 + A∇u · ∇χ0 can both be extended

by 0. Their extensions will belong to H1(Rd) and Hs−1(Rd), respectively. It

follows from Lemma A.2 in [12] that every element of uA ∈ Hs(D) and so if we

continue every element of uA∇χ0 by 0 on Rd, the extension belongs to Hs(Rd),

since supp(χ0) is compact in D. Using the fact that div is linear and continuous

from Hs(Rd) to Hs−1(Rd) (cf. [44, Remark 6.3.14(b)]), we can deduce that the

divergence of the extension of uA∇χ0 is in Hs−1(Rd), leading to an extension of

F on Rd, which belongs to Hs−1(Rd).

Let ψ ∈ C∞(Rd, [0, 1]) such that ψ = 0 on D0 and ψ = 1 on D̃c, where D̃ is

an open set such that D0 ⊂ D̃ and D̃ ⊂ D. We use the following extension of A

from D0 to all of Rd:

A(x) :=

{
A(x)(1− ψ(x)) + Aminψ(x) Id, if x ∈ D,

Aminψ(x) Id, otherwise.

This implies that A ∈ Ct(Rd,Rd×d), with ‖A‖Ct(D,Rd×d) . ‖A‖Ct(D,Rd×d), and for

any ξ ∈ Rd, A(x)ξ.ξ & Amin|ξ|2.

Using these extensions, we have that −div(A∇u0) = F in D′(Rd). Indeed,
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for any v ∈ D(Rd),∫
Rd

A(x)∇u0(x)∇v(x) dx =

∫
D

A(x)∇u0(x)∇v(x) dx, for any v ∈ D(Rd),

since supp(u0) is included in the open bounded set D0, which implies that ∇u0 =

0 on Dc
0 and A = A on D0. Since u ∈ H1

0 (D), we have by Poincaré’s inequality

that ‖u‖L2(D) . |u|H1(D). Therefore it follows from the Lemma 2.1 that

|u0|H1(Rd) ≤ |u|H1(D)‖χ0‖∞ + ‖u‖L2(D)‖∇χ0‖∞ .
‖f‖Hs−1(D)

Amin

.

By the triangle inequality, we have

‖F‖Hs−1(Rd) ≤ ‖fχ0‖Hs−1(Rd) + ‖A∇u · ∇χ0‖Hs−1(Rd) + ‖div(uA∇χ0)‖Hs−1(Rd)

Since χ0 ∈ C∞(Rd) and |χ0| ≤ 1 in D, we have ‖fχ0‖Hs−1(Rd) ≤ ‖f‖Hs−1(D).

Using the definition of Amax and the fact that |Ai,j(x)| ≤ ‖A(x)‖d×d, we have

‖A∇u · ∇χ0‖Hs−1(Rd) ≤ ‖A∇u · ∇χ0‖L2(Rd) = ‖
d∑

i,j=1

Ai,j
∂u

∂xj

∂χ0

∂xi
‖L2(Rd)

. Amax|u|H1(D).

Finally, using Lemma 2.5, the linearity and continuity of div from Hs(Rd) to

H1−s(Rd) and |Ai,j|Ct(D) ≤ |A|Ct(D,Rd×d), we further get

‖div(uA∇χ0)‖Hs−1(Rd) = ‖
d∑

i,j=1

∂

∂xi

(
uAi,j

∂χ0

xj

)
‖Hs−1(Rd)

. ‖
d∑

i,j=1

(
uAi,j

∂χ0

xj

)
‖Hs(Rd)

. |A|Ct(D,Rd×d)‖u‖L2(D) + Amax‖u‖Hs(D)

Putting these estimates together, we have

‖F‖Hs−1(Rd) .
‖A‖Ct(D,Rd×d)

Amin

‖f‖Hs−1(D).
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We can now apply Lemma 2.8 with T = A and w = u0 to show that u0 ∈
H1+s(Rd) and

‖u0‖H1+s(Rd) .
1

Amin

(
|A|Ct(D,Rd×d)|u0|H1(Rd) + ‖F‖Hs−1(Rd)

)
+ ‖u0‖H1(Rd)

.
‖A‖Ct(D,Rd×d)

A2
min

‖f‖Hs−1(D) .

The hidden constant depends on the choices of χ0 and ψ and on the constant

in Poincaré’s inequality, which depends on the shape and size of D, but not on

A.

Let us now treat the case of ui, 1 ≤ i ≤ p.

Lemma A.3. For 1 ≤ i ≤ p, ui ∈ H1+s(D) and

‖ui‖H1+s(D) .
Amax‖A‖Ct(D,Rd×d)

A3
min

‖f‖Hs−1(D).

Proof. Similarly to the proof of the previous Lemma, ui ∈ H1
0 (D ∩Di) is the

weak solution of a new problem −div(A∇ui) = gi in D′(D ∩Di) with

gi := fχi + A∇u · ∇χi + div(uA∇χi)

As in Lemma A.2, we can establish that gi ∈ Hs−1(D ∩Di) and

‖gi‖Hs−1(D∩Di) .
‖A‖Ct(D,Rd×d)

Amin

‖f‖Hs−1(D).

Now let Q = {(y′, yd) ∈ Rd−1 × R : |y′| < 1 and |yd| < 1}, Q0 = {(y′, yd) ∈
Rd−1 × {0}| ‖y′‖ < 1} and Q+ = Q ∩ Rd

+. For 1 ≤ i ≤ p, let αi be a bijection

from Di to Q such that αi ∈ C2(Di), α
−1
i ∈ C2(Q), αi(Di ∩ D) = Q+ and

αi(Di ∩ ∂D) = Q0.

For all y ∈ Q+, we define wi(y) := ui(α
−1
i (y)) ∈ H1

0 (Q+) with ∇wi(y) =

J−Ti (y)∇ui(α−1
i (y)), where Ji(y) := Dαi(α

−1
i (y))) is the Jacobian of αi. Fur-

thermore, for x ∈ Di ∩ D and ϕ ∈ H1
0 (Q+), we define v(x) := ϕ(αi(x)). Then
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v ∈ H1
0 (Di ∩D) and ∇v(α−1

i (y)) = JTi (y)∇ϕ(y), for all y ∈ Q+, so that∫
Di∩D

A(x)∇ui(x) · ∇v(x) dx

=

∫
Q+

A(α−1
i (y))∇ui(α−1

i (y)) · ∇v(α−1
i (y)) |detJi(y))|−1 dy

=

∫
Q+

Ti(y)∇wi(y) · ∇ϕ(y) dy ,

where

Ti(y) := |detJi(y))|−1 Ji(y) A(α−1
i (y)) JTi (y) ∈ Sd(R).

We define Fi ∈ Hs−1(Q+) by

〈Fi, ϕ〉Hs−1(Q+),H1−s
0 (Q+) := 〈gi, ϕ ◦ αi〉Hs−1(Di∩D),H1−s

0 (Di∩D),

for all ϕ ∈ H1−s
0 (Q+). Indeed, since we assumed that αi and α−1

i are in C2,

we have ϕ ◦ αi ∈ H1−s
0 (Di ∩D) and moreover ‖ϕ ◦ αi‖H1−s(Di∩D) . ‖ϕ‖H1−s(Q+)

(cf. [44, Theorems 6.2.17 and 6.2.25(g)]), which implies that Fi ∈ Hs−1(Q+) and

‖Fi‖Hs−1(Q+) . ‖gi‖Hs−1(D∩Di).

We finally get that vi ∈ H1
0 (Q+) solves∫

Q+

Ti∇vi · ∇ϕ dy = 〈Fi, ϕ〉Hs−1(Q+),H1−s
0 (Q+) for all ϕ ∈ H1

0 (Q+).

In order to apply Lemma 2.9 we check first that Ti ∈ Ct(Q+,Rd×d) and that

it is coercive, and then define an extension of Ti to Rd
+. Recalling that αi is

a C2–diffeomorphism from Di ∩ D to Q+, with α−1
i ∈ C2(Q+), we have for any

y ∈ Q+ and ξ ∈ Rd:

• Coercivity: Using the compatibility of | · | and ‖ · ‖d×d, we have

Ti(y)ξ · ξ = |detJi(y)|−1 Ji(y) A(α−1
i (y)) JTi (y)ξ · ξ

= |detJi(y)|−1 A(α−1
i (y)) JTi (y)ξ · J ti (y)ξ

& |detJi(y)|−1Amin|JTi (y)ξ|2

& Amin|ξ|2.
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Hence Tmin & Amin .

• Boundedness: Using the sub–multiplicativity of ‖ · ‖d×d, we have

Tmax := ‖Ti‖C0(Q+,Rd×d)

= sup
y∈Q+

‖|detJi(y)|−1 Ji(y) A(α−1
i (y)) JTi (y)‖d×d

≤ sup
y∈Q+

(
|detJi(y)|−1 ‖Ji(y)‖d×d ‖A(α−1

i (y))‖d×d ‖JTi (y)‖d×d
)

. Amax .

• Regularity: Since A ∈ Ct(D,Rd×d) and αi ∈ C2(Di), Ti ∈ Ct(Q+,Rd×d).

Using the fact that ‖MN‖Ct(Q+,Rd×d) ≤ ‖M‖Ct(Q+,Rd×d)‖N‖Ct(Q+,Rd×d), for

any M,N ∈ Rd×d, we further have

‖Ti‖Ct(Q+,Rd×d) = ‖|detJi|−1Ji(A ◦ α−1
i )JTi ‖Ct(Q+,Rd×d) . ‖A‖Ct(D,Rd×d).

We now extend Ti to Rd
+. Since we assumed that supp(χi) is compact in Di,

we can choose Qi and Q̃i such that supp(vi) ⊂ Qi ⊂ Qi ⊂ Q̃i ⊂ Q̃i ⊂ Q and

consider ψ ∈ C∞(Rd, [0, 1]) such that ψ = 0 on Qi and ψ = 1 on Q̃i

c

. We define

the extension Ti of Ti on Rd
+ by

Ti(x) :=

{
Ti(x)(1− ψ(x)) + Aminψ(x)Id if x ∈ Q+

Aminψ(x)Id if x ∈ Qc
+

Analogously to the case of A in Lemma A.2, we can deduce that, for any ξ ∈ Rd,

Ti(y)ξ·ξ & Amin|ξ|2, Tmax . Amax and ‖Ti‖Ct(Rd+,Rd×d)
. ‖A‖Ct(D,Rd×d) . (A.6)

We now define an extension of Fi on Rd
+. Note again that we can choose an open

set Gi such that supp(Fi) ⊂ Gi ⊂ Gi ⊂ Q and extend Fi to all of Rd
+ such that

‖Fi‖Hs−1(Rd+) . ‖Fi‖Hs−1(Q+).

Finally we continue vi by 0 on Rd
+, which yields vi ∈ H1

0 (Rd
+). Moreover, since

Ti = Ti on supp(vi) ⊂ Qi, vi is then the weak solution on Rd
+ of

−div(Ti(x)∇vi(x)) = Fi(x),
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which enables us to apply Lemma 2.9 and to obtain that vi ∈ H1+s(Rd
+) and

‖vi‖H1+s(Rd+)

.
Amax

A2
min

(
|Ti|Ct(Rd+,Sd(R))

|vi|H1(Rd+) + ‖Fi‖Hs−1(Rd+)

)
+

Amax

Amin

‖vi‖H1(Rd+) .

Recalling that ui(x) = vi(αi(x)) for any x ∈ D ∩ Di and using the bounds in

(A.6), as well as the transformation theorem [44, Theorem 6.2.17], we finally get

‖ui‖H1+s(D)

.
Amax

A2
min

(
‖A‖Ct(D,Sd(R)) ‖u‖H1(D∩Di) + ‖gi‖Hs−1(D∩Di)

)
+

Amax

Amin

‖u‖H1(D)

.
Amax ‖A‖Ct(D,Sd(R))

A3
min

‖f‖Hs−1(D) .

The result in Theorem 2.7 follows directly from Lemmas A.2 and A.3, if we recall

that u =
m∑
i=0

ui.
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