
Multilevel Monte Carlo Methods in
Atmospheric Dispersion Modelling

Grigoris Katsiolides

A thesis submitted for the degree of Doctor of Philosophy

University of Bath
Department of Mathematical Sciences

October 2018

COPYRIGHT
Attention is drawn to the fact that copyright of this thesis rests with the author and
copyright of any previously published materials included may rest with third parties.
A copy of this thesis has been supplied on condition that anyone who consults it under-
stands that they must not copy it or use material from it except as licenced, permitted
by law or with the consent of the author or other copyright owners, as applicable.

Declaration of any previous submission of the work
The material presented here for examination for the award of a higher degree by re-
search has not been incorporated into a submission for another degree.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Grigoris Katsiolides

Declaration of authorship
I am the author of this thesis, and the work described therein was carried out by myself
personally.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Grigoris Katsiolides



Summary

This thesis considers the application of Monte Carlo and improved timestepping meth-
ods to stochastic Lagrangian models currently used by the Met Office in Atmospheric
Dispersion modelling. These models are given in the form of stochastic differential
equations (SDEs) and are used to predict the spread and transport of atmospheric
pollutants, such as volcanic ash, in operational forecasting, emergency response sit-
uations and scientific research. The Met Office currently uses the Standard Monte
Carlo (StMC) algorithm with the Symplectic Euler timestepping method. Although
the StMC method can be fast enough when a low accuracy is required, it quickly be-
comes expensive for higher accuracies. Another difficulty is that the Symplectic Euler
method requires small timesteps to be stable.

To improve the methods currently used by the Met Office we consider the Multi-
level Monte Carlo (MLMC) algorithm (Giles, 2008) which has shown great potential
for reducing the asymptotic computational complexity when compared to StMC in
many applications. In particular, we study both numerically and theoretically, by us-
ing modified equations analysis (Shardlow, 2006), (Zygalakis, 2011), (Müller et al.,
2015), the application of the complexity theorem (Giles, 2008) which describes in
which cases MLMC can reduce the asymptotic cost rate. Together with this applica-
tion, we develop and implement a new algorithm for the treatment of reflective bound-
ary conditions while simulating dispersion in the atmospheric boundary layer which
gives the correct variance decay rate required by the complexity theorem. In order to
reduce the overall cost we consider improved timestepping methods based on a split-
ting approach. With the use of a Lyapunov function and the theory from Khasminskii
(2011) and Milstein and Tretyakov (2005) we also show existence and uniqueness of
solutions for our models and convergence of timestepping methods.

Our theoretical results and numerical methods initially apply on one-dimensional
models. Later, we extend our numerical methods to higher-dimensional models where
we also study the effect of a background velocity field.
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Chapter 1

Introduction

1.1 The subject of the thesis

Atmospheric dispersion modelling is the area of science that studies the spread and
transport of atmospheric pollutants with the help of suitable mathematical models and
algorithms. Currently the Met Office uses the atmospheric dispersion model NAME
(Numerical Atmospheric - dispersion Modelling Environment) (Jones, 2004), (Jones
et al., 2007) for modelling the transport and dispersion of atmospheric pollutants such
as volcanic ash or radioactive particles and also for routine air quality forecasts and
scientific research. It was originally designed to study the spread of radioactive parti-
cles after the Chernobyl disaster in 1986 (Smith and Clark, 1989). Some more recent
applications of NAME include the study of the impact from the Fukushima nuclear ac-
cident in 2011 (Leadbetter et al., 2015) and the study of the spread of volcanic ash after
the volcanic eruptions in Iceland in 2010 (Dacre et al., 2011), (Webster et al., 2012).
This list of practically relevant examples, clearly shows the importance of NAME and
in general why atmospheric dispersion modelling is an interesting and very important
problem. All emergency response applications require fast NAME model predictions.

NAME is a Lagrangian Dispersion model, i.e. it tracks a number of model particles
through a turbulent atmosphere flow field by solving a Stochastic Differential Equation
(SDE). The distribution of those model particles provides a Monte Carlo estimate for
the solution of the underlying SDE and the Standard Monte Carlo (StMC) method is
used to approximate the value of some quantity of interest such as the mean particle
position or the particle’s concentration. An example of an output field generated by
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(a) Satellite measurements
(b) NAME simulation

Figure 1-1: The eruption of Etna, Sicily in 2002 (Jones, 2004)

NAME can be seen in Figure 1-1 which presents the modelling of the eruption of Etna
in Sicily in 2002 and compares it with satellite measurements. The images are from
Jones (2004).

Monte Carlo methods (Glasserman, 2003), (Lemieux, 2009) have been widely used
in various applications in areas such as mathematics, physics, biology and finance.
Although the method had already appeared in some form centuries ago (eg Buffon’s
Needle, 18th century), its systematic development was made in the mid-1940’s by John
von Neumann and Stanislaw Ulam and its name first appeared in Metropolis and Ulam
(1949) (Lemieux, 2009). The method’s main advantages rely on the simplicity of its
use and the fact that the cost does not grow exponentially with dimension as with the
cost from a Partial Differential Equation (PDE) approach. For example we could use
Finite Elements or Finite Differences to solve the Fokker-Planck PDE which corre-
sponds to the SDE models but this approach is affected by the curse of dimensionality
and therefore becomes expensive very quickly when higher-dimensional models are
studied. For a three-dimensional spatial model, the PDE contains six variables which
depend on time and this causes a large increase in the cost.

In its simplest form, the StMC provides approximations of solutions by simply
taking the average over a large number of simulations. As explained later in the con-
text of Stochastic Differential Equations (SDEs), the root mean square error ε of an
approximation is split into the discretisation and sampling errors which contribute a
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factor of ε−1 and ε−2 to the cost respectively. The total cost then has an asymptotic
order of ε−1 · ε−2 = ε−3 which becomes very large as ε decreases. In the literature,
there are plenty of variance reduction techniques for example antithetic variables, con-
trol variates and importance sampling (Glasserman, 2003), (Lemieux, 2009) which can
reduce the cost of the method but without improving the asymptotic cost rate. In or-
der to reduce the cost rate, we consider the Multilevel Monte Carlo (MLMC) method
(Heinrich, 2001), (Giles, 2008) and its application to models used by the Met Office in
atmospheric dispersion modelling.

Although for a low accuracy the StMC method can be fast enough, by increas-
ing the accuracy it becomes very expensive and slow to run since the cost rate has
an asymptotic order of ε−3. Therefore, a more efficient method is required. The
MLMC method has been successfully applied in various areas such as mathematical
finance (Giles, 2008), (Giles and Szpruch, 2012), partial differential equations with
random coefficients (Cliffe et al., 2011) and uncertainty quantification in subsurface
flows (Graham et al., 2015). The method showed its great potential of reducing the
asymptotic order of the cost to ε−2 which makes it extremely important in many appli-
cations. In particular, it can be very important to the Met Office since in an emergency
responce situation, like for example a volcano eruption, it is necessary to produce fast
and accurate predictions.

One of the key properties that lead to the cost rate reduction is the fact that MLMC
constructs a hierarchy of levels with larger timestep sizes and also computes estimates
of the differences between two estimators which have a smaller variance. Then, under
certain conditions, it can reduce the number of samples required to achieve a certain
tolerance ε on the root mean square error and also shift the cost on the coarsest levels
which are cheaper to compute since they use a larger timestep. In all methods that we
studied, the bias of the SDE timestepping methods depends linearly on the timestep
size h, i.e. bias = C · h and the total cost is affected by the constant of proportionality
C. At the Met Office they currently use the Symplectic Euler timestepping method
so it becomes important to study more advanced methods which have a smaller bias
constant and therefore reduce the total cost.

In this thesis we study atmospheric dispersion models used by the Met Office which
describe the evolution of the particle’s position X(t) and particle’s turbulent velocity
component U(t) in the atmosphere. These models are given in d spatial dimensions
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and have the general SDE form

dU(t) = −Λ (X(t)) U(t)dt−∇XV (X(t),U(t)) dt+ Σ (X(t)) dW(t), (1.1)

dX(t) = (U(t) + v (X(t), t)) dt, (1.2)

where X(t),U(t),v (X(t), t) ∈ Rd, V (X(t),U(t)) ∈ R, Λ (X(t)) and Σ (X(t)) are
diagonal d×d matrices and W(t) is a d-dimensional Brownian motion (see Definition
2.1). The notation ∇X means that we take the gradient vector only with respect to the
variable X. v (X(t), t) is the background velocity field, Λ (X(t)) contains velocity
memory terms, ∇XV (X(t),U(t)) guarantees the well-mixed condition (Thomson,
1987) and Σ (X(t)) is the stochastic component.

The functions Λ (X(t)), V (X(t),U(t)), Σ (X(t)) and v (X(t), t) depend on the
value of d and we will consider separately the three cases when d = 1, 2, 3. When
d = 1 the model will describe one-dimensional vertical dispersion, when d = 2 it
will describe a two-dimensional horizontal dispersion and when d = 3 it will describe
a three-dimensional dispersion that combines the vertical and horizontal structures of
the first two cases. When d = 1 and d = 3 we assume that the motion of the particles
is constrained to a boundary layer of fixed height and as we describe later, some of
the SDE coefficients in (1.1) and (1.2) will have singularities at the boundary points.
Note that the boundary layer is the part of the atmosphere where turbulence plays a
significant role and hence the SDE which models this by a random term is applicable.

The main subject of the thesis is the implementation and theoretical analysis of
the MLMC method to produce numerical approximations of the above model with
an improved asymptotic rate of the order ε−2 as discussed above. For this, various
timestepping methods must be explored that will enable us to discretise our models,
reduce the total cost (by reducing the constant in the cost rates) and deal with any
singularities present in the SDE coefficients in order to produce particle trajectories.
In addition to specifying the particles’ initial position and velocity it is necessary to
add suitable boundary conditions at the bottom and top of the boundary layer in the
one- and three-dimensional setups. Since the particle trajectories themselves are not
directly measurable, we are interested in approximating the value of E [φ(X(t))] for
some quantity of interest φ : Rd → R that describes a physical property. The quan-
tity of interest φ can be simple and continuous, like for example the identity function
which gives the mean particle position but it can also be discontinous, like the indica-
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tor function which gives the particle concentration. The latter can be used to measure
the volcanic ash present in certain regions of the atmosphere after a volcanic eruption
which is very important for air travelling.

Monte Carlo and timestepping methods are analysed both numerically and theo-
retically. With the design of more efficient algorithms we compare the performance of
Standard and Multilevel Monte Carlo and apply alternative timestepping methods with
higher stability and study possible improvements. With suitable assumptions we study
the problem theoretically which will help in the improvement of the current algorithms
used by the Met Office by identifying the conditions under which our methods perform
better. In Section 1.2 we give a more detailed description of the aims and challenges
of this thesis.

1.2 The aims of the thesis

The central aim of this thesis is the design of a Monte Carlo algorithm and more ad-
vanced timestepping methods for SDEs in atmospheric dispersion modelling that will
improve the StMC-Symplectic Euler combination currently used by the Met Office. In
particular, we are interested in implementing the MLMC method that will help us to
improve the asymptotic cost rate from ε−3 to ε−2. The overall cost, i.e. the constant in
the above cost rates, depends on the timestepping method and reducing this constant
is also very important especially in physical applications which usually do not require
a small ε. To achieve this goal several difficulties need to be overcome.

Firstly, some of the coefficients in the SDE equations (1.1) and (1.2) have singular-
ities at the end points of our boundary layer which can lead to severe limitations on the
timestep size and limit the use of MLMC. To make sure that our timestepping methods
remain stable we must deal with these singularities by either removing them with the
help of some regularisation or by implementing more advanced methods which are less
affected by them. In addition, our choice of timestepping methods must be justified
by theoretical results which show that the SDE approximations converge to the exact
solution.

Next, we study under which conditions the MLMC method gives the improved cost
rate of ε−2 since this is not always the case. Our approach is the theoretical applica-
tion of the complexity theorem (Giles, 2008) which requires the correct coupling of
random variables on the coarse levels. Each timestepping method requires a different
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coupling treatment and this application can be supported by both numerical and theo-
retical results where this is possible. For the theoretical application we use modified
equations analysis (Shardlow, 2006), (Zygalakis, 2011), (Müller et al., 2015) which is
an alternative approach to traditional strong approximation results.

Another challenge is the correct treatment of the boundary conditions at the top
and bottom of the atmospheric boundary layer. In this thesis we consider simple elas-
tic reflection. As we will see later if the random variables on subsequent levels are not
coupled correctly to account for reflection, then the MLMC variance increases and vi-
olates one of the conditions in the complexity theorem (Giles, 2008) which is required
to achieve the optimal ε−2 cost rate. Therefore, we need to develop an algorithm that
contains the proper coupling of random variables when the particles are reflected.

Also, we need to be careful that our quantity of interest does not increase the vari-
ance of the methods. One of the most important quantities considered in this thesis
is the indicator function which gives an approximation of the particle concentration.
The indicator function however is not continuous which causes an increase in the vari-
ance and slows down the MLMC method. Therefore, it is important to find a suitable
smooth approximation that will reduce the variance and at the same time allow us to
minimise any extra approximation errors.

All the above topics are first studied for a one-dimensional spatial model for verti-
cal dispersion, i.e. equations (1.1) and (1.2) with d = 1 and also v(X(t), t) = 0. Later,
higher dimensional models are explored where we also study the effect of a non-zero
background velocity field v(X(t), t). In particular, we study a two-dimensional model
for horizontal dispersion and a three-dimensional model that combines the first two.

Finally, based on the outcome of this thesis the methods that we study can then be
implemented in the Met Office’s NAME dispersion model. The ultimate goal is to use
MLMC and the new timestepping methods to improve the performance of the NAME
model. This is important for many reasons like for example providing faster and more
accurate results in emergency responce situations (eg volcano eruptions).

1.3 The main achievements

The main achievements of this thesis are:

(i) Successfully implemented MLMC in one-dimensional atmospheric dispersion
modelling and produced numerical results which clearly show the efficiency of
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the MLMC over the StMC method for an inhomogeneous turbulence model, es-
pecially for small tolerances. The results were produced using the C++ code
initially developed for the paper Müller et al. (2015) and which we later enriched
for the purposes of this thesis.

(ii) Studied possible improvements on the performance of Monte Carlo from more
stable and accurate timestepping methods. In particular, we compare the Sym-
plectic Euler method currently used by the Met Office with two improved meth-
ods, the Geometric Langevin (Bou-Rabee and Owhadi, 2010) and BAOAB (Leimkuh-
ler and Matthews, 2015) which are based on an SDE splitting approach. We ob-
served that timestepping methods based on a splitting approach can reduce the
StMC cost when applied to one-dimensional models with varying turbulence pro-
files. As a result, their combination with StMC can be a better choice for large
tolerance errors.

(iii) Developed and implemented a new algorithm for the treatment of reflective bound-
ary conditions which preserves the quadratic variance decay of the MLMC method
(Katsiolides et al., 2018). The new method is based on extending the initial model
with reflection to a model without reflection which results in the correct coupling
of random variables in the MLMC coarse steps.

(iv) Applied the smoothing polynomial technique as in Giles et al. (2015) to deal
with the discontinuity of the indicator function in the concentration problem.
With this approximation we improve the MLMC variance rates and therefore the
performance.

(v) Proved existence and uniqueness of a regular solution of the inhomogeneous one-
dimensional model using a Lyapunov function and the theory in Khasminskii
(2011). Using the same Lyapunov function and the theory from Milstein and
Tretyakov (2005) we also show that under some assumptions our timestepping
methods converge weakly.

(vi) Proved theoretically that the complexity theorem (Giles, 2008) holds for the one-
dimensional models with suitable regularisation. For a simplified model rep-
resenting homogeneous turbulence we apply a direct approach based on strong
approximation results. For our inhomogeneous model we apply a method based
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on the theory of modified equations (Shardlow, 2006), (Zygalakis, 2011), (Müller
et al., 2015) which provides an alternative approach to the strong approximation
results.

(vii) Implemented an adaptive MLMC (Giles et al., 2016) algorithm for one-dimensional
models and observed some small improvements for the Symplectic Euler method.

(viii) Implemented StMC and MLMC for two- and three-dimensional models. We
observed that for higher dimensional models the MLMC method improves the
asymptotic cost rate when compared to StMC. Also, we demonstrated that in
some cases the BAOAB method can reduce the overall cost of StMC.

1.4 The structure of the thesis

In Chapter 2 we introduce our one-dimensional models and describe the physical in-
terpretation of the basic variables. We describe the model scales by using dimensional
analysis, define the boundary conditions and discuss how we deal with the singularities
in the turbulence profiles present in the models. Then, we talk about the quantities of
interest that we are going to approximate, compute the systems invariant measure and
discuss some relations with molecular dynamics.

In Chapter 3 we present the timestepping methods that we use to discretise the
one-dimensional models and define the Standard and Multilevel Monte Carlo methods
in the context of SDEs. We review the Symplectic Euler method currently used by
the Met Office and also define two more advanced methods, the Geometric Langevin
and BAOAB which are based on SDE splitting methods. We then describe how we
measure the Monte Carlo approximation errors and the strategy we follow in order to
achieve a certain error tolerance. Also, we derive a theoretical bound for the StMC
cost rate as a function of the error tolerance and review the complexity theorem (Giles,
2008) which explains when the MLMC method has a better cost rate when compared
to StMC.

In Chapter 4 we present some theoretical results about the one-dimensional models.
We begin by proving that our basic inhomogeneous model has a unique solution by us-
ing a Lyapunov function and the theory in Khasminskii (2011). We then talk about the
convergence of our timestepping methods and using the same Lyapunov function with
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the theory from Milstein and Tretyakov (2005) we show that under certain conditions
they are all weakly convergent to the exact solution.

In Chapter 5 we study the theoretical application of the complexity theorem (Giles,
2008) to the particular one-dimensional models in atmospheric dispersion modelling.
In Section 5.1 we consider a simplified model and present a direct approach based on
strong approximation results. In Section 5.2 we present a new algorithm for the cor-
rect treatment of reflective boundary conditions (Katsiolides et al., 2018). The basic
idea is to extend the initial model to a problem without boundary conditions and count
the number of reflections which then gives the correct coupling of random variables
in the MLMC coarse levels. In Section 5.3 we study the conditions under which the
complexity theorem holds for our basic inhomogeneous model using an alternative
approach based on modified equations analysis (Shardlow, 2006), (Zygalakis, 2011),
(Müller et al., 2015). Lastly, in Section 5.4 we describe how we deal with the discon-
tinuity of the indicator function in the concentration problem by using the smoothing
poynomial technique from Giles et al. (2015).

In Chapter 6 we present several numerical experiments for the one-dimensional
models to compare the efficiency of Standard and Multilevel Monte Carlo with our
timestepping methods. We study the mean particle position, concentration and density
function; all results and conclusions in this section have been published in Katsiolides
et al. (2018). In all the experiments we use a uniform timestep size except from the
last part of the chapter where we consider adaptive timestepping.

In Chapter 7 we study higher-dimensional models. We construct a realistic back-
ground velocity field (i.e. the function v(Xt, t)) in equation (1.2)) with the correct en-
ergy spectrum (Nastrom and Gage, 1985) and a realistic wind-shear due to the Ekman
spiral (Holton, 2004). We then discuss the corresponding model scales, the particle
spread plots and finally present numerical results for two- and three-dimensional mod-
els. For the numerical results we consider only one quantity of interest, the particle
concentration.

In the Conclusion, we summarise all the achievements, suggest some ideas for
further research and finally in the Appendix we present the technical details of some
of the results of this thesis.
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Chapter 2

Atmospheric Dispersion Modelling

Atmospheric dispersion modelling studies the spread and transport of atmospheric pol-
lutants and is important at the Met Office in many areas such as emergency response
situations (volcano eruptions, nuclear accidents, smoke from large fires etc) and rou-
tine forecasting applications. To model the dispersion, the three dimensional total ve-
locity field u(X, t), which depends on both the spatial coordinate X and time t, is first
split into two components. The first component corresponds to the large-scale flow
v(X, t) which is a deterministic velocity field and is given from the Met Office’s fore-
cast model. The second component corresponds to the unresolved turbulence U(X, t)

which can be modelled by a stochastic velocity field. Combining these two quantities
we can then write

u(X, t) = v(X, t) + U(X, t). (2.1)

The velocity field v(X, t) has the property that

v(X, t) = 〈u(X, t)〉, (2.2)

where 〈·〉 denotes the ensemble average. The ensemble average of U(X, t) is zero
since as we see later, the turbulence is assumed to be Gaussian with mean zero. From
George (2009) the ensemble average of an observable quantity A which depends on
the particle position and velocity, is defined by

〈A〉 = lim
N→∞

1

N

N∑
n=1

a(n), (2.3)
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where a(n) is the nth realisation ofA, i.e. the value ofA obtained at the nth independent
and identical repetition of the experiment.

At the Met Office, particle dispersion is studied by using the NAME Lagrangian
Dispersion model. Lagrangian dispersion models describe the transport of a passive
tracer particle in a turbulent velocity field in the form of an SDE. For a given particle,
the Lagrangian velocity is the velocity at a given time t and each particle follows the
mean flow v(X, t) to which we then add a random velocity component U(t). More
specifically, U(t) denotes the turbulent component of the Lagrangian velocity and at
equilibrium, i.e. after a large travel time, it agrees in distribution with the turbulent
field U(X, t) for particles which pass through point X at time t (Katsiolides et al.,
2018). A general SDE in d spatial dimensions for a Lagrangian dispersion model
(later simply called d-dimensional) can be written as

dU(t) = −Λ(X(t))U(t)dt−∇XV (X(t),U(t))dt+ Σ(X(t))dW(t), (2.4)

dX(t) = (U(t) + v(X(t), t))dt, (2.5)

where X(t),U(t),v(X(t), t) ∈ Rd, V (X(t),U(t)) ∈ R, Λ(X(t)) and Σ(X(t)) are
diagonal d × d matrices and W(t) is a d-dimensional Brownian motion. According
to this model, the particles follow the mean velocity v(X(t), t), called background
velocity, to which we add the random variable U(t) that represents turbulence. We
also assume that the particles are independent, non-interacting and of unit mass. The
following definition of Brownian motion can be found in Lemieux (2009).

Definition 2.1. A standard one-dimensional Brownian motion is a continuous-time

stochastic process {W (t), t ≥ 0} with the following properties:

1. W(0) = 0.

2. The increments over disjoint intervals are independent, i.e. for r < s < t < u

we have that W (u)−W (t) and W (s)−W (r) are independent.

3. The increments are stationary, i.e. for any r, s, t > 0 we have that W (r + t) −
W (r) and W (s + t) −W (s) have the same probability density function, which

is normal with mean 0 and variance t.

A d-dimensional Brownian motion W(t) is a vector of d independent Brownian mo-

tions W (t).
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Note that we could also consider a deterministic model by solving the correspond-
ing Fokker-Planck Partial Differential Equation (also called Kolmogorov’s Forward
Equation) which is equivalent to solving the SDE (Øksendal, 2003). For the SDEs
(2.4) and (2.5) it is given by

∂ρ

∂t
=−

d∑
i=1

[
∂

∂Xi

[(Ui + vi(X, t)) ρ] +
∂

∂Ui

[(
−Λii(X)Ui −

∂V

∂Xi

(X,U)

)
ρ

]]

+
1

2

d∑
i=1

∂2

∂U2
i

[
(Σii(X))2 ρ

]
, (2.6)

where ρ(X,U, t) is the probability density of the particles in the phase space defined
by their position and velocity. The index i denotes the ith component of the corre-
sponding variable. We could then use Finite Elements or Finite Differences to approx-
imate the solution. This approach however is affected by the curse of dimensionality
since we have 2d number of variables which depend on time and this gives a further
advantage to the Monte Carlo method whose cost does not grow exponentially with
dimension. Here we consider only Monte Carlo methods applied to SDEs and the
comparison with the Fokker-Planck approach can be a topic for future research.

For simplicity, and since in the atmosphere the strongest variations usually occur
in the vertical direction, we firstly consider one-dimensional models which means that
we study equations (2.4) and (2.5) with d = 1. These models describe vertical dis-
persion and we also set v(X, t) = 0 (where X is the vertical coordinate) since the
vertical background velocities are much smaller than the horizontal velocities and can
be neglected. Later, in Chapter 7 we present the generalisation to higher dimensions.

This chapter is structured as follows. Firstly, we introduce our basic one-dimen-
sional model for inhomogeneous turbulence and describe the equations’ coefficients
and variables. Then, we introduce a simplified version of the first model which de-
scribes dispersion in a homogeneous turbulence field. Next, we describe the model
scales by using dimensional analysis, discuss how we deal with the singularities present
in the model and present our choice of boundary conditions. Finally, we briefly dis-
cuss the quantities of interest that we are going to approximate and also describe some
connections to molecular dynamics. Here we also compute the system’s invariant mea-
sure.
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2.1 The one-dimensional Inhomogeneous turbulence
model

Our basic one-dimensional model for vertical dispersion assumes stationary (indepen-
dent of time) and inhomogeneous (dependent of position) turbulence and is given by
the following SDE

dU(t) = −λ(X(t))U(t)dt− ∂V

∂X
(X(t), U(t))dt+ σ(X(t))dW (t), (2.7)

dX(t) = U(t)dt. (2.8)

In this equation, t is the time, U(t) is the Lagrangian vertical velocity fluctuation due
to turbulence, X(t) is the vertical position and W (t) is a Brownian motion. The co-
efficients λ(X), ∂V

∂X
(X,U) and σ(X) are given in terms of the two functions σU(X),

τ(X) and are related by

λ(X) =
1

τ(X)
, σ(X) =

√
2σ2

U(X)

τ(X)
, (2.9)

∂V

∂X
(X,U) = −1

2

[
1 +

(
U

σU(X)

)2
]
∂σ2

U

∂X
(X). (2.10)

With this notation, the function V (X,U) can also be written as

V (X,U) ≡ −1

2

[
σ2
U(X) + U2 log

(
σ2
U(X)/σ2

U(Xref)
)]
, (2.11)

where Xref is a fixed reference height. σ2
U(X) is the variance of the turbulent com-

ponent of the background velocity field and τ(X) is the Lagrangian local velocity
decorrelation timescale. The form of these functions will be discussed in Section 2.2.
Although the velocityU(t) depends on time we call the model stationary because τ(X)

and σU(X) are independent of t. Similarly, we call the model inhomogeneous because
τ(X) and σU(X) depend onX . We assume that the motion of the particles is restricted
to a boundary layer of height H , i.e. their vertical position can only vary between 0

and H (see also Figure 2-2).
Next, we need to specify suitable initial conditions (X(0), U(0)) which can either

be deterministic or stochastic depending on the problem. For the one-dimensional
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model we assume that both quantities are deterministic. For higher-dimensional mod-
els however, and since the background velocity is non-zero we assume that the initial
velocity adapts to the ambient velocity of the flow when the particles are released.
Practically this means that the initial position is still deterministic but the initial veloc-
ity is random with each component independent and normally distributed with mean
zero and variance σ2

U(X(0)) (for higher-dimensional models this function can be dif-
ferent in each direction).

Equation (2.7) was derived in Thomson (1987) where the author presents several
criteria for the selection of these stochastic Lagrangian models. These criteria are also
reviewed in Rodean (1996). One of the most important, is the well-mixed condition
(Thomson, 1987) that gives rise to the coefficient ∂V

∂X
(X(t), U(t)) and requires that

particles which are initially uniformly mixed to stay uniformly mixed. In mathemati-
cal terms this means that the stationary distribution of the particle density ρ(X,U) of
(X(t), U(t)) has two basic properties. The first property is that the marginal distribu-
tion of X (i.e. ρ(x) =

∫∞
−∞ ρ(x, u)du) is uniform in space and the second property is

that conditioned on X we have that ρ(u|x = X) has the same distribution as the unre-
solved turbulence U(X, t) which is assumed to be Gaussian (Katsiolides et al., 2018).
In Lemma 2.3 we verify that this is indeed the case by showing that the stationary
distribution is given by

ρ(X,U) =
1√

2πσU(X)
exp

(
− U2

2σ2
U(X)

)
, (2.12)

which also requires that the function V (X,U) has the form given by equation (2.11).
Other criteria include the correct behaviour of the small-time velocity distribution of
particles from a point source and the consistency of the forward and reverse dispersion
formulations. However, as it is proved in Thomson (1987) these criteria follow from
the well-mixed condition.

2.1.1 Simplification to homogeneous turbulence

The main numerical results that we present for the one-dimensional case are for the
inhomogeneous model that we have just described. However, for global dispersion
applications and for long time scales, a simplified form of equation (2.7) can be used
in the approximations. This simplified model is obtained by assuming that τ(X) and
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σU(X) in equation (2.7) are constants which gives

dU(t) = −λU(t)dt+ σdW (t), (2.13)

dX(t) = U(t)dt, (2.14)

where λ = 1
τ

and σ =

√
2σ2
U

τ
. Since τ and σU are now independent of X the model

describes homogeneous turbulence. A review of its derivation can be found in Rodean
(1996).

All variables are as in the inhomogeneous model but now τ is equal to the timescale
for the Lagrangian velocity autocorrelation of U(t). In Taylor (1921) cited in Rodean
(1996) the following equations were introduced for the timescale τ when the turbu-
lence is homogeneous:

τ =

∫ ∞
t0

R(t− t0)dt, (2.15)

with
R(t− t0) =

〈U(t)U(t0)〉
〈U2(t0)〉

, (2.16)

where t0 is a reference time and 〈·〉 denotes the ensemble average. In Taylor (1921) it
is noted that the limiting form of a series expansion for the correlation coefficient R in
equation (2.16) gives

R(t− t0) = e−(t−t0)/τ , (2.17)

and therefore we can see that the autocorrelation decays exponentially with a charac-
teristic timescale τ . Equation (2.17) can also be verified using the solution of equation
(2.13) (See Appendix A.1).

The only results that we present for the homogeneous model are in Section 5.1
where we prove theoretically that the MLMC method performs with a better cost rate.
Note that the simplified model has an analytic solution that we compute in Appendix
A.2 where we also present some analysis of the spread of the particles.

2.1.2 Model scales and dimensional analysis

Before computing any numerical approximation involving our SDE models it is nec-
essary to non-dimensionalise all the parameters since our code’s input parameter file
cannot contain any physical units. This dimensional analysis allows the physical inter-
pretation of the numerical results by introducing suitable model scales.
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For a physical quantity α we consider a reference scale αref and write

α = αrefα̂, (2.18)

where α̂ is the corresponding dimensionless parameter. In particular, for our model we
consider a reference length X ref, a reference speed U ref, a reference time T ref and write

X(t) = X refX̂(t), U(t) = U refÛ(t), t = T reft̂, (2.19)

where X̂(t), Û(t) and t̂ are the corresponding dimensionless quantities. Substituting
in equation (2.8) gives

X refdX̂(t) = U refT refÛ(t)dt̂, (2.20)

so the reference variables are simplified and give the same equation as with the physical
parameters provided

X ref = U refT ref. (2.21)

In the following, we drop the hats from these variables and use dimensionless quan-
tities in the equations, under the assumption that they measure the physical quantities
in the units defined by X ref, U ref and T ref. We choose X ref = 1000m (since our bound-
ary layer’s height is 1km) and U ref = 1m/s which gives T ref = 1000s = 162

3
min.

As an example of how we use these scales in practise suppose that we are interested
in releasing particles from an initial height of 50m with an initial velocity of 0.1m/s.
This simply means that we set X(0) = 0.05 and U(0) = 0.1.

2.2 The functions σU(X) and τ (X)

As discussed in Section 2.1 our inhomogeneous model contains the functions σU(X)

and τ(X) and their exact form depends on the atmospheric conditions of the boundary
layer which is assumed to be of height H . In Webster et al. (2003) several profiles
for σU(X) and τ(X) are proposed which take into account stability conditions in the
atmosphere. As a representative choice, we use the following form of σU(X) as in
Webster et al. (2003) for neutral and stable conditions

σU(X) = κσu
∗
(

1− X

H

) 3
4

, X ∈ (0, H), (2.22)
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where u∗ is the friction velocity and κσ some dimensionless constant. For τ(X) we
use

τ(X) = κτ
X

σU(X)
, X ∈ (0, H), (2.23)

for some dimensionless constant κτ which agrees with Wilson et al. (2009) where
the expression τ(X) ≈ 0.5X/σU is derived for a neutrally stable surface layer and
horizontally homogeneous turbulence. Although there is some uncertainty in the exact
form of these profiles, exploring more cases is beyond the scope of this thesis so we
only focus on the above representative case. In our numerical experiments we use
κσ = 1.3, κτ = 0.5, u∗ = 0.2 and H = 1 as in Cook (2013).

In equations (2.22) and (2.23) we can easily observe that σU(X) and τ(X) have
singularities or they are zero at the boundaries X = 0 and X = H and as a result some
of the SDE coefficients in (2.7) diverge near the boundaries. In Figure 2-1 we plot the
SDE coefficients −λ(X)U , − ∂V

∂X
(X,U) and σ(X) and we can see that as X tends to

zero or H(= 1) some of the functions tend to infinity.
With these singularities it now becomes hard to simulate any trajectories and es-

tablish well-posedness since when the particles reach the boundaries we obtain infinite
values which make some timestepping methods unstable. In order to deal with the
singularities we regularise the functions τ(X) and σU(X) by setting them to constant
values below a height εreg and above a height H − εreg. More specifically, we use the
same regularisation as the Met Office by setting

τ(X) = τ(εreg), σU(X) = σU(εreg) if X < εreg, (2.24)

τ(X) = τ(H − εreg), σU(X) = σU(H − εreg) if X > H − εreg, (2.25)

where 0 < εreg � H is some small regularisation constant. Consequently, the func-
tions τ(X) and σU(X) can never be evaluated at the points X = 0 or X = H which
create the singularities and they are bounded with τ(εreg) ≤ τ(X) ≤ τ(H − εreg) and
σU(H − εreg) ≤ σU(X) ≤ σU(εreg). Currently at the Met Office τ(X) is kept constant
below the height at which the physical value of τ(X) equals 20 sec. Using this prop-
erty and the parameter values of τ(X) given above gives approximately εreg = 0.01

which corresponds to a physical height of 10m. The effect of εreg on the numerical
results is studied in Section 6.4.1.
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Figure 2-1: SDE Coefficients for U = 0.2
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H Boundary Layer

Free Atmosphere

Figure 2-2: Reflective boundary conditions for a one-dimensional model.

2.3 Boundary conditions

In order to model the dispersion of particles we split the atmosphere in two parts: the
boundary layer close to the ground and the free atmosphere. Our one-dimensional
models apply on the boundary layer and this means that we restrict the motion of
particles to the interval [0, H]. To keep the particles inside this layer and prevent them
from going below ground or entering the free atmosphere above, it is necessary to add
boundary conditions.

A realistic scenario for the boundary conditions atX = 0 would be to consider two
possibilities. The particle is either absorbed at the boundary, so that it just stays at the
ground, or it is reflected with a suitable probability for each case. Here for simplicity
we consider only simple reflection so that when a particle hits the lower boundary it
is reflected elastically as shown in Figure 2-2. In the real atmospheric conditions a
particle can leave the boundary layer and enter the free atmosphere but here we also
reflect at the upper boundary for simplicity.

The elastic reflective boundary conditions we use are mathematically defined in a
similar way as in Bernardo et al. (2008). Suppose that at time trefl a particle hits the
boundary. If it hits the lower boundary (X = 0) then we use

lim
s→0,s>0

X(trefl + s) = − lim
s→0,s>0

X(trefl − s),

lim
s→0,s>0

U(trefl + s) = − lim
s→0,s>0

U(trefl − s),
(2.26)
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and if it hits the upper boundary (X = H) we use

lim
s→0,s>0

X(trefl + s) = 2H − lim
s→0,s>0

X(trefl − s),

lim
s→0,s>0

U(trefl + s) = − lim
s→0,s>0

U(trefl − s).
(2.27)

Note that the condition on X(t) is unnecessary as it follows from continuity, but we
still include it because it will be helpful in the implementation of the boundary condi-
tions in the discretisation methods discussed in section 3.1. More information about
boundary conditions can be found in Rodean (1996) where the author presents a short
review of various approaches found in the literature and how they interact with some
of the model’s quantities like for example the velocity decorrelation timescale τ(X).

Note that at any point in time the total mass is obtained by summing the masses
of all model particles. Since in our model the mass of an individual particle does not
change over time, mass conservation follows trivially if no trajectories are terminated
and this is the case for the non-absorptive reflective boundary conditions considered
here.

In Section 5.2 we discuss in more detail the effect of the boundary conditions in
the performance of the MLMC method. As we will see, when reflection is not treated
correctly it reduces the efficiency of the MLMC method and we will provide a new
technique for the correct coupling of random variables in the presence of reflective
boundary conditions which does not reduce the performance. This new technique will
be based on extending the domain of X to the whole real line and make the problem
equivalent to the one without boundary conditions.

Finally, we note that with the choice of reflective boundary conditions and under
some assumptions on the functions σU(X) and τ(X) it is possible to show existence
and uniqueness of a solution to the inhomogeneous model. In Section 4.1 we include
the details of the proof which is based on the existence of a Lyapunov function and the
theory from Khasminskii (2011).

2.4 Quantities of interest

While the numerical solution of the SDE will give a set of paths, our main interest is to
approximate the mean value of some functional φ of the path (X(t), U(t)) which we
call the quantity of interest. In particular, we study the mean particle position E[X(T )]
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and the concentration E
[
1[a,b](X(T ))

]
for some T > 0 and a, b ∈ R. The indicator

function in the concentration problem is defined by

1[a,b](x) =

1 if x ∈ [a, b],

0 otherwise.

We first study the mean particle position because it is the simplest case to consider and
then we study the concentration which is very important in atmospheric dispersion and
of particular interest to the Met Office. As we will see later in Section 6.3, we can use
a vector of indicator functions to construct a piecewise constant approximation to the
concentration field at any given time T . For example, this would allow predicting the
concentration of volcanic ash that a plane may encounter on different flight levels.

2.5 Relations with molecular dynamics

To put our work into a wider context, we now discuss some relations between our
one-dimensional models and other areas of modelling and in particular molecular dy-
namics. The SDE equations (2.4) and (2.5) have the form of a well-known class of
equations called the Langevin equations, which are also used for modelling in molecu-
lar dynamics. If we denote by X and U the particles’ position and momentum vectors
respectively then the simplified form of SDEs

dU(t) = −λU(t)dt−∇G(X(t))dt+ σdW(t), (2.28)

dX(t) = U(t)dt, (2.29)

for some function G, constants λ and σ and Brownian motion W(t) (see Definition
2.1) are used to model a system of particles in a heat bath (Leimkuhler and Matthews,
2015). The dimension of X and U is now equal to the number of particles. The only
interaction between the system of particles and the heat bath is the exchange of energy
and when equilibrium is reached, the equilibrium distribution is given by

ρ̃(X,U) = Z−1 exp

(
−2λ

σ2

(
1

2
UTU +G(X)

))
, (2.30)

26



where Z is a normalisation constant. Equation (2.30) is called Gibbs canonical distri-
bution. The constants λ and σ are related with the system’s temperature T with the
equation

κBT =
σ2

2λ
, (2.31)

where κB is Boltzmann’s constant (Leimkuhler and Matthews, 2015).
In our inhomogeneous model equation (2.7), the derivative on the right hand side

also depends on the velocity and this is due to the well-mixed condition (Thomson,
1987), (Rodean, 1996). The Gibbs canonical distribution equation (2.30) can motivate
the choice of the invariant measure of our inhomogeneous model equations (2.7) and
(2.8).

Definition 2.2. The function ρ(X,U, t) is called an invariant measure or equilibrium

distribution for the SDEs (2.7) and (2.8) if it satisfies the Fokker-Planck equation (2.6)
with ∂ρ

∂t
= 0 (Leimkuhler and Matthews, 2015).

We give this measure in the following lemma.

Lemma 2.3. An invariant measure of the system of equations (2.7) and (2.8) without

boundary conditions is given by

ρ(X,U) =
1√

2πσU(X)
exp

(
− U2

2σ2
U(X)

)
, (2.32)

where σU(X) is assumed to be sufficiently smooth.

Proof . From Definition 2.2 it is enough to show that equation (2.32) satisfies the
corresponding Fokker-Planck equation with ∂ρ

dt
= 0.

Using (2.6), the Fokker-Planck equation is given by

∂ρ

dt
= − ∂

∂u

[[
− u

τ(x)
+

1

2

[
1 +

u2

σ2
U(x)

]
∂σ2

U(x)

∂x

]
ρ

]
− ∂

∂x
(uρ)+

1

2

∂2

∂u2

[
2σ2

U(x)

τ(x)
ρ

]
,

where ρ(x, u, t) is the density of (X(t), U(t)) and simplifying gives

∂ρ

dt
=

ρ

τ(x)
+

u

τ(x)

∂ρ

∂u
− σU(x)

∂σU(x)

dx

∂ρ

∂u
− 2uρ

σU(x)

∂σU(x)

∂x
− u2

σU(x)

∂σU(x)

∂x

∂ρ

∂u

− u∂ρ
∂x

+
σ2
U(x)

τ(x)

∂2ρ

∂u2
. (2.33)
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Differentiating equation (2.32) gives

∂ρ

du
= − uρ

σ2
U(x)

,
∂2ρ

du2
= − ρ

σ2
U(x)

+
u2ρ

σ4
U(x)

,
∂ρ

dx
= − ρ

σU(x)

∂σU(x)

∂x
+

u2ρ

σ3
U(x)

∂σU(x)

∂x
,

and substituting in (2.33) we get
∂ρ

dt
= 0.

Lemma 2.3 completes our discussion about the well-mixed condition after we de-
fined the inhomogeneous model in Section 2.1. As we can see from equation (2.32),
the marginal distribution ofX , ρ(x) =

∫∞
−∞ ρ(x, u)du = 1, is uniform in space and the

conditional distribution ρ(u|x = X) is Gaussian with mean zero and variance σ2
U(X).

Lastly, from equation (2.31) we note that in the context of molecular dynamics
σ2
U = σ2

2λ
= κBT and therefore, σ2

U can be seen as the system’s “temperature”.
However, the σ2

U that we are using in our one-dimensional models is not related
to the air-temperature. It only describes measures of the fluctuation in the particle
velocity due to turbulence and it is computed using data based on observations of
velocity variances (Webster et al., 2003). Also, molecular diffusion is negligible com-
pared to turbulent diffusion and the reason is that Dmolecular = σ2

U,molecular · τmolecular

is much smaller than Dturbulence = σ2
U,turbulence · τturbulence. The variable Dc where c =

molecular, turbulence is called the diffusion constant and after time T � τc the parti-
cles travel at a distance

√
DcT by diffusion. Since Dmolecular is much smaller we can

then neglect molecular diffusion.
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Chapter 3

Timestepping and Monte Carlo
methods

Except for very special cases (such as the homogeneous turbulence model considered
in Section 2.1.1) it is not possible to solve an SDE exactly. Instead, usually two ap-
proximations are made to obtain a numerical solution: (a) the total integration time is
split into a finite number of small intervals and (b) expectation values (in the compu-
tation of quantities of interest) are replaced by Monte Carlo estimators. The stability
and accuracy of both approximations need to be studied carefully.

In this chapter we define discrete timestepping methods and Standard and Multi-
level Monte Carlo methods in the context of SDEs. Firstly, we present three timestep-
ping methods called Symplectic Euler, Geometric Langevin and BAOAB which will
enable us to produce particle trajectories of our SDE models. Then, we define Monte
Carlo methods and describe how we measure the approximation errors. Also, we dis-
cuss how we choose the timestep size and the number of samples in order to achieve a
particular tolerance on the total root mean square error. Finally, we compute the cost
rate of StMC and we include the complexity theorem (Giles, 2008) that describes the
conditions which guarantee a better asymptotic cost rate for the MLMC method.

3.1 Timestepping methods

To discretise our inhomogeneous model SDEs (2.7) and (2.8) we use three explicit
timestepping methods. These methods are also extensions to SDEs of symplectic
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methods for Hamiltonian systems. This means that when they are applied in a Hamil-
tonian system of Ordinary Differential Equations (ODEs) given by

dU

dt
= −∂H

∂X
,

dX

dt
= +

∂H

∂U
,

for some functionH(X,U) (called the Hamiltonian) they preserve the system’s Hamil-
tonian dynamics. In a Hamiltonian system the total area of the flow is preserved and
if a timestepping method does not change this property is called symplectic (Hairer
et al., 2006). The methods we use were chosen because the first one (Symplectic Eu-
ler) is very popular in operational models due to its simplicity and is currently used
by the Met Office. The other two (Geometric Langevin, BAOAB) do not have any
stability constraints on the timestep size as we discuss below (i.e. some restriction
on the timestep size to make sure that the numerical approximation does not become
large very quickly). More timestepping methods for SDEs, including the ones that
we present here, can be found in Hairer et al. (2006), Kloeden and Platen (2011),
Leimkuhler and Matthews (2015) and Müller et al. (2015). We define all timestepping
methods in terms of the one-dimensional models and for higher dimensions we simply
apply the same method on each direction.

In our numerical experiments we are interested in finding an approximation of the
solution of the SDE models at time T so we integrate the SDE over the time interval
[0, T ]. Discretising in time, this interval will then be split into M subintervals of
size h = T/M and the exact solution (X(tn), U(tn)) is estimated at time tn = nh

for each n ∈ {0, . . . ,M}. For each n the approximation is denoted by (Xn, Un) ≈
(X(tn), U(tn)).

The first timestepping method is the Symplectic Euler method (see for example
Hairer et al. (2006)), currently used by the Met Office, and is given by

Un+1 = (1− λ(Xn)h)Un −
∂V

∂X
(Xn, Un)h+ σ(Xn)

√
hξn, (3.1)

Xn+1 = Xn + Un+1h, (3.2)

where ξn ∼ Normal(0, 1) are independent and identically distributed (i.i.d.) Normal
random variables. We observe that Xn+1 is computed using Un+1 and this makes the
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method symplectic for Hamiltonian systems (i.e. when λ(x) = σ(x) = 0 and V inde-
pendent of U ). Replacing Un+1 with Un in equation (3.2) gives the Euler Maruyama
method (see for example Hairer et al. (2006)) which is not symplectic. The Symplectic
Euler method is stable if the timestep size h satisfies |1− λ(Xn)h| < 1 which leads
to the constraint h < 2

λ(Xn)
. As a result, for the solution to be stable, for large λ(X)

we have to choose smaller timesteps which increase the computational time and cost.
In particular, for the inhomogeneous model, λ(X) becomes large at the bottom of the
boundary layer and this can lead to prohibitively tight bounds on the timestep size.

The other two timestepping methods, which do not have a stability issue are based
on a splitting approach (Leimkuhler and Reich, 2004), (Leimkuhler and Matthews,
2015). For this, we write the SDE (2.7) in the form

dU(t) = dU (O)(t) + dU (B)(t), (3.3)

dX(t)

dt
= 0, (3.4)

where

dU (O)(t) = −λ(X(t))U (O)(t)dt+ σ(X(t))dW (t), (3.5)

dU (B)(t) = −∂V
∂X

(X(t), U (B)(t))dt. (3.6)

with the accompanying velocity equation

dX(t) = U(t)dt. (3.7)

Equations (3.5), (3.6) and (3.7) are discretised separately and one of the advantages of
this method is that it may simplify a complicated problem by breaking it into a series
of smaller and simpler problems. In addition, as we see below, the splitting methods
that we consider have the very important property of not requiring any constraint on
the timestep size in order to be stable.

In particular, when discretising equations (3.5) and (3.6) we assume that X(t) is
constant in the interval [tn, tn+1) (and equals Xn) and therefore we can solve equation
(3.5) as an exact Ornstein-Uhlenbeck process over a single step. This removes the
stability constraint and also improves the performance of the Monte Carlo method as
demonstrated in Müller et al. (2015). As we will see, the term λ(Xn)h will appear as
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a negative exponent to the exponential function and when λ(Xn) is large this expres-
sion will simply vanish without creating any stability problems as with the Symplectic
Euler method. As we will see in Chapter 6 these methods reduce the bias error of the
approximations. Following the notation from Leimkuhler and Matthews (2015) we re-
fer to equation (3.5) as the O-update, to equation (3.6) as the B-update and to equation
(3.7) as the A-update.

The first method based on this splitting is the Geometric Langevin method (Bou-
Rabee and Owhadi, 2010) defined by

U?
n+1 = e−λ(Xn)hUn + σ(Xn)αhξn, (3.8)

Un+1 = U?
n+1 −

∂V

∂X
(Xn, U

?
n+1)h, (3.9)

Xn+1 = Xn + Un+1h, (3.10)

with αh =
√

(1− e−2λ(Xn)h) /2λ(Xn) and ξn ∼ Normal(0, 1) i.i.d. The method was
introduced in the context of MLMC in Müller et al. (2015) and referred to as “Sym-
plectic Euler/Ornstein - Uhlenbeck Splitting Method”. The only difference in Müller
et al. (2015) is that the potential function V depends just on X . With the notation from
Leimkuhler and Matthews (2015) it can also be called OBA. This method was derived
by first solving the Ornstein-Uhlenbeck process equation (3.5) over a single step and
then by applying simple forward Euler steps on equations (3.6) and (3.7).

With this method there are no stability problems since when λ is large the exponen-
tial function simply disappears without any constraints on the choice of the timestep
size. However, as we will see, when λ is large the multilevel variance increases and
we discuss this for the simplified model in Section 5.1.

Note that for the simplified model where λ and σU are constants, letting λ→∞ in
equations (3.8) and (3.9) gives

Un+1 = σUξn. (3.11)

This expression is also obtained by discretising the exact solution from Appendix A.2.1
and then letting λ → ∞. This property is clearly not true for the Symplectic Euler
method since by letting λ→∞ in equation 3.1 we obtain an infinite value.

The third and last timestepping method, which is also based on a splitting approach,
is the Symmetric Langevin Velocity-Verlet method (Leimkuhler and Matthews, 2015)
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defined by

Un+ 1
2

= Un −
∂V

∂X
(Xn, Un)

h

2
, (3.12)

Xn+ 1
2

= Xn + Un+ 1
2

h

2
, (3.13)

U?
n+ 1

2
= e

−λ(X
n+ 1

2
)h
Un+ 1

2
+ σ(Xn+ 1

2
)αh(Xn+ 1

2
)ξn, (3.14)

Xn+1 = Xn+ 1
2

+ U?
n+ 1

2

h

2
, (3.15)

Un+1 = U?
n+ 1

2
− ∂V

∂X
(Xn+1, U

?
n+ 1

2
)
h

2
, (3.16)

where ξn ∼ Normal(0, 1) i.i.d. and αh is as above. Following the notation in
Leimkuhler and Matthews (2015) we simply refer to this method as BAOAB. Notice
that for both velocity and position the total update is of size h. Any other combina-
tion of these three updates with a total timestep of size h leads to different numerical
schemes (Leimkuhler and Matthews, 2015).

All three timestepping methods converge with at least the same order of weak
convergence as the Euler-Maruyama method does and we show this in Section 4.3.2
by using Taylor series approximations. Based on the numerical results from Chapter
6 we deduce that all methods are first order but when we analyse them and compute
modified equations in Section 5.3.2 we see that BAOAB is very close to being a second
order method and this has an effect on the performance of the StMC method. We
briefly discuss strong error convergence at the beginning of Section 4.3.

3.2 Monte Carlo methods

We now define the Standard and Multilevel Monte Carlo methods in the context of
SDEs and we are interested in the cost for a fixed tolerance ε on the root mean square
error. We describe theoretical bounds for the Monte Carlo cost rates in terms of the
tolerance and we discuss under which conditions the MLMC method gives a better
cost rate when compared to StMC. Also, we explain in detail how the parameters of
the algorithm need to be chosen for a particular error tolerance.
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3.2.1 Standard Monte Carlo

Let us introduce the general form of the Monte Carlo method. Suppose thatX(T ) ∈ R
is the solution of a SDE at time T and consider a one-dimensional real-valued function
φ : R → R. The function φ will be our quantity of interest (see also Section 2.4)
and we set P = φ(X(T )). Next, we choose a particular number of timesteps M =

ML = M02L (where M0, L ∈ N) in our discretisation. The corresponding timestep
size is T/M = h = hL = T

M02L
. Choosing NL independent samples, the StMC

approximaton of E [P ] is given by

P̂ (StMC)
L =

1

NL

NL∑
i=1

P(i)
L . (3.17)

In this expression P(i)
L = φ(X

(i)
ML

) where X(i)
ML

is the approximation of the ith inde-
pendent sample path at time T = MLhL. The approximation X(i)

ML
can be obtained

by using some timestepping method with ML timesteps like for example those defined
in Section 3.1. The timestep size hL has the same use as the timestep h from Section
3.1 and L will later refer to the number of levels of the MLMC method. The size of
hL and the number of independent samples NL depend on the required accuracy of the
approximation as we see at the end of Section 3.2.2. For higher dimensional models
the StMC estimator can be defined in the same way as equation (3.17).

Error and cost rates

We measure the error of the Monte Carlo approximation in terms of the mean square
error which can be expressed as

E
[(
P̂ (StMC)
L − E [P ]

)2
]

= (E [PL]− E [P ])2︸ ︷︷ ︸
(squared) discretisation error

+
1

NL

V ar[PL]︸ ︷︷ ︸
(squared) sampling error

, (3.18)

where E [PL] = E
[
P̂ (StMC)
L

]
= E

[
P(i)
L

]
and V ar[PL] = V ar

[
P(i)
L

]
is the variance

of PL. The first error on the right hand side of equation (3.18) is a result of the SDE
discretisation and the second error arises due to Monte Carlo sampling for a finite
number of samples NL. For the mean square error to be bounded by a fixed tolerance
ε2 we bound both the discretisation and sampling errors by ε2

2
.
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The discretisation error depends on the numerical method that is used to approxi-
mate the sample path of X(t). For the timestepping methods described in Section 3.1
we have shown numerically that the discretisation error is of order hL and in Section
4.3.2 we show that (under some conditions) linear convergence can be proven theoret-
ically. This means that

E [PL]− E [P ] = O(hL), (3.19)

and therefore hL ∝ ε√
2

which implies that the number of timestepsML = T/hL ∝ ε−1.
From the sampling error bound and since we require 1

NL
V ar[PL] < ε2

2
we have

that the number of samples NL ∝ ε−2 and therefore the cost for a fixed error tolerance
ε is given by

Cost(StMC) = O(ML ·NL)→ Cost(StMC) = C (StMC)ε−3 + . . . , (3.20)

which increases very fast as ε decreases. For example, if we want to increase the
accuracy in the root mean square error by one decimal place (ie 10 times) then the
cost increases 1000 times. As we will see later the MLMC method can improve the
asymptotic cost rate to ε−2. This improved rate is the best that can be achieved for a
Monte Carlo method and this can be proved with the Central Limit Theorem. For a
definition of the Central Limit Theorem you can see Lord et al. (2014).

As a last remark, we note that the overall cost, i.e. the constant C (StMC) in (3.20)
(but not the power of ε in (3.20)), also depends on the timestepping method and we
examine this effect in our numerical results.

3.2.2 Multilevel Monte Carlo

We now define the MLMC method as in Giles (2008). The key idea for the MLMC
approximation is that E [PL] = E

[
P̂L
]

can be written as the following telescoping
sum

E [PL] =
L∑
l=1

E [Pl − Pl−1] + E [P0] . (3.21)

The MLMC method is then defined by

P̂ (MLMC)
L =

L∑
l=0

Ŷl,Nl ,
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where

Ŷ0,N0 = P̂ (StMC)
0 and Ŷl,Nl =

1

Nl

Nl∑
i=1

Y
(i)
l , Y

(i)
l = P(i)

l − P
(i)
l−1 for l ≥ 1.

On the coarsest level (l = 0) we compute Ŷ0,N0 using the StMC method. This com-
putation is generally cheap since the timestep size h0 = T

M0
is large. To correct the

large discretisation error on the coarsest level, we compute corrections Ŷl,Nl on the
finer levels (l > 0) again by using StMC but this time on the difference Pl−Pl−1 with
timestep sizes as described in Section 3.2.1.

For each l ≥ 0 independent random variables are used to estimate Ŷl,Nl so these
estimates are independent for all l. However, on each pair of subsequent levels l, l−1 ≥
0 the same Brownian motion is used to estimatePl andPl−1 in the estimator Ŷl,Nl . This
guarantees that the variance of Ŷl,Nl is small, and we will see below that this is crucial
for the MLMC method to work. To couple the random variables on subsequent levels
for a finite timestep size, a sum of normal random variables can be used in the simplest
case (Symplectic Euler timestepping). In the following we give more details of how
we couple the random variables for each timestepping method.

One of the main advantages of MLMC is that under certain conditions the cost is
concentrated on the coarse levels (where the timestep size is larger) which are cheaper
to compute since less timesteps are required. Also, it estimates differences between
two estimators which have a smaller variance and therefore require a smaller number
of samples. It is important to note that the method does not introduce any additional
bias since

E
[
P̂ (MLMC)
L

]
=

L∑
l=1

E [Pl − Pl−1] + E [P0] = E [PL] = E
[
P̂ (StMC)
L

]
. (3.22)

Error and Cost rates:

In order to see how this method can reduce the computational cost we include a sim-
plified version of the complexity theorem proved in Giles (2008). In Giles (2008) the
computational cost is defined to be the total number of timesteps.

Theorem 3.1. With the MLMC setting as above if there exist positive constants c1, c2, c3

such that
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(i)
∣∣∣E[P̂l − P ]

∣∣∣ ≤ c1hl,

(ii) E[Ŷl,Nl ] =

{
E[P̂0] if l = 0,

E[P̂l − P̂l−1] if l > 0,

(iii) V ar[Ŷl,Nl ] ≤ c2N
−1
l h2

l ,

(iv) Cl, the computational complexity of Ŷl,Nl , is bounded by c3Nlh
−1
l ,

then there exists a positive constant c4 such that ∀ε < e−1 there are values L and Nl

for which P̂ (MLMC)
L satisfies

E
[(
P̂ (MLMC)
L − E [P ]

)2
]
< ε2,

with the total number of timesteps bounded by

Nsteps ≤ c4ε
−2. (3.23)

Since the cost per timestep is constant, this implies that the total computational cost

(i.e. the runtime of the algorithm) is given for fixed error tolerance ε as

Cost(MLMC) = C (MLMC)ε−2 + . . . , (3.24)

where the constant C (MLMC) depends on the particular timestepping method.

Asymptotically the best exponent of ε you can get with a Monte Carlo method is
−2. To improve this exponent further, Quasi Monte Carlo is required (Glasserman,
2003), (Giles and Waterhouse, 2009), (Kuo et al., 2015). As we have already seen,
for the StMC method Cost(StMC) = C (StMC)ε−3 + . . . and therefore we can see the
importance of the MLMC method in the improvement of the efficiency of a numerical
approximation.

Conditions (i) and (iv) are easily satisfied and they are true for the timestepping
methods considered in this thesis. Also condition (ii) follows trivially from the def-
inition of the MLMC method. However, condition (iii) is the hardest to achieve and
requires the correct coupling of random variables on subsequent levels. In practice, we
generate two independent normal random variables ξn and ξn+1 for two consecutive
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fine steps and then we couple them for a single coarse step. For the Symplectic Euler
method this is achieved by the simple sum of normal random variables

ξ(coarse)
n =

1√
2

(ξn + ξn+1). (3.25)

In Müller et al. (2015) it is shown that for Geometric Langevin the random variables
are coupled using

ξ(coarse)
n =

e−λ(Xn)hξn + ξn+1√
e−2λ(Xn)h + 1

, (3.26)

and following exactly the same technique we couple the random variables of BAOAB
as in equation (3.26) since the two methods have the same Ornstein-Uhlenbeck pro-
cess.

In some cases it is possible to prove theoretically that Theorem 3.1 holds using
either the theory of modified equations (Shardlow, 2006), (Zygalakis, 2011), (Müller
et al., 2015) or strong convergence theory as we show in Sections 5.3 and 5.1. How-
ever, where the necessary assumptions are not satisfied, we verify that V ar[Yl] ∝ h2

l

numerically by plotting V ar[Yl] as a function of hl in a log-log plot, as is customary
in the MLMC literature.

Finally, the mean square error of the MLMC method can be expressed as

E
[(
P̂ (MLMC)
L − E [P ]

)2
]

= (E [PL]− E [P ])2︸ ︷︷ ︸
(squared) discretisation error

+
L∑
l=0

1

Nl

V ar[Yl,Nl ]︸ ︷︷ ︸
(squared) sampling error

. (3.27)

We now describe how we pick the values of M0, L and Nl on each level such that the
sum of the (squared) discretisation and sampling errors is bounded by ε2. For this,
we first choose M0 and L such that the bias error is bounded by ε√

2
. Note that this

error only depends on ML = M02L, so reducing the number of levels L by one and
multiplying M0 by two, leaves this error invariant (and in the StMC method there is
freedom to pick any M0, L as long as ML is sufficiently large). In the MLMC method
the number of levels L has to be carefully adjusted (while keeping ML fixed) to reduce
the cost from Monte Carlo sampling, as will be described below. In a second step, we
then use a formula from Giles (2008) (see equation (3.30) below or equation (12) in
Giles (2008)) to pick the optimal number of samples Nl on each level to minimise the
cost, given a fixed tolerance ε/

√
2 on the sampling error. This calculation ofNl is done
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on-the-fly in the sampling algorithm.
To bound the discretisation error we first choose the values of M0, T and then

estimate the number of levels L as follows. From condition (i) of Theorem 3.1 it will
be enough if c1hL ≤ ε√

2
, which can be written as

c1
T

M02L
≤ ε√

2
. (3.28)

Then, to approximate the constant c1 we assume that E[P̂l − P ] = c̃1hl, for some
c̃1 ∈ R and we then write

E[P̂l − P̂l−1] = E[P̂l − P ]− E[P̂l−1 − P ] = c̃1hl − c̃1hl−1 = c̃1hl(1− 2) = −c̃1hl.

(3.29)
By approximating the left hand side numerically we find c1 = |c̃1| and by using (3.28)
we finally compute L. This method is described in Müller et al. (2015) and the same
hL is used for both StMC and MLMC methods since they have the same discretisation
errors. As we see in Chapter 6, the splitting methods have smaller values of c1 when
compared to the Symplectic Euler method and this property affects the efficiency of
the methods.

From above, the number of timesteps on the finest level equals ML = 2LM0 and
guarantees that the discretisation error is bounded by ε2

2
. The value of M0 however,

which is the number of timesteps on the coarsest level, affects the efficiency of the
MLMC method. For its choice we make sure that V ar[Y1] is less than 1

2
V ar[Y0]. If

this is not true then it is more efficient to increase the value of M0 and drop some
levels. For Symplectic Euler however, we need to be more careful and ensure that h0

satisfies the stability constraint discussed in Section 3.1.
To bound the sampling error we need a special choice for the number of samples

Nl and this is given in Giles (2008) by the following equation

Nl =

⌈
2ε−2

√
V ar(Yl)hl

(
L∑
i=0

√
V ar(Yi)/hi

)⌉
. (3.30)

This choice of number of samples on each level minimises the total cost and also
ensures that the sampling error is bounded by ε2

2
. The number of samples are then

computed using on-the-fly estimators for V ar[Yl]. Practically we estimate the value of
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V ar[Yl] using an initial small number of samples and then compute Nl using equation
3.30. If the value of Nl for some l is larger than the initial number of samples we
update the estimates for V ar[Yl] for all l using the corresponding values of Nl and
then compute new values for Nl for all l. This procedure continues until no more
samples are needed.
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Chapter 4

One-dimensional Model Analysis

Next we present some theoretical analysis for the one-dimensional dispersion models.
Firstly, we prove the existence and uniqueness of a solution for the inhomogeneous
model based on the existence of a Lyapunov function and the theory developed in
Khasminskii (2011). Next, we discuss an alternative approach for the existence and
uniqueness of solutions which is based on time change and the work in Wang and
Zhang (2016). We continue by showing that our solution has bounded moments and
then present the convergence results from Milstein and Tretyakov (2005) for timestep-
ping methods applied to SDEs with nonglobally Lipschitz continuous coefficients. Fi-
nally, we show numerically that under some conditions it is possible to have explosion
in the numerical approximation.

The application of the above results to atmospheric dispersion modelling are some
of the main contributions of this thesis. To the best of our knowledge there was no
previous application of these results in atmospheric dispersion.

For convenience, let us begin by summarising our two SDE models. Firstly, the
homogeneous model is given by

dU(t) = −U(t)

τ
dt+

√
2σ2

U

τ
dW (t),

dX(t) = U(t)dt,

subject to deterministic initial conditions U(0) = u0, X(0) = x0 and with boundary
conditions on [0, H] given by U(trefl + h) = −U(trefl − h) as h ↓ 0 for trefl such that
X(trefl) = 0 or X(trefl) = H . Also, in this model τ and σU are constants.

41



Secondly, the inhomogeneous model is given by

dU(t) =

[
− U(t)

τ(X(t))
+

1

2

[
1 +

(
U(t)

σU(X(t))

)2
]
∂σ2

U(X(t))

∂X

]
dt+

√
2σ2

U(X(t))

τ(X(t))
dW (t),

dX(t) = U(t)dt,

subject to the same initial and boundary conditions as the homogeneous model and
with the functions

σU(X) = κσu
∗
(

1− X

H

) 3
4

, τ(X) = κτ
X

σU(X)
, (4.1)

for some constants κσ, κτ , u∗ and H . Also note that near the boundaries we apply the
Met Office’s constant regularisation given by

τ(X) = τ(εreg), σU(X) = σU(εreg) if X < εreg, (4.2)

τ(X) = τ(H − εreg), σU(X) = σU(H − εreg) if X > H − εreg, (4.3)

for some small regularisation constant 0 < εreg � H . Finally, we also use the notation

λ(X) =
1

τ(X)
, σ(X) =

√
2σ2

U(X)

τ(X)
, (4.4)

∂V

∂X
(X,U) = −1

2

[
1 +

(
U

σU(X)

)2
]
∂σ2

U

∂X
(X). (4.5)

4.1 Existence and uniqueness of solutions

We now show the existence and uniqueness of a non-explosive solution (explosion
happens when the solution can be infinite in a finite time). In the literature (Øksendal,
2003), (Karatzas and Shreve, 2012) the most common proof for the existence and
uniqueness of a solution requires that the drift term (the term in front of dt) and the
diffusion term (the term in front of dW (t)) are both globally Lipschitz continuous. As
it can be seen from the inhomogeneous model equations redefined above, the drift term
contains the term U2 which is clearly not Lipschitz continuous. Therefore, we need
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to look for more relaxed conditions and study, for example, the work in Watanabe and
Ikeda (1981) and Khasminskii (2011).

Our proof is for the inhomogeneous model since the drift term in the homogeneous
model is linear in U(t) and the diffusion coefficient is constant. These conditions are
enough for the existence of a unique solution (Øksendal, 2003), (Karatzas and Shreve,
2012). In particular, in the absence of boundary conditions the homogeneous model
is a simple Ornstein-Uhlenbeck process for which we can compute the exact solution
(see Appendix A.2.1).

Since the model has boundary conditions we take them into account in the proof.
Without loss of generality, let us set the boundary layer height H = 1. For our spe-
cial choice of σU(x) and τ(x) as in equations (4.1) (with a suitable regularisation as
discussed later) we show that the solution does not explode in the set

S = {(x, u) ∈ [0, 1]× R}. (4.6)

From the theory in Khasminskii (2011) it suffices to find a Lyapunov function with
certain properties. In Lemma 4.2 we define the Lyapunov function that we are going to
use in our proof but before that we give the following definition (Khasminskii, 2011).

Definition 4.1. The infinitesimal generator L̃ related to the inhomogeneous model

equations (2.7) and (2.8) is defined by

L̃F =

[
− u

τ(x)
+

1

2

(
1 +

u2

σ2
U(x)

)
∂σ2

U(x)

∂x

]
∂F

∂u
+ u

∂F

∂x
+
σ2
U(x)

τ(x)

∂2F

∂u2
, (4.7)

where F (x, u) is a twice differentiable function.

Next, we define our Lyapunov function in the following lemma.

Lemma 4.2. If τ(x) and σ2
U(x) are smooth enough then the function

F (x, u) = 1 +
1

2

u2

σ2
U(x)

− 1

2
log

σ2
U(x)

(κσu∗)2
, (4.8)

satisfies

L̃F (x, u) ≤ c

τ(x)
F (x, u) ∀(x, u) ∈ S, (4.9)

where c is some positive constant and L̃ is the infinitesimal generator of equations

(2.7) and (2.8). We call the function F a Lyapunov function.
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Proof . Differentiating F (x, u) with respect to x and u gives

∂F

∂x
= −1

2

u2

σ4
U(x)

∂σ2
U(x)

∂x
− 1

2

1

σ2
U(x)

∂σ2
U(x)

∂x
,

∂F

∂u
=

u

σ2
U(x)

,
∂2F

∂u2
=

1

σ2
U(x)

,

(4.10)
and substituting in equation (4.7) we obtain

L̃F =
1

τ(x)

(
1− u2

σ2
U(x)

)
. (4.11)

Combining with equation (4.8) we get

L̃F =
1

τ(x)

(
3− 2F − log

σ2
U(x)

(κσu∗)2

)
. (4.12)

From equation (4.8) and the fact that σ2
U (x)

(κσu∗)2 < 1 for our choice of σU(x), we then have
that

1 ≤ 1 +
1

2

u2

σ2
U(x)

− 1

2
log

σ2
U(x)

(κσu∗)2
= F.

In addition,

− log
σ2
U(x)

(κσu∗)2
= 2F − 2− u2

σ2
U(x)

≤ 2F,

and therefore using equation (4.12) we obtain

L̃F ≤ 3

τ(x)
F.

Equation (4.8) and Lemma 4.2 allow us to apply the theory from Khasminskii
(2011) to show existence and uniqueness. The proof in Khasminskii (2011) is about a
problem without boundary conditions so it is necessary to make some small changes
which we indicate in the proof. Due to the boundary conditions, we define the set

S(n) = {(x, u) ∈ R2 : x ∈
[

1

n
, 1− 1

n

]
, |u| ≤ n} for n > 0.

(Note that if we didn’t have boundary conditions we would use the set

S(n) = {(x, u) ∈ R2 : |(x, u)| ≤ n} for n > 0,
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as in Khasminskii (2011).)
The theory in Khasminskii (2011), adapted to our inhomogeneous model, begins

by constructing a sequence of functions a(n)
1 (x, u), a

(n)
2 (x, u) and σ(n)(x, u) defined on

the set S with the following properties:

(i) The functions a(n)
1 (x, u), a

(n)
2 (x, u) and σ(n)(x, u) agree on the set S(n) with the

drift and diffusion terms of equations (2.7) and (2.8), i.e.

a
(n)
1 (x, u) = −λ(x)u − ∂V (x,u)

∂x
, a

(n)
2 (x, u) = u, σ(n)(x, u) = σ(x) for all

(x, u) ∈ S(n).

(ii) The functions a(n)
1 (x, u), a

(n)
2 (x, u) and σ(n)(x, u) are Lipschitz continuous and

satisfy linear growth on the set S, i.e.
2∑
i=1

∣∣∣a(n)
i (x, u)− a(n)

i (x̃, ũ)
∣∣∣+
∣∣σ(n)(x, u)− σ(n)(x̃, ũ)

∣∣ ≤ B |(x, u)− (x̃, ũ)|,
2∑
i=1

∣∣∣a(n)
i (x, u)

∣∣∣+
∣∣σ(n)(x, u)

∣∣ ≤ B(1 + |(x, u)|),

for all (x, u), (x̃, ũ) ∈ S and some positive constant B > 0. |·| denotes the
Euclidean norm.

Let us now discuss the above two properties for our inhomogeneous model. Prop-
erty (i) follows trivially since we just set the new sequence to be equal to the original
SDE coefficients on the set S(n). Property (ii) will follow by extending the new se-
quence outside the set S(n) and also if the original SDE coefficients are continuous
on S(n). Continuity however is not true for our model since the Met Office’s constant
regularisation (equations (2.24) and (2.25)) introduces a discontinuity in the drift term.
In particular it introduces a discontinuity in the potential term ∂V

∂X
(X,U) at the points

X = εreg and X = H − εreg (see beginning of Chapter 4) and as a result the function
a

(n)
1 (x, u) cannot be Lipschitz continuous. In Figure 4-1a we plot the potential function

for values of X near the ground and we can see the discontinuity at the point X = εreg.
To avoid introducing this discontinuity, we replace the regularisation introduced in

(2.24) and (2.25) by the following smooth regularisation that leads to no discontinuities
in the parameter functions at εreg:

τ(X) = κτ
(X2 + ε2reg)

1
2

σU(X)
, σU(X) = κσu

∗

((H −X)2 + ε2reg

) 1
2

H

 3
4

. (4.13)
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(a) Constant regularisation
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(b) Smooth regularisation

Figure 4-1: ∂V
∂X

(X,U) plots using a constant and a smooth regularisarion. The circle
indicates the value at the point X = εreg.

In Figure 4-1b we plot the smoothed potential function and we can see that there are
no discontinuities. In Chapter 5 we will see a different type of a smooth regularisation
that has the extra advantage of removing the new discontinuities introduced by the
boundary conditions treatment described in Section 5.2.

With the above assumptions, the newly constructed sequence of functions now
satisfy Lipschitz continuity and linear growth on the set S so the system of SDE’s

dU (n)(t) = a
(n)
1 (X(n)(t), U (n)(t))dt+ σ(n)(X(n)(t), U (n)(t))dW (t), (4.14)

dX(n)(t) = a
(n)
2 (X(n)(t), U (n)(t))dt, (4.15)

has an almost surely unique solution (X(n)(t), U (n)(t)) on S (Øksendal, 2003), (Karatzas
and Shreve, 2012).

Now note that for m ≥ n the first exit time of (X(m)(t), U (m)(t)) from S(n) equals
the first exit time of (X(n)(t), U (n)(t)) from S(n) so we use ρn to denote the common
value of that exit time. Also, the two processes (X(n)(t), U (n)(t)) and (X(m)(t), U (m)(t))

coincide up to time ρn. Then, define

ρ = lim
n→∞

ρn, (4.16)

which is the first exit time from every set S(n). Lastly, we need the following definition.

Definition 4.3. The process (X(t), U(t)) is called regular (or non explosive) if for all
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(x, u) ∈ S we have that

P (ρ <∞, |Uρ| =∞|(X(0), U(0)) = (x, u)) = 0, (4.17)

where ρ is defined by equation (4.16).

In Khasminskii (2011) only the condition ρ <∞ is included in Definition 4.3 because
they study a problem without boundary conditions. If equation (4.17) is true then
(X(t), U(t)) is defined almost surely for all t ≥ 0.

In Theorem 4.5 (Khasminskii, 2011) we show that under an assumption on τ(x)

the inhomogeneous model has a unique regular solution.

Assumption 4.4. The function τ(x) is bounded below by a positive constant, i.e. there

exists a constant B̃ > 0 such that

τ(x) ≥ B̃ ∀x ∈ [0, 1]. (4.18)

Equation (4.18) is true when we use the Met Office’s (equations (2.24) and (2.25)) or
the smooth regularisation as described above (equation (4.13)).

Theorem 4.5. If τ(x) is bounded below by a positive constant and if there exist a

nonnegative, twice differentiable function F (x, u), defined on S such that for some

constant c̃ > 0 we have

LF (x, u) ≤ c̃F (x, u), (4.19)

Fn := inf
|u|>n

F (x, u)→∞ as n→∞, (4.20)

where L = ∂
∂t

+ L̃, then the inhomogeneous model with initial conditions on S(n) for

every n, has a unique regular solution up to the first reflection time.

Proof . Using Lemma 4.2 and the fact that F (x, u) does not depend on t we know that
under Assumption 4.4 the nonnegative function

F (x, u) = 1 +
1

2

u2

σ2
U(x)

− 1

2
log

σ2
U(x)

(κσu∗)2
, (4.21)
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satisfies condition (4.19) and it also satisfies condition (4.20). The proof is then iden-
tical to the one of Theorem 3.5 in Khasminskii (2011) and here we only give a sketch
proof.

Define the function

W (t, x, u) = F (x, u) exp(−c̃t), (4.22)

which satisfies LW ≤ 0 by using condition (4.19). Then, by Lemma 3.2 in Khasmin-
skii (2011) (based on Itô’s formula applied to W (t, x, u)) we have

E [F (X(ρn ∧ t), U(ρn ∧ t)) exp(−c̃(ρn ∧ t))]− E [F (X(0), U(0))]

= E
[∫ ρn∧t

0

LW (s,X(s), U(s))ds

]
≤ 0, (4.23)

where ρn ∧ t = min{ρn, t} with ρn the exit time as above.
Now define a process (X̃(t), Ũ(t)) = (X(n)(t), U (n)(t)) for t < ρn. Using inequal-

ity (4.23) with the fact that ρn ∧ t ≤ t we have

E
[
F (X̃(ρn ∧ t), Ũ(ρn ∧ t))

]
≤ exp(c̃t)E [F (X(0), U(0))] . (4.24)

Also,

E
[
F (X̃(ρn ∧ t), Ũ(ρn ∧ t))

]
≥ E

[
F (X̃(ρn ∧ t), Ũ(ρn ∧ t))1{ρn≤t,|U(ρn)|=n}

]
= E

[
F (X̃(ρn), Ũ(ρn))1{ρn≤t,|U(ρn)|=n}

]
≥ inf

x∈[0,1],|u|≥n
{F (x, u)}E

[
1{ρn≤t,|U(ρn)|=n}

]
= inf

x∈[0,1],|u|≥n
{F (x, u)}P [ρn ≤ t, |U(ρn)| = n] ,

and combining with inequality (4.24) we get

P [ρn ≤ t, |U(ρn)| = n] ≤ exp(c̃t)E [F (X(0), U(0))]

inf
x∈[0,1],|u|≥n

{F (x, u)}
. (4.25)

By letting n → ∞ and using condition (4.20) gives equation (4.17), so the process
(X̃(t), Ũ(t)) and therefore (X(t), U(t)) is an almost surely unique regular solution to
the inhomogeneous model up to time ρ.
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Since equation (4.17) holds we know that the exit time ρ corresponds to the time
when the particle hits the boundary of the set S and therefore the proof is complete.

Next, in order to extend our solution to an arbitrary time t, we need to show that
the solution does not explode when the particle has initial conditions on the boundary
of the set S. Since the boundary of S lies outside S(n) for every n, Theorem 4.5 cannot
be applied in this case.

An easy method to solve this issue would be the application of a special type of reg-
ularisation for τ(X) and σU(X) as we do for example in Section 5.3.2 where our SDE
coefficients become continuously differentiable. If this regularisation guarantees that
the solution does not explode before the particle enters some set S(n) then our solution
exists for an arbitrary time t. For example, if we assume that τ(X) and σU(X) are
constants near the boundary (as the Met Office does) then our model becomes a simple
Ornstein-Uhlenbeck process for which we know that a solution exists. Therefore, with
this simple approach we can extend our solution to an arbitrary time t.

4.1.1 An alternative approach

In this section we discuss an alternative approach to prove existence and uniqueness
of solutions that uses time change and works for a class of models with a singularity.
Also, we will use material from Wang and Zhang (2016) where the authors study SDEs
with non-Lipschitz coefficients. Our arguments will not be completely rigorous and
making a rigorous proof could be a topic for future work.

Firstly, we give some definitions from Wang and Zhang (2016).

Definition 4.6. An increasing function φ : R+ → R+ is called a Dini function if∫ 1

0

φ(t)

t
dt <∞. (4.26)

Definition 4.7. A function f on the Euclidean space is called Hölder-Dini continuous

of order α ∈ [0, 1) if

|f(x)− f(y)| ≤ |x− y|αφ(|x− y|), |x− y| ≤ 1, (4.27)

holds for some Dini function φ and is called Dini continuous if this condition holds for

α = 0.
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We then have the following result from Wang and Zhang (2016). SDEs with locally
Dini continuous drift term (the term in front of dt) and locally Hölder-Dini continuous
diffusion term (the term in front of dW (t)) of order 2

3
, have a unique strong solution.

Before applying this result to our inhomogeneous model equations (2.7) and (2.8)
we will firstly apply a time change technique to our equations which removes the
singularity at X = 0 (we consider only this singularity since we do a sketch proof).
Define

t̃ =

∫ t

0

1

τ(X(s))
ds, dt̃ =

1

τ(X(t))
dt, (4.28)

to obtain

dU(t̃) = −U(t̃)dt̃− 1

2
τ(X(t̃))

[
1 +

U2(t̃)

σ2
U(X(t̃))

]
∂σ2

U

∂X
(X(t̃))dt̃

+

√
2τ(X(t̃))σU(X(t̃))dW (t̃), (4.29)

dX(t̃) = U(t̃)τ(X(t̃))dt̃, (4.30)

by substituting (4.28) in (2.7) and (2.8) and also using the chain rule for the diffusion
term.

The time change in (4.28) however is not well-defined if we use our form of τ(X)

since it contains the term 1/X , but it does allow singularities of the form 1/Xα for
α < 1. To make the time change well-defined in our case, one method could be to
replace 1/X by 1/X1−ε, for some small ε.

Our drift terms now become

−U − 1

2
τ(X)

[
1 +

U2

σ2
U(X)

]
∂σ2

U

∂X
(X) = −U − 3

4H
κτκσu

∗X

[
1

(1− X
H

)
1
4

+
U2

(κσu∗)2(1− X
H

)
7
4

]
, (4.31)

Uτ(X) =
κτ
κσu∗

UX

(1− X
H

)
3
4

, (4.32)

and our diffusion term becomes

√
2τ(X)σU(X) =

√
2κτκσu∗

√
X(1− X

H
)

3
4 . (4.33)
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We can now easily see that this method removes the singularity at X = 0. Then,
by assuming some suitable regularisation we make our new SDE coefficients (4.31),
(4.32) and (4.33) locally Lipschitz continuous.

Now, if the drift terms are locally Lipschitz continuous they are also locally Dini
continuous with Dini function a constant multiple of the identity function. Also, if
the diffusion term is locally Lipschitz continuous then it is also locally Hölder-Dini
continuous of order 2

3
with Dini function a constant multiple of the identity function

raised to the power of 1
3
. Therefore, using the theory from Wang and Zhang (2016)

we have that when the particle hits the boundary at X = 0 the solution does not
explode before the particle enters any set S(n). Theorem 4.5 can then be apllied until
the next time the particle hits the boundary and the existence-uniqueness proof is now
complete.

The advantage of this approach when compared to the proof of theorem 4.5 is that
it removes the singularity at X = 0 and also does not require to consider separately
the case when the particle starts from the boundary. However, further work is needed
to make this method rigorous and this could be a topic for future work.

4.2 Bounded moments for the SDE solution

As a consequence of the existence of the Lyapunov function (equation (4.8)) we can
also show that the random variable Ut has bounded moments. For the random variable
Xt a similar result is not required since the particles are restricted in the interval [0, 1].
In this proof, we make the following assumption:

Assumption 4.8. The function σ2
U(x) is bounded above by a positive constant, i.e there

exists a constant b̃ > 0 such that

σ2
U(x) ≤ b̃ ∀x ∈ [0, 1]. (4.34)

Lemma 4.9. If σ2
U(x) is bounded above by some positive constant then the solution Ut

of the inhomogeneous model has a bounded second moment.

51



Proof . Define the set

S̃(n) = {(x, u) ∈ R2 : x ∈ [0, 1] , |u| ≤ n} for n > 0, (4.35)

and let ρ̃n be the first exit time of (Xt, Ut) from S̃(n) (note that S̃(n), ρ̃n are different
from S(n), ρn used in Section 4.1). Then, as in equations (4.23) and (4.24) we have

E [F (X(ρ̃n ∧ t), U(ρ̃n ∧ t))] ≤ exp(c̃t)E [F (X(0), U(0))]

= exp(c̃t)F (X(0), U(0)). (4.36)

where ρ̃n ∧ t = min{ρ̃n, t}. Substituting equation (4.8) gives

E
[
1 +

1

2

U2(ρ̃n ∧ t)
σ2
U(X(ρ̃n ∧ t))

− 1

2
log

σ2
U(X(ρ̃n ∧ t))

(κσu∗)2

]
≤ exp(c̃t)F (X(0), U(0)),

(4.37)
and using linearity of expectation we obtain

E
[

U2(ρ̃n ∧ t)
σ2
U(X(ρ̃n ∧ t))

]
≤ 2 exp(c̃t)F (X(0), U(0)) + E

[
log

σ2
U(X(ρ̃n ∧ t))

(κσu∗)2

]
− 2.

(4.38)
Then, by using Assumption 4.8, equation (4.38) becomes

E
[
U2(ρ̃n ∧ t)

]
≤ 2b̃ exp(c̃t)F (X(0), U(0)) + b̃ log b̃− b̃ log(κσu

∗)2 − 2b̃. (4.39)

Finally, letting n→∞ gives ρ̃n →∞ (since U(t) does not explode) and since t ≤ T

we obtain

E
[
U2(t)

]
≤ 2b̃ exp(c̃T )F (X(0), U(0)) + b̃ log b̃− b̃ log(κσu

∗)2 − 2b̃. (4.40)

The bound on the right hand side depends only on the deterministic initial conditions
which completes the proof.

To obtain bounds for higher moments of U(t) we can apply Itô’s formula to higher
powers of exp(−c̃t)F (X(t), U(t)) and follow a similar method as in Lemma 4.9.
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4.3 Convergence of the timestepping methods

In this section we present some convergence results for the timestepping methods that
we use to discretise our SDE models. In order to describe in which sense our approxi-
mations converge we consider the general SDE

dX(t) = f(X(t))dt+G(X(t))dW(t), (4.41)

with f : Rd → Rd, G : Rd → Rd×m and W(t) an m-dimensional Brownian motion
(see Definition 2.1). Also, we need a special class of functions φ : Rd → R given in
the following definition from Lord et al. (2014).

Definition 4.10. The function φ : Rd → R is said to have a polynomially bounded

r-derivative if there exists p ∈ N such that

sup
x∈Rd

{∣∣∣∣ ∂|r|φ

∂xr11 ∂x
r2
2 · · · ∂x

rd
d

(x)

∣∣∣∣ / (1 + ‖x‖p2)

}
<∞, (4.42)

where |r| = r1 + r2 + . . .+ rd and ‖ · ‖2 denotes the Euclidean norm.

In the next definition we describe how we measure the approximation errors of the
above general SDE.

Definition 4.11. (a) For a sufficiently small timestep size h, we have that the approxi-

mation XM of the exact solution X(T ) obtained using some timestepping method

(see Section 3.1) and M = T/h number of timesteps is said to have a weak order

α error if for some constant C > 0

|E [φ(X(T ))]− E [φ(XM)]| ≤ Chα, (4.43)

where φ : Rd → R is any infinitely differentiable function with polynomially

bounded derivatives.

(b) Also, we say that the strong error is of order α if

E (|X(T )−XM |) ≤ C̃hα, (4.44)

for some constant C̃ > 0.
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Note that for the Monte Carlo approximations we measure the errors in terms of
the root mean square error defined in Section 3.2 (see equations (3.18) and (3.27)).

Most common results for the convergence of timestepping methods require a global
Lipschitz condition (Lipschitz continuous on the whole domain) on the SDE coeffi-
cients like for example in property (ii) in the construction of the functions a(n)

1 (x, u),
a

(n)
2 (x, u) and σ(n)(x, u) before proving Theorem 4.5. Since our inhomogeneous model

(equation (2.7) with a smooth regularisation) only satisfies a local Lipschitz condition
(Lipschitz continuous on closed and bounded subsets of the domain) these methods
cannot guarantee the convergence of the approximation.

In Kloeden and Platen (2011) they prove that Lipschitz continuity and linear growth
of the SDE coefficients (property (ii) mentioned in the previous paragraph) imply that
the strong error of the Euler-Maruyama method is of order 1

2
(Theorem 10.2.2). If

in addition the coefficients are sufficiently smooth (up to order 4) with polynomially
bounded derivatives, then the weak error is of order 1 (Theorem 14.5.1). In Bou-Rabee
and Owhadi (2010) the Geometric Langevin method is analysed and if λ(x) and σ(x)

are constants and V depends only onX(t) (see equation (2.7)), is Lipschitz continuous
and satisfies a special regularity condition, then the strong error has order 1 (Theorem
2.1). Since the homogeneous model has linear coefficients, the convergence of the
timestepping methods follows trivially and therefore we consider only the inhomoge-
neous model.

4.3.1 Weak convergence of timestepping methods applied to
inhomogeneous model

To deal with the absence of globally Lipschitz continuous coefficients we look for
more relaxed conditions and in particular study theoretical approaches that only require
a local Lipschitz condition, as in Higham et al. (2002) and Milstein and Tretyakov
(2005). We review some general results for a wider class of SDEs and then apply them
to our inhomogeneous model.

One of the results in Higham et al. (2002) involves the proof of strong convergence
for Euler-type timestepping methods applied to SDEs with locally Lipschitz contin-
uous coefficients under the assumption that the exact and numerical solutions have
bounded p moments for some p > 2. Consequently, in order to apply this result to our
model the only additional requirement would be to prove that the numerical solution
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has bounded moments (bounded moments of the exact solution follow from Section
4.2). However, this proof turned out to be challenging for our non-linear inhomoge-
neous model and it might also not be true, since a numerical experiment in Section 4.4
shows that under some conditions the approximation can explode.

Instead of showing that the numerical solution has bounded moments, we apply
the theory from Milstein and Tretyakov (2005) which is based on the existence of a
Lyapunov function (as the theory in Sections 4.1 and 4.2) and on rejecting trajectories
that go outside some set S̃(R) where

S̃(R) = {(x, u) ∈ R2 : x ∈ [0, 1], |u| < R}, (4.45)

with R a positive real constant (thus extending the definition of S̃(n) in (4.35)). (The
sets differ from those in Milstein and Tretyakov (2005), i.e.

S̃(R) = {(x, u) ∈ R2 : |(x, u)| < R}, (4.46)

since that paper considers a problem without boundary conditions.)
The first requirement is that the SDE coefficients are sufficiently smooth and this

can easily be obtained for our model in equation (2.7) by using the smooth regularisa-
tion described by the equations in (4.13). The second requirement is the existence of a
Lyapunov function satisfying the conditions described by equations (4.19) and (4.20)
which is also valid in our case by using equation (4.8) (see Lemma 4.2). The only
difference between our theory and what is used in Milstein and Tretyakov (2005) is
that in equation (4.20) we have |u| > n instead of |(x, u)| > n since we know that
X(t) is bounded due to the reflective boundary conditions. However, this difference
does not affect the final result and the proof stays the same.

A key step in Milstein and Tretyakov (2005) is to define a special transformation
on the initial random variables that will transform the given SDE to an equation with
Lipschitz continuous and bounded coefficients. This is achieved with the function
ψ : R→ R defined by

ψ(u) =


u if −R′ ≤ u ≤ R′,

R′ +
∫ u
R′

du′

1+(u′−R′)k if u > R′,

−R′ −
∫ −R′
u

du′

1+(−R′−u′)k if u < −R′,

(4.47)
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Figure 4-2: The transformation function ψ(u) with R′ = 5 and k = 4.

where k ≥ 2 is an integer andR′ = R+r for some constant r > 0. The function ψ has
bounded derivatives on R up to order k. As a consequence, for any function g(x, u)

that has continuous derivatives up to order k we have that the function

gR(x, u) = g(ψ(x), ψ(u)), (4.48)

has continuous and bounded derivatives up to order k. Since in our case we know that
x ∈ [0, 1] we will use

gR(x, u) = g(x, ψ(u)). (4.49)

Also, since the function ψ is continuous and bounded there exists a constant ρ > r,
independent of R, such that (x, ψ(u)) ∈ S̃(R+ρ) for every (x, u) ∈ [0, 1] × R. A plot
of the transformation function ψ with R′ = 5 and k = 4 can be seen in Figure 4-2.

By setting XR(t) = X(t), UR(t) = ψ(U(t)), XR(0) = X(0) and UR(0) = U(0),
where (X(t), U(t)) is the solution of the inhomogeneous model, we can construct the
following system of SDEs (Milstein and Tretyakov, 2005)

dUR(t) = −λ(XR(t))UR(t)dt− ∂V R

∂X
(XR(t), UR(t))dt+ σ(XR(t))dW (t),

(4.50)

dXR(t) = UR(t)dt, (4.51)
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whose coefficients have bounded derivatives up to order k. The next proposition is
then proved in Milstein and Tretyakov (2005).

Proposition 4.12. Assume that F (x, u) satisfies (4.19), (4.20) and

min
x∈[0,1],|u|≥R+ρ

F (x, u)

min
x∈[0,1],|u|≥R

F (x, u)
≤ α, (4.52)

where α is a constant independent of R. Let φ(x, u) be a function such that

lim
R→∞

max
x∈[0,1],|u|≤R

|φ(x, u)|

min
x∈[0,1],|u|≥R

F (x, u)
= 0. (4.53)

Then for all (X(0), U(0)) ∈ [0, 1]×R and all ε > 0 there exists R(X(0), U(0), ε) > 0

such that ∀R > R(X(0), U(0), ε)

∣∣E [φR(XR(T ), UR(T ))
]
− E [φ(X(T ), U(T ))]

∣∣ < ε. (4.54)

The significance of Proposition 4.12 is that we can construct a new regularised
model with Lipschitz continuous coefficients by introducing an arbitrarily small extra
error. With some simple algebra (see Lemma 4.13) we can easily see that this proposi-
tion applies to our inhomogeneous problem since equation (4.8) and the quantities of
interest defined in Section 2.4 satisfy the required conditions. The result from Propo-
sition 4.12 will also be used later in Chapter 5 in the application of Theorem 3.1.

Lemma 4.13. The function

F (x, u) = 1 +
1

2

u2

σ2
U(x)

− 1

2
log

σ2
U(x)

(κσu∗)2
, (4.55)

and the quantities of interest defined in Section 2.4 satisfy the conditions of Proposition

4.12 with R ≥ 1.

Proof . We have already seen in Lemma 4.2 and Theorem 4.5 that F (x, u) satisfies
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(4.19) and (4.20). For inequality (4.52), we have

min
x∈[0,1],|u|≥R+ρ

F (x, u)

min
x∈[0,1],|u|≥R

F (x, u)
=

min
x∈[0,1],|u|≥R+ρ

{
1 + 1

2
u2

σ2
U (x)
− 1

2
log

σ2
U (x)

(κσu∗)2

}
min

x∈[0,1],|u|≥R

{
1 + 1

2
u2

σ2
U (x)
− 1

2
log

σ2
U (x)

(κσu∗)2

}
=

1 + (R+ρ)2

α1
+ α2

1 + R2

α1
+ α2

,

where α1 = max
x∈[0,1]

σ2
U(x) and α2 = min

x∈[0,1]

{
−1

2
log

σ2
U (x)

(κσu∗)2

}
. Then,

min
x∈[0,1],|u|≥R+ρ

F (x, u)

min
x∈[0,1],|u|≥R

F (x, u)
≤

1 + 2(R2+ρ2)
α1

+ α2

1 + R2

α1
+ α2

≤
1 + 2(R2+ρ2)

α1
+ α2

R2

α1

=
α1

R2
+ 2

(
1 +

ρ2

R2

)
+
α1α2

R2

≤ α1 + 2
(
1 + ρ2

)
+ α1α2 (since R ≥ 1).

The right hand side is independent of R so by setting it equal to α we obtain inequality
(4.52).
From Section 2.4 we have that φ(x, u) equals X(T ) or 1[a,b](X(T )) and therefore

max
x∈[0,1],|u|≤R

|φ(x, u)| = 1. (4.56)

Substituting in equation (4.53) gives

lim
R→∞

max
x∈[0,1],|u|≤R

|φ(x, u)|

min
x∈[0,1],|u|≥R

F (x, u)
= lim

R→∞

1

min
x∈[0,1],|u|≥R

F (x, u)
= 0, (4.57)

by property (4.20).

Finally, the following two assumptions on the timestepping method (in our case
Symplectic Euler, Geometric Langevin and BAOAB) used to discretise the Lipschitz
continuous system of equations (4.50) and (4.51) are necessary before stating the main
convergence theorem.

Assumption 4.14. The timestepping method applied to the regularised SDEs (4.50)
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and (4.51) has a weak error (see Definition 4.11) of at least order 1 and after one

timestep the local weak error (i.e. Definition 4.11 after one timestep) is of at least

order 2.

Assumption 4.15. If (XR
n , U

R
n ) ∈ S̃(R) for n = 0, . . . , k, where (XR

n , U
R
n ) is the

approximation of the regularised SDEs (4.50) and (4.51) at time tn, then (Xn, Un) =

(XR
n , U

R
n ) for n = 0, . . . , k.

And now we state the main convergence theorem from Milstein and Tretyakov
(2005).

Theorem 4.16. Consider any timestepping method satisfying Assumption 4.14 which

converges with a weak error of order p for systems with sufficiently smooth and bounded

derivatives up to some order (e.g. order 4 for Euler-Maruyama). Let the conditions of

Proposition 4.12 and the Assumption 4.15 be fulfilled and consider a function φ(x, u)

such that E [|φ(X(T ), U(T ))|] exists. Then for all (X(0), U(0)) ∈ [0, 1]×R and ε > 0

there exists R(X(0), U(0), ε) > 0 such that ∀R ≥ R(X(0), U(0), ε) and sufficiently

small h

|E [φ(X(T ), U(T ))]− E [φ(XM , UM)1ΩR(ω)]| < Khp + ε, (4.58)

where ΩR = {ω : (XR
n , U

R
n ) ∈ S̃(R), n = 0, . . . ,M − 1 and (XR

M , U
R
M) ∈ [0, 1] ×

[−R,R]} and K > 0 depends on (X(0), U(0)) and R.

The only change we did in Theorem 4.16 is to assume that E [|φ(X(T ), U(T ))|]
exists (true for our quantities of interest since the mean particle position and the con-
centration are bounded) instead of assuming that |φ(x, u)| ≤ Ṽ (x, u). In Milstein and
Tretyakov (2005) the second assumption is used to prove the first assumption but if we
assume directly that E [|φ(X(T ), U(T ))|] exists then Theorem 4.16 holds for a wider
class of functions φ(x, u).

The conclusion from Theorem 4.16 is that by rejecting the trajectories of particles
that have a velocity with absolute value greater than R we can guarantee the weak
convergence of the timestepping method by just adding a small error. For example,
when we use the Euler-Maruyama method, we have that equation (4.58) holds with
p = 1. Note that increasing R decreases the extra error ε but at the same time it can
also increase K so h needs to be sufficiently small.

We already know that for the regularised SDEs (4.50) and (4.51), Assumption 4.14
holds for the Euler-Maruyama method (Kloeden and Platen, 2011). In Section 4.3.2
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we show that if Assumption 4.14 is true for the Euler-Maruyama method then it is also
true for all the timestepping methods defined in Section 3.1. Also, Assumption 4.15
trivially holds for our timestepping methods since the coefficients of the original SDEs
and the Lipschitz continuous system in equations (4.50) and (4.51) are equal on the set
S̃(R).

4.3.2 A Taylor series expansion approach for weak convergence

With a Taylor series expansion approach we show that if the Euler-Maruyama method
converges with a weak error of order 1 then the Symplectic Euler, Geometric Langevin
and BAOAB methods also converge with at least the same order of weak error. Here
we only present the analysis for the Symplectic Euler method but a similar approach
works for Geometric Langevin and BAOAB (see Appendix A.3 for the Geometric
Langevin method). Consequently, the convergence result from Milstein and Tretyakov
(2005) (see Theorem 4.16) will also hold for the timestepping methods described in
Section 3.1 when applied to the inhomogeneous model.

For our analysis we use the following theorem from Kloeden and Platen (2011) for
the weak convergence of a general timestepping method.

Theorem 4.17. Using the notation introduced at the beginning of Section 4.3, a method

converges with weak error of order α if the local error over one timestep satisfies

|E [φ(X(h))]− E [φ(X1)]| ≤ Chα+1, (4.59)

for all polynomials φ up to degree 2α + 1 and a constant C > 0.

For example, for the Euler-Maruyama method, Theorem 4.17 is true with α = 1

(see beginning of Section 4.3). Using Taylor series expansions we show that this is
also true for the Symplectic Euler, Geometric Langevin and BAOAB methods.

Firstly, let (XSE
1 , USE

1 ) be the Symplectic Euler approximation to the exact solu-
tion (X(h), U(h)) of the inhomogeneous model after one timestep as described by
equations (3.1) and (3.2). Denote by (XEM

1 , UEM
1 ) the corresponding approximation

for the Euler - Maruyama method. Our result for the Symplectic Euler method is then
summarised in the following theorem.

Corollary 4.18. If the Euler-Maruyama method applied to SDEs (2.7) and (2.8) con-

verges with a weak error of order 1 then the weak error of the Symplectic Euler method,
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applied to the same equations, also converges with at least order 1.

Proof . Let φ be a polynomial as in Theorem 4.17. For the Symplectic Euler method
we have

∣∣E [φ(X(h), U(h))]− E
[
φ(XSE

1 , USE
1 )
]∣∣ = |E [φ(X(h), U(h))]

− E
[
φ(X0 + USE

1 h, USE
1 )
]∣∣ , (4.60)

and since the only difference that Euler-Maruyama has, is that it usesXEM
1 = X0+U0h

instead of XSE
1 = X0 +USE

1 h we apply a Taylor series expansion on the first argument
of φ(X0 + USE

1 h, USE
1 ). This gives

φ(X0 + USE
1 h, USE

1 ) = φ(X0 + [(1− λ(X0)h)U0 −
∂V

∂X
(X0, U0)h+ σ(X0)

√
hξ0]h, USE

1 )

= φ(X0 + U0h− λ(X0)U0h
2 − ∂V

∂X
(X0, U0)h2 + σ(X0)h

3
2 ξ0, U

SE
1 )

= φ(X0 + U0h, U
SE
1 )

+
∂φ

∂X
(X0 + U0h, U

SE
1 )(−λ(X0)U0h

2 − ∂V

∂X
(X0, U0)h2 + σ(X0)h

3
2 ξ0)

+ higher order terms.

Since we are interested in expectations we can neglect all higher order terms since
they either have a mean zero or they are of order higher than h2. Substituting in (4.60)
and using the fact that USE

1 = UEM
1 , we obtain

∣∣E [φ(X(h), U(h))]− E
[
φ(XSE

1 , USE
1 )
]∣∣ = |E [φ(X(h), U(h))]

− E
[
φ(X0 + U0h, U

SE
1 )
]

+O(h2)
∣∣

≤ |E [φ(X(h), U(h))]

− E
[
φ(X0 + U0h, U

SE
1 )
]∣∣+O(h2)

= |E [φ(X(h), U(h))]

− E
[
φ(XEM

1 , UEM
1 )
]∣∣+O(h2).

If the Euler-Maruyama method converges weakly with order 1 we have

∣∣E [φ(X(h), U(h))]− E
[
φ(XEM

1 , UEM
1 )
]∣∣ ≤ CEMh2, (4.61)
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for some constant CEM > 0 which implies

∣∣E [φ(X(h), U(h))]− E
[
φ(XSE

1 , USE
1 )
]∣∣ = O(h2), (4.62)

and completes the proof by using Theorem 4.17.

The same approach as in Corollary 4.18 but with harder algebra also works for
Geometric Langevin and BAOAB. See Appendix A.3 for the Geometric Langevin
method.

Our conclusion is that for a system of SDEs with Lipschitz continuous, sufficiently
smooth and polynomially bounded coefficients we have that our timestepping methods
converge with a weak error of order 1 (since the Euler-Maruyama does (Kloeden and
Platen, 2011)). As a result, by rejecting any exploding trajectories as described in
Milstein and Tretyakov (2005) we can guarantee the convergence of our timestepping
methods when applied to the inhomogeneous model. First order weak convergence
will also be used in Section 5.3.2 in the derivation of the modified equations (Shardlow,
2006), (Zygalakis, 2011).

4.4 A simple numerical experiment with the
Symplectic Euler method

Next, we present some simple numerical experiments to demonstrate that for our in-
homogeneous model and values of U(0) which are physically valid, it is very unlikely
that the approximation of U(t) becomes large. Also, to show that it is possible to have
explosive behaviour in extreme cases, we present an experiment with an unphysically
large value of U(0). Although the explosive behaviour that we observe might not be
related to the discussion of Section 4.3.1 and it is simply related to instability, i.e. the
timestep size is not small enough for the given U(0), we still present this experiment
to show that it is unlikely to have any problems with our set of parameters.

We always use the Symplectic Euler method and the inhomogeneous model param-
eters κσ = 1.3, κτ = 0.5, u∗ = 0.2, H = 1, εreg = 0.01km, T = 1 and X(0) = 0.05.
The value of U(0) depends on the experiment. Denote by U (i)

n the approximation of
the ith trajectory at time tn = nh.

For our first experiment we compute the maximum and minimum values of Un
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on every timestep for 1000 trajectories. We use two different timestep sizes and a
physically valid, large value of U(0) which equals 10 in this case. For the timestep
h = 1/(40 · 24) = 1.5625 · 10−3 we obtain

min
1≤i≤1000,0≤n≤T/h

U (i)
n = −6.56, max

1≤i≤1000,0≤n≤T/h
U (i)
n = 10, (4.63)

and for h = 1/(40 · 26) = 3.90625 · 10−4 we obtain

min
1≤i≤1000,0≤n≤T/h

U (i)
n = −7.32, max

1≤i≤1000,0≤n≤T/h
U (i)
n = 10.01. (4.64)

We observe that in both cases the absolute value of U (i)
n does not become large and

is of the order of U(0). Therefore, a relatively small value of R will be enough to
guarantee weak convergence of the method for this choice of parameters.

In our numerical experiments in Chapter 6, we use a smaller value for U(0) (= 0.1)

and as a result it is even more unlikely that Un becomes large after time T = 1. No
explosive behaviour is observed and therefore we do not check whether any trajectory
goes outside some set S̃(R). Also, we assume that the methods converge with weak
order 1 as suggested by the numerical experiments.

However, starting with a large value of U(0) can lead to instability. This is indeed
the case for U(0) = 2000 and h = 1/(40 · 24) = 1.5625 · 10−3. As can be seen in
Figure 4-3, this happens very soon and after just 4 timesteps. The main reason for this
behaviour is that in the Euler step

Un+1 =

(
1− 1

τ(Xn)
h

)
Un +

1

2

[
1 +

(
Un

σU(Xn)

)2
]
∂σ2

U

∂X
(Xn)h+

√
2σ2

U(Xn)

τ(Xn)

√
hξn,

(4.65)

Xn+1 = Xn + Un+1h, (4.66)

we compute Un+1 by taking the square of Un and if the timestep h which multiplies
U2
n is not small enough then the approximation becomes large very quickly. The value

of Un continues to increase and after some point, all the computational time is spent
by the particles reflecting within the boundary layer.

By reducing the timestep size to h = 1/(40 · 26) = 3.90625 · 10−4 results in
no instability after time T = 1 (i.e. the approximation does not become large very
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Figure 4-3: Explosive behaviour for large U0 (= 2000)

quickly). However reducing the timestep size cannot guarantee a stable approximation
since with the Gaussian random variables there is always a probability (although very
small) that the random increment of equation (4.65) can lead to a large increase in the
value of Un+1. If this increase requires a smaller timestep size then we have instability
again. Therefore, by rejecting any trajectories that exceed a certain value can guarantee
a stable solution.

Our conclusion is that for small and physical values of U(0) (< 10) it is very
unlikely that any trajectories will have large values and the method from Milstein and
Tretyakov (2005) has little effect on the results. In addition, in Chapter 6, with the
given choice of model parameters and initial conditions we can see based on numerical
results that it is reasonable to assume a first order weak convergence without checking
for any exploding trajectories. For larger values of U(0) however and if h is not small
enough, we have evidence that the approximation could become large and therefore
checking for explosive trajectories becomes very important.
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Chapter 5

MLMC and the application of the
Complexity Theorem

Our next topic is to study the theoretical application of Theorem 3.1 (complexity theo-
rem, Giles (2008)) to the one-dimensional models that will enable us to determine the
conditions under which the MLMC method gives a better asymptotic cost rate when
compared to StMC.

We begin from the homogeneous model and present a direct approach for this
application to a problem without reflection. We continue by presenting the theoret-
ical analysis of a new treatment of reflective boundary conditions that preserves the
quadratic MLMC variance decay which is one of the most important and hardest to
show requirements of Theorem 3.1. With this new algorithm that verifies numerically
Theorem 3.1, we then describe how a modified equations approach (Shardlow, 2006),
(Zygalakis, 2011) (Müller et al., 2015) can be used to show the theoretical application
to the inhomogeneous model.

Finally, we discuss how we deal with the discontinuity of the indicator function
in the concentration problem. This discontinuity causes an increase in the variance
which reduces the performance of the MLMC. Therefore, it becomes necessary to
find a suitable approximation and our approach is to use smoothing poynomials (Giles
et al., 2015), (Giles et al., 2017).

Some of these results have already been published in Katsiolides et al. (2018). To
the best of our knowledge this is the first time that the theoretical application of Theo-
rem 3.1 (complexity theorem, Giles (2008)) is studied for a problem from atmospheric
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dispersion modelling.

5.1 Homogeneous model

Firstly, we prove that the conditions of Theorem 3.1 hold for the simplified model
and the Geometric Langevin method without boundary conditions using a uniform
timestep. For the problem with reflection, the application will follow with the special
boundary conditions treatment described later in Section 5.2. Also, without boundary
conditions the homogeneous model is a simple Ornstein-Uhlenbeck process for which
a well-defined exact solution exists. We do not include any results for the other two
timestepping methods since the simplified model is not the main focus of this thesis.

As a quantity of interest we take the mean particle position so in the notation used
in Section 3.2 we have that P = X(T ). We use the index (f) to denote the fine
step approximations and the index (c) to denote the coarse step approximations. From
the simplified model equations (2.13), (2.14) and the discretisation method equations
(3.8), (3.9) and (3.10) we have that on level l and n even the fine step becomes

U
(f)
n+1 = e−λhlU (f)

n + σαhlξn, (5.1)

X
(f)
n+1 = X(f)

n + U
(f)
n+1hl, (5.2)

and the coarse step

U
(c)
n+2 = e−2λhlU (c)

n + σα2hlξ
?
n, (5.3)

X
(c)
n+2 = X(c)

n + U
(c)
n+22hl, (5.4)

with αh =
√

1−e−2λh

2λ
, ξn ∼ Normal(0, 1) i.i.d. and ξ?n = rξn+ξn+1√

r2+1
. Also let r = e−λhl .

The fine and coarse steps have the same initial conditions so

X
(f)
0 = X

(c)
0 , U

(f)
0 = U

(c)
0 . (5.5)

Lemma 5.1. If the product λhl is small enough then conditions (i)− (iv) of Theorem

3.1 hold for the simplified model and the Geometric Langevin method.

Proof . The Geometric Langevin method, applied to the simplified model, is a first
order method (Bou-Rabee and Owhadi, 2010) which implies that condition (i) fol-

66



lows. Clearly, condition (ii) follows from the definition of the MLMC method and
the linearity of expectation. Also, we know that the cost on each level is proportional
to the number of samples multiplied with the number of timesteps (since the cost per
timestep is fixed) and therefore condition (iv) follows. It only remains to prove that
condition (iii) holds, i.e.

V ar[Ŷl,Nl ] ≤ CN−1
l h2

l ,

for some positive constant C.
From equation (5.2),

X
(f)
n+2 = X(f)

n +
(
U

(f)
n+1 + U

(f)
n+2

)
hl, (5.6)

which implies using equation (5.4)

X
(f)
n+2 −X

(c)
n+2 = X(f)

n −X(c)
n +

(
U

(f)
n+1 + U

(f)
n+2 − 2U

(c)
n+2

)
hl. (5.7)

From equation (5.1),

U
(f)
n+2 = r

(
rU (f)

n + σ

√
1− r2

2λ
ξn

)
+ σ

√
1− r2

2λ
ξn+1 (5.8)

= r2U (f)
n + σr

√
1− r2

2λ
ξn + σ

√
1− r2

2λ
ξn+1, (5.9)

which implies using equation (5.3)

U
(f)
n+2 − U

(c)
n+2 = r2U (f)

n + σ

√
1− r2

2λ
(rξn + ξn+1)− r2U (c)

n − σ
√

1− r4

2λ

rξn + ξn+1√
r2 + 1

= r2U (f)
n + σ

√
1− r2

2λ
(rξn + ξn+1)− r2U (c)

n − σ
√

1− r2

2λ
(rξn + ξn+1)

= r2
(
U (f)
n − U (c)

n

)
= rn+2

(
U

(f)
0 − U (c)

0

)
(by induction)

= 0.
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Therefore, equation (5.7) now becomes

X
(f)
n+2 −X

(c)
n+2 = X(f)

n −X(c)
n +

(
U

(f)
n+1 − U

(c)
n+2

)
hl

= X
(f)
0 −X(c)

0 + hl

n
2∑

m=0

(
U

(f)
n−2m+1 − U

(c)
n−2m+2

)
(by induction)

= hl

n
2∑

m=0

(
U

(f)
n−2m+1 − U

(c)
n−2m+2

)
(sinceX(f)

0 = X
(c)
0 ). (5.10)

In order to evaluate the above sum we firstly compute the difference U (f)
n+1 − U

(c)
n+2.

From equation (5.1)

U
(f)
n+1 = r2U

(f)
n−1 + σαhl (rξn−1 + ξn)

= rn+1U
(f)
0 + σαhl

n∑
k=0

rn−kξk

= rn+1U
(f)
0 + σαhl

n
2
−1∑

k=0

(
rn−2kξ2k + rn−2k−1ξ2k+1

)
+ σαhlξn.

From equation (5.3)

U
(c)
n+2 = r4U

(c)
n−2 + σα2hl

(
r2ξ?n−2 + ξ?n

)
= rn+2U

(c)
0 + σα2hl

n
2∑

k=0

r2(n
2
−k)ξ?2k

= rn+2U
(c)
0 + σα2hl

n
2∑

k=0

r2(n
2
−k) rξ2k + ξ2k+1√

r2 + 1

= rn+2U
(c)
0 + σ

√
1− r2

2λ

n
2∑

k=0

rn−2k (rξ2k + ξ2k+1)

= rn+2U
(c)
0 + σαhl

n
2∑

k=0

(
rn−2k+1ξ2k + rn−2kξ2k+1

)
.

Subtracting the last two equations for U (f)
n+1 and U (c)

n+2 we get

U
(f)
n+1 − U

(c)
n+2 = rn+1U

(f)
0 − rn+2U

(c)
0
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+ σαhl

n
2
−1∑

k=0

[(
rn−2k − rn−2k+1

)
ξ2k +

(
rn−2k−1 − rn−2k

)
ξ2k+1

]
+ σαhlξn − σαhlrξn − σαhlξn+1

= rn+1U
(f)
0 − rn+2U

(c)
0

+ σαhl

n
2
−1∑

k=0

[
rn−2k(1− r)ξ2k + rn−2k−1(1− r)ξ2k+1

]
+ σαhl(1− r)ξn − σαhlξn+1

= rn+1U
(f)
0 − rn+2U

(c)
0

+ σαhl

(1− r)
n
2
−1∑

k=0

(
rn−2kξ2k + rn−2k−1ξ2k+1

)
+ (1− r)ξn − ξn+1

 .
Substituting in equation (5.10) now gives

X
(f)
n+2 −X

(c)
n+2 = hl

n
2∑

m=0

[
rn−2m+1U

(f)
0 − rn−2m+2U

(c)
0

+ σαhl
[
(1− r)

n
2
−m−1∑
k=0

(rn−2m−2kξ2k + rn−2m−2k−1ξ2k+1)

+ (1− r)ξn−2m − ξn−2m+1

] ]
,

and taking the variance

V ar
(
X

(f)
n+2 −X

(c)
n+2

)
= h2

l σ
2α2

hl
V ar

 n
2∑

m=0

[
(1− r)

n
2
−m−1∑
k=0

(rn−2m−2kξ2k + rn−2m−2k−1ξ2k+1)

+ (1− r)ξn−2m − ξn−2m+1

] 
= h2

l σ
2α2

hl

[
V ar

 n
2∑

m=0

[
(1− r)

n
2
−m−1∑
k=0

rn−2m−2kξ2k + (1− r)ξn−2m

]
+ V ar

 n
2∑

m=0

[
(1− r)

n
2
−m−1∑
k=0

rn−2m−2k−1ξ2k+1 − ξn−2m+1

]]
(by independence of even and odd indexed random variables)
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= h2
l σ

2α2
hl

[
V ar

 n
2∑

m=0

[
(1− r)

n
2
−m∑
k=0

rn−2m−2kξ2k

]
︸ ︷︷ ︸

A

+ V ar

 n
2∑

m=0

[
(1− r)

n
2
−m−1∑
k=0

rn−2m−2k−1ξ2k+1 − ξn−2m+1

]
︸ ︷︷ ︸

B

]
.

Let us firstly consider sum A which contains all the even indexed random variables.
By the construction of the sum and for a fixed integer l we can write the coefficient
of ξ2l as (1 − r)f2l(r) where f2l(r) is a polynomial of r of degree at most n and with
coefficients 1, 0 or −1. Similarly, for the sum B we can write the coefficient of ξ2l+1

as (1− r)f2l+1(r)− 1. Therefore, V ar
(
X

(f)
n+2 −X

(c)
n+2

)
can be written as

V ar
(
X

(f)
n+2 −X

(c)
n+2

)
= h2

l σ
2α2

hl

[
V ar

(1− r)
n
2∑
l=0

f2l(r)ξ2l


+ V ar

 n
2∑
l=0

[
(1− r)f2l+1(r)− 1

]
ξ2l+1

]

= h2
l σ

2α2
hl

[
(1− r)2

n
2∑
l=0

(f2l(r))
2 +

n
2∑
l=0

[
(1− r)f2l+1(r)− 1

]2
]

(by independence)

≤ h2
l σ

2α2
hl

[
(1− r)2

n
2∑
l=0

(f2l(r))
2 +

n
2∑
l=0

[
2(1− r)2(f2l+1(r))2 + 2

]]
.

By the triangle inequality we have that |fl(r)| ≤
∑n

k=0 r
k = 1−rn+1

1−r which implies that

V ar
(
X

(f)
n+2 −X

(c)
n+2

)
≤ h2

l σ
2α2

hl

[
(1− r)2

n
2∑
l=0

(1− rn+1

1− r

)2

+

n
2∑
l=0

[
2(1− r)2

(1− rn+1

1− r

)2

+ 2
]]

= h2
l σ

2α2
hl

(n
2

+ 1
) [

(1− rn+1)2 + 2(1− rn+1)2 + 2
]
.

(5.11)
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Let F (r) = (1− rn+1)2 + 2(1− rn+1)2 + 2. We have that 0 ≤ r = e−λhl ≤ 1 which
implies that F (r) ≤ C̃ for some positive constant C̃. We can then write inequality
(5.11) as

V ar
(
X

(f)
n+2 −X

(c)
n+2

)
≤ h2

lα
2
hl
σ2C̃

(n
2

+ 1
)

= C̃σ2h2
l

n+ 2

2

1− e−2λhl

2λ
. (5.12)

For condition (iii) of Theorem 3.1 we need to compute V ar[Ŷl,Nl ] and from above
we have

V ar[Ŷl,Nl ] = N−1
l V ar[Pl − Pl−1]

= N−1
l V ar

(
X

(f)
Ml
−X(c)

Ml

)
≤ N−1

l C̃σ2h2
l

Ml

2

1− e−2λhl

2λ

= N−1
l C̃σ2h2

l

Th−1
l

2

1− e−2λhl

2λ

= N−1
l

C̃σ2T

2

1− e−2λhl

2λ
hl,

where Ml = T/hl is the total number of timesteps on level l.
For small λhl, expanding the exponential gives

V ar[Ŷl,Nl ] ≤ N−1
l

C̃σ2T

2
h2
l + higher order terms, (5.13)

which proves condition (iii) and therefore completes the proof of Theorem 3.1. How-
ever if λhl � 1 then 1−e−2λhl is of order 1 so the variance is bounded by aO(h) term
and does not necessarily decay with a quadratic rate.

In Figure 5-1 we demonstrate numerically the results from Lemma 5.1. We use
the MLMC method with L = 5 number of levels. For the homogeneous model we
use λ = 500, σ = 1 and T = 1 and we vary the size of M0. Since at level l the fine
timestep equals hl = T

M02l
we would expect from the proof of Lemma 5.1 that as M0

increases the variance rates will become quadratic. Indeed this is what we observe and
when M0 is small the variance rates are linear and as we increase M0 they become
quadratic.
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Figure 5-1: Variance rates with large λ (= 500)

5.2 Boundary conditions treatment

In Section 2.3 we introduced the models’ boundary conditions and after defining our
timestepping methods we can plot some particle trajectories and study the effect of re-
flection in the MLMC method. In Figure 5-2 we plot 50 trajectories using the Geomet-
ric Langevin method and the inhomogeneous model with U(0) = 0.1, X(0) = 0.05,
T = 1, M0 = 10 and L = 5. The boundary conditions are as in equations (2.26)
and (2.27) and if the approximation Xn at time tn becomes negative we replace both
Xn and Un with −Xn and −Un respectively. Similarly if Xn becomes larger than H
we replace both Xn and Un with 2H − Xn and −Un respectively. From the plot we
observe that the particles stay away from the top boundary because T is not very large.

The problem that now arises with reflection is that it is harder to keep the fine
and coarse paths of a level of the MLMC method together since some particles are
reflected and others do not. This leads to a reduction of the MLMC variance rates
and a violation of condition (iii) in Theorem 3.1. In Figure 5-3 we plot the variance
rates for the Symplectic Euler method which are not quadratic and are even worse than
linear due to the incorrect coupling between fine and coarse paths. Therefore, before
we study theoretically under which conditions Theorem 3.1 holds for the full model
with reflection, it is necessary to construct an algorithm which gives a quadratic decay
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in the MLMC variance.
To recover quadratic rates and the correct coupling between fine and coarse paths

we apply a new special treatment on the boundaries. This new methodology has also
been published in Katsiolides et al. (2018). The key idea is to extend the domain of X
to the whole real line and make it equivalent to a problem without boundary conditions.
We firstly explain this idea for one reflective boundary and in Section 5.2.3 we show
that the same treatment works for both boundaries by considering periodic extensions.

We begin by formulating an extended SDE in the variables X̃ and Ũ which is
related to the initial one by (

U

X

)
= S(X̃)

(
Ũ

X̃

)
, (5.14)

where S( ˜X(t)) = (−1)number of reflections up to time t = sign(X̃(t)). In particular, for the
general SDE problem

dU(t) = a(X(t), U(t))dt+ b(X(t))dW (t),

dX(t) = U(t)dt,
(5.15)

for some functions a and b with reflection only at X = 0, the extended SDE problem
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is
dŨ(t) = A(X̃(t), Ũ(t))dt+B(X̃(t))dW (t),

dX̃(t) = Ũ(t)dt,
(5.16)

where

A(X̃(t), Ũ(t)) =

a(X̃(t), Ũ(t)) if X̃(t) ≥ 0,

−a(−X̃(t),−Ũ(t)) if X̃(t) < 0,
(5.17)

and

B(X̃(t)) =

b(X̃(t)) if X̃(t) ≥ 0,

b(−X̃(t)) if X̃(t) < 0.
(5.18)

The relation in (5.14) between X(t) and X̃(t) is also illustrated in Figure 5-4.
Having formulated the extended SDE makes it now possible to solve these new

equations and then reconstruct the variables U(t) and X(t) using equation (5.14).
However, after some analysis that we present below, it turns out that this is not nec-
essary and you only need to multiply the random variables by a special coefficient in
order to make the initial problem equivalent to the extended problem.
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5.2.1 Boundary conditions treatment analysis

Here, we present the analysis for the Symplectic Euler method as in Katsiolides et al.
(2018) and in Section 5.2.4 we present the analysis for the Geometric Langevin and
BAOAB methods. Firstly, we derive some relations between the extended and the
original variables and the SDEs in equations (5.15) and (5.16). Discretising equation
(5.14) gives (

Un

Xn

)
= Sn

(
Ũn

X̃n

)
, (5.19)

where Sn = (−1)number of reflections up to time tn . Using this in equations (5.17) and (5.18),
we obtain

A(X̃n, Ũn) = Sna(SnX̃n, SnŨn) = Sna(Xn, Un), B(X̃n) = b(SnX̃n) = b(Xn).

(5.20)

For a fine path on MLMC level with timestep size h, the Symplectic Euler method
applied to the extended model in equation (5.16) gives

Ũn+1 = Ũn + A(X̃n, Ũn)h+B(X̃n)
√
hξ̃n,

X̃n+1 = X̃n + Ũn+1h,
(5.21)
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where ξ̃n ∼ Normal(0, 1) i.i.d. If we replace (Ũn, X̃n) by (Un, Xn) using equation
(5.19) gives the following equations with the original variables Un and Xn

S
(f)
n+1Un+1 = S(f)

n Un + S(f)
n a(Xn, Un)h+ b(Xn)

√
h ξ̃(f)

n ,

S
(f)
n+1Xn+1 = S(f)

n Xn + S
(f)
n+1 Un+1 h,

(5.22)

The superscript (f) and later (c) is used in order to distinguish between fine and coarse

MLMC steps. Multiplying both sides by
(
S

(f)
n+1

)−1

= S
(f)
n+1 and defining s

(f)
n+1 =

S
(f)
n+1S

(f)
n , the timestepping scheme becomes

Un+1 = s
(f)
n+1

(
Un + a(Xn, Un)h+ b(Xn)

√
hS(f)

n ξ̃(f)
n

)
,

Xn+1 = s
(f)
n+1

(
Xn + s

(f)
n+1 Un+1 h

)
.

(5.23)

Note that s(f)
n+1 equals −1 if there is a reflection between time tn and tn+1 or 1 other-

wise. Going back to the original SDEs in equation (5.15), discretising and implement-
ing the reflection would give

Un+1 = s
(f)
n+1

(
Un + a(Xn, Un)h+ b(Xn)

√
h ξ(f)

n

)
,

Xn+1 = s
(f)
n+1

(
Xn + s

(f)
n+1 Un+1 h

)
,

(5.24)

where ξ(f)
n ∼ Normal(0, 1) i.i.d. and we can now see that the original and extended

discretisations are matched if
ξ(f)
n = S(f)

n ξ̃(f)
n . (5.25)

Since ξ(f)
n and ξ̃(f)

n agree in distribution, it means that in practice we can discretise the
original SDEs and multiply each generated random variable ξ(f)

n by S(f)
n . Similarly, in

the next fine level we multiply the random variable ξ(f)
n+1 by S(f)

n+1. Exactly the same
technique is applied at the coarse step where we use

ξ(c)
n = S(c)

n ξ̃(c)
n . (5.26)

To couple correctly the random variables in the MLMC coarse path of the extended
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Figure 5-5: Symplectic Euler - Boundary Conditions with special treatment
Mean Particle Position

model, the following expression is used (see also equation (3.25))

ξ̃(c)
n =

1√
2

(ξ̃(f)
n + ξ̃

(f)
n+1). (5.27)

Then, by substituting equations (5.25) and (5.26) we can take into account the bound-
ary conditions treatment by replacing equation (3.25) with

ξ(coarse)
n =

S
(c)
n√
2

(
S(f)
n ξn + S

(f)
n+1ξn+1

)
. (5.28)

Since multiplying by S(·)
n = ±1 does not change the distribution of the normal

random variables, no extra bias is added and the telescoping sum (3.22) is preserved.
In Figure 5-5, we present the numerical result after we apply the above treatment

and we observe that the quadratic variance rates are now recovered. For Geometric
Langevin and BAOAB methods, a similar argument gives the same results as we show
in Section 5.2.4.

77



5.2.2 Some comments on the discontinuities

Note that this treatment adds a discontinuity in the extended model since the function
A(X,U) is not continuous in general at X = 0 (since a(0, U) is not always equal to
−a(0,−U) in equation (5.17)). For the inhomogeneous model and the Met Office’s
constant regularisation (equations (2.24) and (2.25)) no discontinuities are introduced
by this treatment since the ∂V

∂X
(X,U) term disappears when X = 0 and the λ(X)U

term stays continuous (in this case a(X,U) = −λ(X)U − ∂V
∂X

(X,U)). However, we
have a discontinuity at X = εreg as shown in Figure 4-1a which is not a result of the
boundary conditions treatment.

The opposite happens with the smooth regularisation described by the equations in
(4.13) which is continuous at X = εreg. The only discontinuity is at X = 0 which is a
result of the boundary conditions treatment. In Section 5.3.2 we describe an alternative
type of smooth regularisation which gives continuous coefficients for both the original
and the extended inhomogeneous models.

In Chapter 6 all our numerical results are done by using the Met Office’s constant
regularisation (equations (2.24) and (2.25)) and we didn’t observe any problems due
to the discontinuities. A theoretical study of the effect of these discontinuities can be
a topic for future research. Finally, in Figure 5-6 we plot the extended inhomogeneous
model coefficients with the Met Office’s constant regularisation.

5.2.3 Reflection at the top boundary

For the top boundary reflection we consider periodic extensions of the domain. For
X ∈ R, let

θ(X) = 2n if X ∈ [(2n− 1)H, (2n+ 1)H), n ∈ Z,

η(X) = X − θ(X)H.

Then, similarly to equations (5.17) and (5.18) we define the extended coefficients as

A(X̃(t), Ũ(t)) =

a(η(X̃(t)), Ũ(t)) if η(X̃(t)) ≥ 0,

−a(−η(X̃(t)),−Ũ(t)) if η(X̃(t)) < 0,
(5.29)
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Figure 5-6: Extended inhomogeneous model coefficients
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and

B(X̃(t)) =

b(η(X̃(t))) if η(X̃(t)) ≥ 0,

b(−η(X̃(t))) if η(X̃(t)) < 0.
(5.30)

It is now easy to see that η(X) reduces the problem to the case of reflecting only at
X = 0 since this function brings X to the interval [−H,H]. Therefore, the same
analysis applies and no further changes are required in equations (5.28) and (5.41)
where S(·)

n now counts reflections at both boundaries.

5.2.4 Boundary conditions treatment for Geometric Langevin
and BAOAB

Since Geometric Langevin and BAOAB are specialised methods for the Langevin
equation we firstly consider an extended inhomogeneous turbulence model. This model
will have the form of a Langevin equation. Again, we consider reflection only at the
lower boundary and the top boundary treatment follows from periodic extensions as in
Section 5.2.3. The results for the splitting methods form an extension of the analysis
presented in Section 5.2.1.

The extended inhomogeneous turbulence model

Following the previous notation we can write the extended SDE coefficients in equa-
tions (5.17) and (5.18) as

A(X̃(t), Ũ(t)) = S(X̃(t))a(S(X̃(t))X̃(t), S(X̃(t))Ũ(t)), (5.31)

B(X̃(t)) = b(S(X̃(t))X̃(t)). (5.32)

For the inhomogeneous turbulence model we have

a(X,U) = −λ(X)U − ∂V

∂X
(X,U), b(X) = σ(X), (5.33)
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so the extended inhomogeneous turbulence model is

dŨ(t) =− λ(S(X̃(t))X̃(t))Ũ(t)dt− S(X̃(t))
∂V

∂X

(
S(X̃(t))X̃(t), S(X̃(t))Ũ(t)

)
dt

+ σ
(
S(X̃(t))X̃(t)

)
dW (t), (5.34)

dX̃(t) = Ũ(t)dt. (5.35)

Geometric Langevin

Firstly we consider the reflection treatment for the Geometric Langevin timestepping
method. Since the extended inhomogeneous turbulence model equations (5.34) and
(5.35) have the form of a Langevin equation, we can apply directly the Geometric
Langevin discretisation scheme given by equations (3.8), (3.9) and (3.10). This gives

Ũ?
n+1 = e−λ(SnX̃n)hŨn + σ(SnX̃n)ah(SnX̃n)ξ̃n,

Ũn+1 = Ũ?
n+1 − Sn

∂V

∂X

(
SnX̃n, SnŨ

?
n+1

)
h,

X̃n+1 = X̃n + Ũn+1h,

where ah(SnX̃n) =
√

1−e−2λ(SnX̃n)h

2λ(SnX̃n)
and ξ̃n ∼ Normal(0, 1). This scheme can also be

written as

Ũn+1 = e−λ(SnX̃n)hŨn − Sn
∂V

∂X

(
SnX̃n, Sn

[
e−λ(SnX̃n)hŨn + σ(SnX̃n)ah(SnX̃n)ξ̃n

])
h

+ σ(SnX̃n)ah(SnX̃n)ξ̃n,

X̃n+1 = X̃n + Ũn+1h.

Using equation (5.19),

Sn+1Un+1 = e−λ(Xn)hSnUn − Sn
∂V

∂X

(
Xn, Sn

[
e−λ(Xn)hSnUn + σ(Xn)ah(Xn)ξ̃n

])
h

+ σ(Xn)ah(Xn)ξ̃n,

Sn+1Xn+1 = SnXn + Sn+1Un+1h.

Letting sn+1 = Sn+1Sn we obtain the Geometric Langevin discretisation scheme for
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the extended model

Un+1 = sn+1

[
e−λ(Xn)hUn −

∂V

∂X

(
Xn, e

−λ(Xn)hUn + σ(Xn)ah(Xn)Snξ̃n

)
h

+ σ(Xn)ah(Xn)Snξ̃n

]
, (5.36)

Xn+1 = sn+1 (Xn + sn+1Un+1h) . (5.37)

Note that sn+1 equals −1 if there is a reflection between time tn and tn+1 or 1 other-
wise.

The Geometric Langevin discretisation scheme for the original model with reflec-
tion is given by

Un+1 = sn+1

[
e−λ(Xn)hUn −

∂V

∂X

(
Xn, e

−λ(Xn)hUn + σ(Xn)ah(Xn)ξn
)
h+ σ(Xn)ah(Xn)ξn

]
,

(5.38)

Xn+1 = sn+1 (Xn + sn+1Un+1h) , (5.39)

where ξn ∼ Normal(0, 1).
Comparing equations (5.36), (5.37) with equations (5.38), (5.39) we can see that

the original and extended discretisations are matched if

ξn = Snξ̃n, (5.40)

which is the same as in the case of Symplectic Euler method. Then, by following
the same analysis as in Section (5.2.1) and by considering the fine and coarse MLMC
steps (and the same arguments after equation (5.25)) we deduce that the same treat-
ment works for the Geometric Langevin method. Therefore, we only need to replace
equation (3.26) with

ξ(coarse)
n = S(c)

n

e−λ(Xn)hS
(f)
n ξn + S

(f)
n+1ξn+1√

e−2λ(Xn)h + 1
, (5.41)

where S(f)
n and S(c)

n count reflections on the fine and coarse steps respectively.
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BAOAB

As in the Geometric Langevin case, we can discretise directly the extended inhomo-
geneous model using the BAOAB method given by equations (3.12) - (3.16). This
gives

Ũn+ 1
2

= Ũn − Sn
∂V

∂X
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SnX̃n, SnŨn

) h
2
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2

h

2
,

Ũ?
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2
,

where ξ̃n ∼ Normal(0, 1). Using equation (5.19) it becomes
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These equations now imply
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The discretisation scheme for the original model with reflection is
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where ξn ∼ Normal(0, 1).
Comparing the discretisation schemes for the original and extended models we can

see that they are matched if
ξn = Sn+ 1

2
ξ̃n. (5.42)

The variable Sn+ 1
2

counts the number of reflections just before the Ornstein-Uhlenbeck
step. Equation (5.42) was also derived in the Geometric Langevin case and implies that
the same treatment works. Therefore, we use the random variable

ξ(coarse)
n = S(c)

n

e−λ(Xn)hS
(f)
n ξn + S

(f)
n+1ξn+1√

e−2λ(Xn)h + 1
, (5.43)

for the MLMC coarse step.

5.2.5 Some final comments

As a final note in the boundary conditions treatment section, we briefly discuss a prob-
lem that might appear when discretising SDEs with reflection, as described in Ramli
and Esler (2016). The authors of Ramli and Esler (2016) studied a problem aris-
ing with reflective boundary conditions when timestepping methods with intermediate
steps (like for example Geometric Langevin and BAOAB) are used to discretise the
inhomogeneous model equations (2.7) and (2.8). In particular, when the timestep size
was not small enough, some errors due to reflective boundary conditions arised that
dominated the discretisation and sampling errors of their higher order schemes that
involve intermediate timesteps.
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Since this problem was about timestepping methods with intermediate steps, it is
possible that it might also affect our timestepping methods and in particular Geometric
Langevin and BAOAB. In order to solve this issue, a simple method is described in
Ramli and Esler (2016). Firstly, at the start of each timestep, the domain of X is
extended to (−∞,∞) by repeated reflection of σU(x) and τ(x). All intermediate
steps are then completed in the extended domain and at the end of the full timestep
the particle is taken back in [0, 1] using reflection as described in the first paragraph
of Section 5.2. This treatment then removes any problems with reflective boundary
conditions.

In our numerical experiments we did not observe this issue when using any of
the two timestepping methods and therefore it was not necessary to apply the method
described in Ramli and Esler (2016). Further investigation however on this problem
and how it affects MLMC performance can be a topic for future work.

5.3 Inhomogeneous model and the complexity
theorem

We now study the theoretical application of Theorem 3.1 (complexity theorem, Giles
(2008)) to the inhomogeneous model with reflection and in particular to the extended
model as described in Section 5.2. A direct approach to apply Theorem 3.1 as we did
for the homogeneous model in Section 5.1 is very difficult and challenging due to the
fact that the inhomogeneous model is a non-linear SDE. Here, we study an alternative
approach based on the theory of modified equations (Shardlow, 2006), (Zygalakis,
2011) and their application to the MLMC method. As described in Müller et al. (2015),
modified equations provide an alternative method to check whether the conditions of
Theorem 3.1 hold which does not directly rely on strong approximation results.

5.3.1 Modified equations and the complexity theorem

We begin by defining the modified equations (Shardlow, 2006), (Zygalakis, 2011).
Consider the general SDE

dX(t) = f(X(t))dt+G(X(t))dW(t), (5.44)
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with X(t) ∈ Rd, f : Rd → Rd, G : Rd → Rd×m and initial conditions X(0). Suppose
that for some timestepping method (eg Euler method) we can compute a first order
weak approximation XM(M = T/h) of X(T ), i.e.

|E [φ(X(T ))]− E [φ(XM)]| ≤ Ch, (5.45)

for some constant C > 0 and for all suitable test functions φ : Rd → R (this can be
generalised to pth order). Under some conditions (Shardlow, 2006), (Zygalakis, 2011)
it is then possible to compute functions f1 : Rd → Rd and G1 : Rd → Rd×m and
construct a modified SDE

dXh(t) =
(
f(Xh(t)) + hf1(Xh(t))

)
dt+

(
G(Xh(t)) + hG1(Xh(t))

)
dW(t), (5.46)

such that the approximation XM is a second order weak approximation to the exact
solution Xh(t) of (5.46), i.e.

∣∣E [φ(Xh(T ))
]
− E [φ(XM)]

∣∣ ≤ C̃h2, (5.47)

for some constant C̃ > 0 and test functions φ. The functions f1 and G1 depend on the
coefficient functions in equation (5.44) and on the timestepping method.

The most important property of the modified equations is that with a small pertur-
bation of the original SDE we can construct a new system of equations such that the
timestepping method approximates its solution more accurately. This property is one
of the key ideas considered in Müller et al. (2015) in order to provide an alternative
approach for the application of Theorem 3.1.

In particular, in Müller et al. (2015) they consider the following doubled-up system
of SDEs

dX(t) = f(X(t))dt+G(X(t))dW(t), (5.48)

dY(t) = f(Y(t))dt+G(Y(t))dW(t), Y(0) = X(0). (5.49)

The two equations have the same initial conditions and Brownian motion W(t). Equa-
tion (5.48) will be discretised with a timestep size h/2 as in the MLMC fine step and
equation (5.49) will be discretised with a timestep size h as in the MLMC coarse step.
The reason why we discretise with both the fine and coarse schemes is to add informa-
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tion about the random variable coupling (eg equation (3.26) for Geometric Langevin)
in the MLMC coarse step. As we already discussed in Section 3.2.2, the random vari-
able coupling affects property (iii) of Theorem 3.1 (quadratic variance decay rate) and
therefore it is necessary to be taken into account in the proof. Then, following the
technique from Zygalakis (2011) we compute modified equations of the form

dXh(t) =
(
f(Xh(t)) + hf1(Xh(t))

)
dt+

(
G(Xh(t)) + hG1(Xh(t))

)
dW(t),

(5.50)

dYh(t) =
(
f(Yh(t)) + hf2(Yh(t))

)
dt+

(
G(Yh(t)) + hG2(Yh(t))

)
dW(t),

(5.51)

with initial conditions Xh(0) = X(0),Yh(0) = X(0). The functions fi : Rd → Rd

and Gi : Rd → Rd×m for i = 1, 2. Also, let Z(t) = [X(t),Y(t)] be the exact solution
of equations (5.48) and (5.49) and denote its approximation by Zn = [Xn,Yn]. The
following lemma is then proved in Müller et al. (2015) (Lemma 3.3).

Lemma 5.2. For t ∈ [0, T ], let Z(t) satisfy the SDEs (5.48) and (5.49) and let Zh(t) =

[Xh(t),Yh(t)] satisfy the modified equations (5.50) and (5.51). Suppose that

(i) f : Rd → Rd and G : Rd → Rd×m are globally Lipschitz continuous with

Lipschitz constant L > 0.

(ii) There exists C1 > 0 such that, for all h > 0 suffciently small,

E
[∥∥f1(Xh(s))

∥∥2
]
,E
[∥∥G1(Xh(s))

∥∥2

F

]
≤ C1,

E
[∥∥f2(Yh(s))

∥∥2
]
,E
[∥∥G2(Yh(s))

∥∥2

F

]
≤ C1, s ∈ [0, T ],

where ‖·‖F denotes the Frobenius norm.

Then, if ψ : R2d → R is globally Lipschitz continuous, we have for some constant

C2 > 0 independent of h,

E
[∣∣ψ(Z(t))− ψ(Zh(t))

∣∣2] ≤ C2h
2, for t ∈ [0, T ]. (5.52)

As it is noted in Müller et al. (2015), a sufficient condition for the regularity as-
sumptions of Lemma 5.2 to hold, is that the coefficients f , fi, G and Gi are globally
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Lipschitz continuous.
In the next theorem, we can see how the modified equations and the regularity

conditions of Lemma 5.2 can be used to show that Theorem 3.1 holds.

Theorem 5.3. Fix T > 0. Let φ : Rd → R be globally Lipschitz continuous and

infinitely differentiable with polynomially bounded derivatives. Suppose that

(i) Xn and Yn are weak order-α approximations to X(t) for some α > 1/2 (see

also Definition 4.11),

(ii) Zn are second-order weak approximations to Zh(t) and

(iii) the assumptions of Lemma 5.2 hold.

Then Conditions (i) − (iii) of Theorem 3.1 (MLMC complexity theorem) hold with

[P(i)
l ,P(i)

l−1] given by i.i.d. samples of [φ(XMl
), φ(YMl

)] with h = hl and (XMl
,YMl

)

the approximation of (XT ,YT ).

Proof . See Theorem 3.4 in Müller et al. (2015).
The conclusion of Theorem 5.3 is that with the existence of a second-order modi-

fied equation and with some regularity conditions on the SDE coefficients we can prove
that the conditions of Theorem 3.1 hold. Therefore, as a result of Theorem 3.1, we ex-
pect to see a O(ε−2) cost rate for MLMC that improves the corresponding cost rate
of StMC which is O(ε−3) (see Section 3.2.1 for the StMC cost rate). In the next sec-
tion, we apply this modified equations theory to the extended inhomogeneous model
equations (5.34) and (5.35) and study under which conditions Theorem 3.1 holds.

5.3.2 Application to the inhomogeneous model

We are now going to study the application of the modified equations theory to the
extended inhomogeneous model described in Section 5.2. We only consider reflection
at the lower boundary but a similar approach also works for the top boundary. For
convenience we begin by writing down the extended inhomogeneous model as derived
in Section 5.2.4. This is given by

dŨ(t) =− λ(S(X̃(t))X̃(t))Ũ(t)dt− S(X̃(t))
∂V

∂X

(
S(X̃(t))X̃(t), S(X̃(t))Ũ(t)

)
dt

+ σ
(
S(X̃(t))X̃(t)

)
dW (t), (5.53)

dX̃(t) = Ũ(t)dt. (5.54)
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where S(X̃(t)) = (−1)number of reflections up to time t = sign(X̃(t)).
As Theorem 5.3 suggests, we firstly look for second order modified equations of

(5.53) and (5.54) with λ(X), ∂V
∂X

(X,U) and σ(X) defined by (2.9) and (2.10). In
Zygalakis (2011) a general technique for deriving modified equations is described for
SDEs with smooth coefficients. In particular, for a first order timestepping method it is
possible in some cases to derive a second order modified equation (can be generalised
to higher orders).

Looking at equations (5.53) and (5.54) we can easily see that the SDE coefficients
are not smooth and some of them are also discontinuous and the reason for this is the
presence of the function S(X̃(t)) = sign(X̃(t)). To solve this problem we can apply
a special regularisation of the functions σU(X) and τ(X) in the SDE coefficients

λ(X) =
1

τ(X)
, σ(X) =

√
2σ2

U(X)

τ(X)
, (5.55)

∂V (X,U)

∂X
= −1

2

[
1 +

(
U

σU(X)

)2
]
∂σ2

U(X)

∂X
. (5.56)

As described in Section 2.2, regularising the SDE coefficients means to replace them
with some similar functions in order to make sure that the timestepping methods re-
main stable. In addition, it can make the model easier to analyse theoretically. Instead
of using a constant regularisation as the Met Office does (equations (2.24) and (2.25)),
we replace σU(X) and τ(X) with some functions σεreg

U (X) and τ εreg(X) on the intervals
[0, εreg] and [H − εreg, H]. These functions have the following properties

τ(εreg) = τ εreg(εreg),
∂τ

∂X
(εreg) =

∂τ εreg

∂X
(εreg),

∂τ εreg

∂X
(0) = 0, (5.57)

and

σU(εreg) = σ
εreg
U (εreg),

∂σU
∂X

(εreg) =
∂σ

εreg
U

∂X
(εreg), (5.58)

∂σ
εreg
U

∂X
(0) = 0,

∂2σU
∂X2

(εreg) =
∂2σ

εreg
U

∂X2
(εreg), (5.59)

with similar changes for the upper interval. These conditions guarantee that the coeffi-
cients of the extended model are continuously differentiable. If we need continuity for
higher order derivatives then we can just add similar conditions on higher order deriva-
tives of σεreg

U (X) and τ εreg(X). For simplicity we can assume that σεreg
U (X) and τ εreg(X)
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are polynomials of sufficiently high degree and use the above conditions to solve a
simultaneous system of linear equations that will give the polynomial coefficients.

With this choice of regularisation we satisfy the first condition from Zygalakis
(2011) that requires SDEs with smooth coefficients. The second condition is the exis-
tence of a timestepping method which is weakly convergent with order 1. From Kloe-
den and Platen (2011) we know that the Euler-Maruyama method and consequently
all the other methods considered in this thesis as discussed in Section 4.3.2, converge
weakly with order 1 if the SDE coefficients are Lipschitz continuous, satisfy linear
growth and have polynomially bounded derivatives up to order 4. So far we only have
smoothness of the coefficients, but all other requirements will follow if we also ap-
ply the special transformation from Milstein and Tretyakov (2005) given by equation
(4.47) which will give us coefficients with bounded derivarives. The combination of
our special regularisation (according to equations (5.57), (5.58) and (5.59)) with the
transformation from Milstein and Tretyakov (2005) results in SDE coefficients which
are continuously differentiable and bounded up to a sufficiently high degree. As a
result, the SDE coefficients will become Lipschitz continuous (this follows from the
Mean Value Theorem) which means that our timestepping methods converge weakly
with order 1. According to Proposition 4.12, approximating this new regularised SDE
only adds a small error.

For the rest of this chapter we assume that the coefficients of the extended model
equations (5.53) and (5.54) are Lipschitz continuous and have polynomially bounded
derivatives up to order 4. To simplify the notation we rewrite the extended model as

dŪ(t) = −λ̄(X̄(t))Ū(t)dt− ∂V̄

∂X
(X̄(t), Ū(t))dt+ σ̄(X̄(t))dW (t), (5.60)

dX̄(t) = Ū(t)dt, (5.61)

where λ̄, σ̄ and ∂V̄
∂X

take into account all the necessary regularisations and transforma-
tions on the coefficients as discussed above. (X̄(t), Ū(t)) will be the solution of the
extended model after we apply these changes on the coefficients. Finally, we can apply
the analysis from Zygalakis (2011) to compute modified equations of the doubled-up
system

dŪ(t) = −λ̄(X̄(t))Ū(t)dt− ∂V̄

∂X
(X̄(t), Ū(t))dt+ σ̄(X̄(t))dW (t), (5.62)
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dX̄(t) = Ū(t)dt, (5.63)

dū(t) = −λ̄(x̄(t))ū(t)dt− ∂V̄

∂x
(x̄(t), ū(t))dt+ σ̄(x̄(t))dW (t), (5.64)

dx̄(t) = ū(t)dt. (5.65)

The modified equations have the form

dŪ(t) =

(
−λ̄(X̄(t))Ū(t)− ∂V̄

∂X
(X̄(t), Ū(t)) + hv

(Ū)
1 (X̄(t), Ū(t))

)
dt

+
(
σ̄(X̄(t)) + hΣ

(Ū)
1 (X̄(t), Ū(t))

)
dW (t), (5.66)

dX̄(t) =
(
Ū(t) + hv

(X̄)
1 (X̄(t), Ū(t))

)
dt+ hΣ

(X̄)
1 (X̄(t), Ū(t))dW (t), (5.67)

dū(t) =

(
−λ̄(x̄(t))ū(t)− ∂V̄

∂x
(x̄(t), ū(t)) + hv

(ū)
2 (x̄(t), ū(t))

)
dt

+
(
σ̄(x̄(t)) + hΣ

(ū)
2 (x̄(t), ū(t))

)
dW (t), (5.68)

dx̄(t) =
(
ū(t) + hv

(x̄)
2 (x̄(t), ū(t))

)
dt+ hΣ

(x̄)
2 (x̄(t), ū(t))dW (t). (5.69)

Due to the assumptions we have just made, the analysis applies for our three
timestepping methods and the modified equations can be computed using a com-
puter algebra system. Here we give a brief description of the main steps and the
reader is referred to Zygalakis (2011) for the full details. To compute the coeffi-
cients of the modified equations we developed Python code that can be downloaded
from https://bitbucket.org/em459/modified-equations. When the coef-
ficients are computed they are extracted to a LATEX file which can also be found in the
above link. The names of some of the basic classes from this code are used in the
text below in order to explain how the modified equations are computed. Note that the
code can also compute modified equations for a single level timestepping method but
in this thesis we focus only on doubled-up systems of equations. The user can compute
a single system or a doubled-up system of modified equations by either choosing the
class TimestepSinglelevel() or the class TimestepMultilevel().

Following the technique from Zygalakis (2011), the first step is to compute the
generator L0 of the doubled-up system of equations (5.62)-(5.65) (this is done with the
function L0(·) from the Python code). For our SDEs the generator L0 is given by the
following definition
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Definition 5.4. The generator L0 of the doubled-up system of equations (5.62)-(5.65)
is defined by

L0F = −
(
λ̄(X)U +

∂V̄

∂X
(X,U)

)
∂F

∂U
+ U

∂F

∂X
+
σ̄2(X)

2

∂2F

∂U2

−
(
λ̄(x)u+

∂V̄

∂x
(x, u)

)
∂F

∂u
+ u

∂F

∂x
+
σ̄2(x)

2

∂2F

∂u2

+ σ̄(X)σ̄(x)
∂2F

∂U∂u
,

(5.70)

where F (X,U, x, u) is a twice differentiable function.

The second step is to compute the operatorA1 (see Section 3.2 in Zygalakis (2011))
that involves taking the expectation of the Taylor expansion with respect to h of the
function φ(Ū

(f)
2h , X̄

(f)
2h , ū

(c)
2h , x̄

(c)
2h ), for some test function φ. Ū (f)

2h , X̄
(f)
2h are the approx-

imations of Ū(2h), X̄(2h) after two fine steps of size h and ū(c)
2h , x̄

(c)
2h are the approxi-

mations of ū(2h), x̄(2h) after one coarse step of size 2h. Their form depends on the
timestepping method and this is the output of the classes TimestepSymplecticEuler(·),
TimestepGeometricLangevinEuler(·) and TimestepBAOAB(·) as can be seen in the
code. The function A1(·) then takes these approximations and produces the Taylor
expansion.

The third step after computing the generator L0 and operator A1 is to compute
A1φ − 1

2
L2

0φ = A1φ − 1
2
L0(L0φ) (see equation (3.9) in Zygalakis (2011)) and this is

done by the function L1(·) of our Python code.
If we consider the generator Lh0 of the modified SDEs (5.66)-(5.69) (the equivalent

of L0 for (5.62)-(5.65)) we can write (Zygalakis, 2011)

Lh0 = L0 + hL1 + h2L2, (5.71)

for some generators L1,L2 and with L0 as in Definition 5.4. We then have that L1φ =

A1φ − 1
2
L2

0φ and the comparison between L1φ and A1φ − 1
2
L2

0φ gives the modified
equations coefficients which are then extracted to a LATEX file.

For Symplectic Euler, the modified equations coefficients are given by

v
(Ū)
1 (X̄, Ū) =

Ū2

4

dλ̄

dX
(X̄)− Ū

4
λ̄2(X̄)− Ū

4
λ̄(X̄)

∂2V̄

∂U∂X
(X̄, Ū) +

Ū

4

∂2V̄

∂X2
(X̄, Ū)

− 1

4

∂V̄

∂X
(X̄, Ū)λ̄(X̄)− 1

4

∂V̄

∂X
(X̄, Ū)

∂2V̄

∂U∂X
(X̄, Ū)
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+
1

8
σ̄2(X̄)

∂3V̄

∂U2∂X
(X̄, Ū),

v
(X̄)
1 (X̄, Ū) = − Ū

4
λ̄(X̄)− 1

4

∂V̄

∂X
(X̄, Ū),

Σ
(Ū)
1 (X̄, Ū) = − Ū

4

dσ̄

dX
(X̄) +

1

4
λ̄(X̄)σ̄(X̄) +

1

4
σ̄(X̄)

∂2V̄

∂U∂X
(X̄, Ū),

Σ
(X̄)
1 (X̄, Ū) =

1

4
σ̄(X̄),

v
(ū)
2 (x̄, ū) =

ū2

2

dλ̄

dx
(x̄)− ū

2
λ̄2(x̄)− ū

2
λ̄(x̄)

∂2V̄

∂u∂x
(x̄, ū) +

ū

2

∂2V̄

∂x2
(x̄, ū)

− 1

2

∂V̄

∂x
(x̄, ū)λ̄(x̄)− 1

2

∂V̄

∂x
(x̄, ū)

∂2V̄

∂u∂x
(x̄, ū) +

1

4
σ̄2(x̄)

∂3V̄

∂u2∂x
(x̄, ū),

v
(x̄)
2 (x̄, ū) = − ū

2
λ̄(x̄)− 1

2

∂V̄

∂x
(x̄, ū),

Σ
(ū)
2 (x̄, ū) = − ū

2

dσ̄

dx
(x̄) +

1

2
λ̄(x̄)σ̄(x̄) +

1

2
σ̄(x̄)

∂2V̄

∂u∂x
(x̄, ū),

Σ
(x̄)
2 (x̄, ū) =

1

2
σ̄(x̄).

With the computation of the modified equations we now have that for the Symplectic
Euler method the first two conditions from Theorem 5.3 hold. Also, with the assump-
tions made on the coefficients of the original model we have that the newly computed
coefficients of the modified equations are Lipschitz continuous which means that the
final condition from Theorem 5.3 holds. Therefore, we can apply Theorem 3.1 to the
extended inhomogeneous model with the Symplectic Euler timestepping method and
expect to see a O(ε−2) cost rate for MLMC.

For the Geometric Langevin method we obtain similar modified equations coeffi-
cients given by

v
(Ū)
1 (X̄, Ū) =

Ū2

4

dλ̄

dX
¯(X) +

Ū

4
λ̄(X̄)

∂2V̄

∂U∂X
(X̄, Ū) +

Ū

4

∂2V̄

∂X2
(X̄, Ū)

− 1

4

∂V̄

∂X
(X̄, Ū)λ̄(X̄)− 1

4

∂V̄

∂X
(X̄, Ū)

∂2V̄

∂U∂X
(X̄, Ū)

− 1

8
σ̄2(X̄)

∂3V̄

∂U2∂X
(X̄, Ū),

v
(X̄)
1 (X̄, Ū) = − Ū

4
λ̄(X̄)− 1

4

∂V̄

∂X
(X̄, Ū),

Σ
(Ū)
1 (X̄, Ū) = − Ū

4

dσ̄

dX
(X̄)− 1

4
σ̄(X̄)

∂2V̄

∂U∂X
(X̄, Ū),
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Σ
(X̄)
1 (X̄, Ū) =

1

4
σ̄(X̄),

v
(ū)
2 (x̄, ū) =

ū2

2

dλ̄

dx
(x̄) +

ū

2
λ̄(x̄)

∂2V̄

∂u∂x
(x̄, ū) +

ū

2

∂2V̄

∂x2
(x̄, ū)− 1

2

∂V̄

∂x
(x̄, ū)λ̄(x̄)

− 1

2

∂V̄

∂x
(x̄, ū)

∂2V̄

∂u∂x
(x̄, ū)− 1

4
σ̄2(x̄)

∂3V̄

∂u2∂x
(x̄, ū),

v
(x̄)
2 (x̄, ū) = − ū

2
λ̄(x̄)− 1

2

∂V̄

∂x
(x̄, ū),

Σ
(ū)
2 (x̄, ū) = − ū

2

dσ̄

dx
(x̄)− 1

2
σ̄(x̄)

∂2V̄

∂u∂x
(x̄, ū),

Σ
(x̄)
2 (x̄, ū) =

1

2
σ̄(x̄).

Finally, for BAOAB the modified equations coefficients have much fewer terms and
these are given by

v
(Ū)
1 (X̄, Ū) = −1

8

∂V̄

∂X
(X̄, Ū)

∂2V̄

∂U∂X
(X̄, Ū),

v
(X̄)
1 (X̄, Ū) = 0,

Σ
(Ū)
1 (X̄, Ū) = 0,

Σ
(X̄)
1 (X̄, Ū) = 0,

v
(ū)
2 (x̄, ū) = −1

4

∂V̄

∂x
(x̄, ū)

∂2V̄

∂u∂x
(x̄, ū),

v
(x̄)
2 (x̄, ū) = 0,

Σ
(ū)
2 (x̄, ū) = 0,

Σ
(x̄)
2 (x̄, ū) = 0.

As an aside, note that for the Euler-Maruyama method and when σ(X) is not constant,
it is not possible to compute modified equations as shown in Zygalakis (2011).

Although we expect to see O(ε−2) cost rates for MLMC for all three timestepping
methods, there is something important to note about BAOAB. For this method, almost
all correction terms are zero and adding just one term in the original SDE gives the
modified equations. This implies that we expect to see a smaller bias error for a fixed
timestep size when compared to Symplectic Euler and Geometric Langevin since the
BAOAB method is just one term away from being a second order method while for-
mally is still first order. This is an important property that we study further in Chapter
6 where we observe in practice a much better performance. Most importantly, the
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correction terms of BAOAB are independent of λ which diverges at the lower bound-
ary. This is not true for the other two methods. This means that when λ is large the
correction terms of Symplectic Euler and Geometric Langevin are not of order h and
therefore a smaller timestep is required (which increases the cost) in order to have a
second order weak error for the modified equations.

As we will see in Chapter 6, Theorem 3.1 still holds numerically without using
any special regularisation or transformation on the SDE coefficients. Therefore, for
practical applications is not necessary to apply any of them on the SDE coefficients.
All the numerical results presented later are about the original model with the special
boundary conditions treatment (Section 5.2) and the Met Office’s constant regularisa-
tion (equations (2.24) and (2.25)). All results from Section 5.3 can then be used to
provide a better understanding about the theoretical background of the problem.

5.4 Smoothing polynomials for the concentration
problem

The last topic that we study in this chapter is the particle concentration. In Section
2.4 we defined the indicator function which can be used as a quantity of interest to
estimate the concentration of particles which land in an interval [a, b] after some time
T . Mathematically it can be written as

E
[
1[a,b](X(T ))

]
. (5.72)

This is a very important quantity and one of the main interests in atmospheric disper-
sion modelling as it measures the probability that a particle ends up in a certain region.
Therefore, by knowing how many particles are released from the source enables us to
estimate how many of them will end up in each region after time T . At the Met Office
for example, they might be interested in the ash particle concentration after a volcanic
eruption which will determine whether it is safe or not for airplanes to travel.

The discontinuity of the indicator function at the boundaries of the interval [a, b]

causes an increase in the variance which reduces the efficiency of the MLMC method.
In Figure 5-7 we plot the variance rates for the Geometric Langevin method which are
linear and therefore condition (iii) of Theorem 3.1 does not hold. As a result, we do
not expect to see the improved cost rates of O(ε−2) when we run the MLMC method.
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Figure 5-7: Geometric Langevin - Indicator Function

We pick a = 0.1055, b = 0.1555, T = 1, U0 = 0.1 and X0 = 0.05.
Since the indicator function does not produce the optimal rates it becomes neces-

sary to find a suitable approximation. From Theorem 5.3, Lipschitz continuity is a
sufficient condition for the modified equations analysis to hold, so this property moti-
vates our choice of approximation. In the next section we follow the method from Giles
et al. (2015) and we approximate the indicator function using polynomials which are
Lipschitz continuous on bounded domains. Also, we include some analysis showing
that the additional errors introduced by this approximation can be minimised. Finally,
it is good to note that there might be other methods and possibly more accurate to
approximate the indicator function. In this thesis however, we study only the method
from Giles et al. (2015) since it helps in the application of the modified equations
analysis and improves the performance in practice for MLMC.

5.4.1 Smoothing polynomials

In order to recover the quadratic rates and satisfy condition (iii) of Theorem 3.1, we
need to find a Lipschitz continuous function that approximates the indicator function
and therefore improves the MLMC variance. One way of doing this is to approximate
the indicator function by a polynomial as described in Giles et al. (2015).
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Firstly, we can write by linearity

E
[
1[a,b](X(T ))

]
= E

[
1(−∞,b](X(T ))

]
− E

[
1(−∞,a](X(T ))

]
. (5.73)

Then, let us define

gr(x) =


1 if x < −1,

pr(x) if − 1 ≤ x ≤ 1,

0 if x > 1,

where pr is a polynomial of degree at most r+1 which is computed using pr(−1) = 1,
pr(1) = 0 and

∫ 1

−1
sjpr(s)ds = (−1)j/(j+1), j = 0, . . . , r−1. The integer r is chosen

by assuming that the density of X is r times continuously differentiable on an open set
containing [S0, S1] for some S0, S1 ∈ R with a, b ∈ [S0, S1]. The integral equation for
computing the polynomial pr(s) comes from the fact that the function gr(x) needs to
satisfy the property∫ 1

−1

sj
(
1(−∞,0](s)− gr(s)

)
ds = 0 for j = 0, . . . , r − 1, (5.74)

as explained in Giles et al. (2015) (which essentiallly means that the first r − 1 mo-
ments of the original density function agree with the corresponding moments of the
approximation).

Choosing gr as above we have the following lemma from Giles et al. (2015).

Lemma 5.5. There exists a constant c > 0 such that for all δ sufficiently small

sup
s∈[S0,S1]

∣∣∣∣E [1(−∞,s](X(T ))
]
− E

[
gr

(
X(T )− s

δ

)]∣∣∣∣ ≤ cδr+1. (5.75)

With a suitable choice of δ and r we can approximate any quantity of interest based
on the indicator function. We approximate 1[a,b](X(T )) by

P r,δ
[a,b](X(T )) = gr

(
X(T )− b

δ

)
− gr

(
X(T )− a

δ

)
. (5.76)

In figures 5-8a and 5-8b we plot the functions P r,δ
[a,b] (X(T )) for δ = 0.1 and δ =

0.03 respectively to see graphically how the approximation is affected by the choice
of δ and r. As δ decreases and r increases the approximation tends to the indicator
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Figure 5-8: Smoothing polynomials for different values of r, δ and for a = 0.1055,
b = 0.1555.

Since the function P r,δ
[a,b] is now Lipschitz continuous, we expect to recover quadratic

variance decay rates in MLMC which implies that the cost will improve asymptoti-
cally. However, as δ → 0 or r →∞, the smooth approximation tends to the indicator
function so we expect the variance rates to drop. We demonstrate this numerically in
Section 6.2.1.

5.4.2 Error analysis

We now analyse how the mean and mean square errors of the problem are affected
when we approximate the indicator function with a smoothing polynomial. Let P (X) =

1[a,b](X) and P r,δ(X) = P r,δ
[a,b](X) and denote by P̂L and P̂ r,δ

L the Monte Carlo esti-
mates of E[P ] and E[P r,δ] respectively, obtained with a timestep size hL = T

M02L

(the result holds verbatim for MLMC if hL is the finest timestep size). Also, let
E[P̂L] = E[PL] and E[P̂ r,δ

L ] = E[P r,δ
L ]. In the next lemma we obtain bounds on the

weak and strong errors.

Lemma 5.6. With the smoothing polynomial technique described in Giles et al. (2015)

the mean error can be bounded by∣∣∣E[P ]− E[P̂ r,δ
L ]
∣∣∣ ≤ 2cδr+1 +

∣∣∣E[P r,δ]− E[P r,δ
L ]
∣∣∣ , (5.77)
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and the mean square error by

E
[(
P̂ r,δ
L − E[P ]

)2
]
≤ V ar(P̂ r,δ

L ) +
(
E[P r,δ

L ]− E[P r,δ]
)2

+ 4c2δ2(r+1)

+ 4cδr+1
∣∣∣E[P r,δ

L ]− E[P r,δ]
∣∣∣ , (5.78)

where δ and r are as defined in Section 5.4.1 and c is the constant in (5.75).

Proof . We firstly consider the following difference between the expected values of
the indicator function P and the smoothed function P r,δ

∣∣E[P ]− E[P r,δ]
∣∣ ≤ ∣∣∣∣E [1(−∞,b](XT )

]
− E

[
gr

(
XT − b
δ

)]∣∣∣∣
+

∣∣∣∣E [1(−∞,a](XT )
]
− E

[
gr

(
XT − a

δ

)]∣∣∣∣
≤ cδr+1 + cδr+1

= 2cδr+1. (5.79)

Using this expression and the unbiasedness of the Monte Carlo estimator P̂ r,δ
L , the

mean error bound is∣∣∣E[P ]− E[P̂ r,δ
L ]
∣∣∣ ≤ ∣∣E[P ]− E[P r,δ]

∣∣+
∣∣∣E[P r,δ]− E[P̂ r,δ

L ]
∣∣∣

≤ 2cδr+1 +
∣∣∣E[P r,δ]− E[P r,δ

L ]
∣∣∣ .

For the mean square error we write

P̂ r,δ
L − E[P ] =

(
P̂ r,δ
L − E[P r,δ

L ]
)

+
(
E[P r,δ

L ]− E[P r,δ]
)

+
(
E[P r,δ]− E[P ]

)
,

and then we obtain using inequality (5.79)

E
[(
P̂ r,δ
L − E[P ]

)2
]

= Var(P̂ r,δ
L ) +

(
E[P r,δ

L ]− E[P r,δ]
)2

+
(
E[P r,δ]− E[P ]

)2

+ 2
(
E[P r,δ

L ]− E[P r,δ]
) (

E[P r,δ]− E[P ]]
)

≤ Var(P̂ r,δ
L ) +

(
E[P r,δ

L ]− E[P r,δ]
)2

+ 4c2δ2(r+1)
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+ 4cδr+1
∣∣∣E[P r,δ

L ]− E[P r,δ]
∣∣∣ . (5.80)

From the mean square error bound we observe that if δ is small enough and r

is large enough, the last two terms become small and the error is dominated by the
first two terms which represent the sampling error and the discretisation error as in
the case of the indicator function without smoothing (see equations (3.18) and (3.27)).
Therefore, we can reduce any additional smoothing errors by choosing suitable δ and
r. At the same time however we need to be careful not to choose a very small δ or
a very large r since the smoothing polynomial approximation will be closer to the
indicator function which will cause an increase in the MLMC variance. The effect of
δ and r on the MLMC variance is studied numerically in Section 6.2.1.
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Chapter 6

Numerical Results

After our theoretical study of the one-dimensional models in Chapters 4 and 5 we now
present some numerical results that will enable us to compare the efficiency of Stan-
dard and Multilevel Monte Carlo with our three timestepping methods. We include
results only for the one-dimensional inhomogeneous model (equations (2.7) and (2.8))
with the Met Office’s regularisation as described in Section 2.2 and the special bound-
ary conditions treatment as described in Section 5.2. To be more precise, we do not
apply any special regularisation or transformation in the SDE coefficients from those
described in Chapters 4 and 5 and these ideas are only used for the theoretical results.
As we see, Theorem 3.1 and the convergence of the timestepping methods still hold
numerically without the theoretical assumptions on the SDE coefficients.

In Sections 6.1, 6.2 and 6.3 we study the mean particle position, concentration
in an interval [a, b] and a piecewise constant approximation of the concentration field
respectively at the final time T . We use the three timestepping methods described in
Section 3.1 and a uniform timestep. In Section 6.4 we also investigate the effect of
adaptive timestepping.

The results are generated using the C++ code initially developed for the paper
Müller et al. (2015) and which we later enriched for the purposes of this thesis. The
code can be downloaded freely under the GPL license from https://bitbucket.

org/em459/mlmclangevin. The numerical results and conclusions of this chapter
can also be found in Katsiolides et al. (2018) and were obtained with the version which
has been archived as Mueller et al. (2017). All plots in this chapter are obtained from
Katsiolides et al. (2018) and we follow the same structure as in sections 6 and 7 from
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that paper.
We use the model parameters κσ = 1.3, κτ = 0.5, friction velocity u∗ = 0.2

and boundary layer height H = 1. We also use T = 1 and unless otherwise stated
the regularisation height is εreg = 0.01 as discussed in Section 2.2. In Section 6.4.1
we study the impact that εreg has on the numerical results. The initial conditions are
X(0) = 0.05 and U(0) = 0.1. In Section 6.3 we study the effect of the release height
on performance.

All numerical results are dimensionless and represent units of the reference dis-
tance X ref, reference velocity U ref and reference time tref = X ref/U ref. In this chapter
(see also Section 2.1.2) we use X ref = 103m, U ref = 1m/s and therefore tref = 103s ≈
17 minutes. As a result, the particles are released with an initial upward velocity equal
to 0.1m/s at a height of 50m above ground and results are studied after approximately
17 minutes of travel. Throughout this chapter we measure the computational cost in
terms of CPU times in seconds.

6.1 Particle Position

The first quantity of interest that we consider is the mean particle position at time
T = 1, ie E(X(T )). For all methods we use M0 = 40 timesteps on the coarsest level.

In Figure 6-1 we firstly confirm numerically that the conditions of Theorem 3.1
hold without the theoretical assumptions used before in the proofs. In Figure 6-1a we
plot V ar[Yl] as a function of the timestep size hl and we observe that for all timestep-
ping methods the rate is quadratic, i.e. proportional to h2

l , which confirms condition
(iii) of Theorem 3.1. Geometric Langevin (GL) and BAOAB methods have simi-
lar variance that is larger than Symplectic Euler (SE) variance except for the largest
timestep where the asymptotic assumptions do not necessarily hold.

In Figure 6-1b we plot the bias error
∣∣∣E[P̂l − P ]

∣∣∣ as a function of hl and we ob-
serve that the rate is linear, i.e. proportional to hl. This confirms that condition (i)

holds for all timestepping methods and therefore confirms numerically Theorem 3.1.
A very important observation is that the bias error of the splitting methods is much
smaller when compared to the bias error of the SE method. In particular, GL has about
13× smaller bias error than SE and BAOAB reduces this error by an additional factor
of 4. The total error reduction of BAOAB relative to SE is then 52×. As discussed in
Section 5.3.2, this difference in the bias error was expected since the modified equa-
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Figure 6-1: Variance and bias error - Mean particle position

tions analysis suggests that BAOAB does not have issues with the large λ(X) at the
lower boundary and is almost a second order method which means that you can use a
larger timestep size in order to achieve a certain tolerance.

In Figure 6-2 we plot the total computational costs of the StMC and MLMC meth-
ods for all discretisation schemes. The cost is plotted as a function of the root mean
square error tolerance ε. The StMC cost rates are asymptotically proportional to ε−3

for all timestepping methods, as discussed in Section 3.2.1. The MLMC cost rates are
asymptotically proportional to ε−2 as expected from Theorem 3.1.

Although the cost of StMC and MLMC methods show the expected dependency on
ε, there are significant differences in the absolute performance for fixed ε. Comparing
only the MLMC cost rates we can see that all timestepping methods perform similarly.
They have some small differences and SE is slightly cheaper. However, performance
between different time integrators varies very strongly if we compare the different
StMC methods among themselves. In particular, the GL method is approximately
5× faster than SE and BAOAB is more than 20× faster. The main reason for this
observation is the large difference in the bias error as discussed for the results presented
in Figure 6-1b. The splitting methods have a smaller bias, which allows the use of a
larger timestep at fixed ε, resulting in an overall cheaper method.

Next, we briefly discuss the timestep sizes and number of samples used to gen-
erate Figure 6-2. In Table 6.1 we give the maximum and minimum timestep size
used for each timestepping method with the corresponding ε in the brackets. For ev-
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SE GL BAOAB
maximum hL = 3.1 · 10−3 hL = 2.5 · 10−2 hL = 2.5 · 10−2

(ε = 2.2 · 10−3) (ε = 1.4 · 10−3) (ε = 3.5 · 10−4)
minimum hL = 9.8 · 10−5 hL = 7.8 · 10−4 hL = 3.1 · 10−3

(ε = 6.9 · 10−5) (ε = 4.4 · 10−5) (ε = 4.4 · 10−5)

Table 6.1: Range of timestep sizes used for each timestepping method with their cor-
responding ε.

ery timestepping method the StMC timestep size and the MLMC timestep size on the
finest level is the same for a given root mean square error ε (due to the telescoping sum
equation (3.22)). In Appendix A.4 we include some details on the number of samples
Nl on each level l for two MLMC runs.

Our overall conclusion is that for small tolerances MLMC, with any timestepping
method can improve the efficiency, but for larger tolerances (> 5 · 10−4) the StMC
method with BAOAB is the most efficient.

6.2 Concentration

The second quantity of interest that we consider is the particle concentration in an
interval [a, b] ⊂ [0, 1] at the final time T ; we use a = 0.1055 and b = 0.1555 here.
The particle concentration can be written as E

[
1[a,b](X(T ))

]
and we replace the indi-
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cator function with a smoothing polynomial P r,δ
[a,b](X(T )) as discussed in Section 5.4.

Firstly, we check the sensitivity on the smoothing parameters δ and r and then present
some similar experiments as for the mean particle position case.

6.2.1 Sensitivity to smoothing parameters

As discussed in Section 5.4, using the indicator function as a quantity of interest causes
a decrease in the MLMC variance rate so we replace it with the smoothing polyno-
mial P r,δ

[a,b](X(T )) defined in equation (5.76). In Figures 6-3a and 6-3b we firstly plot
V ar[Yl] as a function of the timestep size hl for GL and SE methods to verify condition
(iii) of Theorem 3.1. In both plots we use δ = 0.1, three different values of r and the
quantity of interest is P r,δ

[a,b](X(T )). We also plot results for the indicator function 1[a,b]

to see how the variances compare. In all cases the tolerance on the root mean square is
ε = 10−3 and since the SE method has a larger bias error compared to GL we must use
a smaller finest timestep size. We do not include any results for BAOAB since they are
very similar to those of GL. We observe that for the smoothed polynomials the vari-
ance decays with a quadratic rate and for the non-smooth indicator function the rate
is linear as in Figure 5-7. Therefore, Theorem 3.1 holds numerically when using any
of the smoothed polynomials and the cost rate is expected to improve asymptotically.
Note however that we do not study how the overall cost (i.e. the constants in equations
(3.20) and (3.24)) is affected by this change but as we see later the asymptotic cost rate
of MLMC will improve. Also, note that the absolute value of the variance grows as r
increases which is expected since P r,δ

[a,b] converges to the non-smooth indicator function
as r →∞.

In Section 5.4.2 we presented some analysis regarding the errors introduced by
the smoothing polynomial technique. We concluded that as δ → 0 or r → ∞ the
smoothing errors are decreasing.

Since we now have to choose a pair of values of δ and r for our numerical ex-
periments we must show that for those values the additional error which is intro-
duced by replacing the indicator function by P r,δ

[a,b](X(T )) is indeed small. In Table
6.2 (Katsiolides et al., 2018) we present some estimates of the expected values of
1[a,b] and of P r,δ

[a,b] for different values of r and a fixed δ = 0.1. The timestep size
h is such that the bias error is less than ε/

√
2 with ε = 10−3 and we also choose

a large number of samples such that the standard deviation of each estimator is less
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Figure 6-3: Variance - Concentration P r,δ
[a,b] with δ = 0.1

Quantity of interest r value difference
GL SE BAOAB GL SE BAOAB

4 0.16678 0.16705 0.16687 1.2 · 10−5 7.4 · 10−5 3.1 · 10−5

E
[
P r,δ

[a,b](X(T ))
]

6 0.16669 0.16709 0.16677 7.2 · 10−5 4.1 · 10−5 7.5 · 10−5

8 0.16682 0.16714 0.16683 5.1 · 10−5 9.9 · 10−6 1.6 · 10−5

E
[
1[a,b](X(T ))

]
0.16677 0.16713 0.16684

Table 6.2: Estimates of E
[
P r,δ

[a,b](X(T ))
]

and E
[
1[a,b](X(T ))

]
for δ = 0.1 and differ-

ent values of r.

than 3.5 · 10−5. In the last three columns of Table 6.2 we compute the difference∣∣E [P r,δ
[a,b](X(T ))

]
−E

[
1[a,b](X(T ))

] ∣∣ which quantifies the error from the polynomial
approximation of the indicator function and we can see that is of the order 5 · 10−5 in
all cases. Therefore, we conclude that when compared to the bias (which is ∼ 10−3)
the smoothing error is clearly negligible for our choices of δ and r.

We also verify that the additional cost of evaluating P r,δ
[a,b] is negligible. It is less

than the cost of one timestep with a very small dependence on r. In addition, we have
confirmed that the results observed in Table 6.2 are independent of the choice of the
interval [a, b] and therefore in what follows we choose δ = 0.1, r = 4 and neglect the
smoothing error.

The drawback of the above approach is that you need to verify that the smoothing
error is small by doing numerical tests at the start as in Table 6.2. In Giles et al. (2017)

106



this problem is addressed by presenting an algorithm with on-the-fly estimations. In
this thesis however we just use the smoothing parameters as above and the reader is
referred to Giles et al. (2017) for any further details.

6.2.2 Cost comparison between Standard and Multilevel Monte
Carlo

We now compute the cost of StMC and MLMC methods as a function of the tolerance
on the root mean square error. For the SE and GL methods we choose M0 = 80 and
for BAOAB M0 = 40. We set δ = 0.1 and r = 4 as justified by the error estimates
from the previous section.

In Figure 6-4 we plot the total computational cost of the Monte Carlo methods for
all discretisation schemes. The cost is plotted as a function of the root mean square er-
ror tolerance ε and we see similar results as in the mean particle position case. The cost
rates of the StMC methods are asymptotically proportional to ε−3 and the cost rates of
the MLMC methods are asymptotically proportional to ε−2 as expected. Comparing
only the MLMC results among themselves we can see a similar performance for all
timestepping methods. Comparing the StMC results among themselves we again ob-
serve a large difference in the performance and BAOAB is the fastest method for the
same reason discussed in Section 6.1.

Our conclusion is similar as before. For tight tolerances is better to use MLMC
with any timestepping method but for larger tolerances the StMC with a splitting
method is cheaper overall. Lastly, in Appendix A.4 we include details for the num-
ber of samples on each MLMC level for a representative run where we can see that
the largest number of samples is found on the coarsest level which is the cheapest to
compute.

6.3 Probability Density Function

Our final quantity of interest is the probability density function (p.d.f.) which is very
important in atmospheric dispersion since a piecewise constant approximation of the
concentration field is the main output of dispersion models like NAME. For this ap-
proximation we divide our space interval [0, H] to a set of smaller intervals at equidis-
tant points 0 = a0 < a1 < a2 < · · · < ak−1 < ak = H and consider the vector-valued
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Figure 6-4: Computational cost for varying tolerance - P r=4,δ=0.1
[a,b] (XT )

quantity of interest

P = (P0,P1, . . . ,Pk) =
(
P r,δ

[a0,a1] (X(T )) , P r,δ
[a1,a2] (X(T )) , . . . , P r,δ

[ak−1,ak] (X(T ))
)
,

(6.1)
i.e. we calculate the integral of the concentration in each interval [ai, ai+1]. This will
then give the required approximation since for the p.d.f. ρ(X) we have∫ b

a

ρ(X)dX = E
[
1[a,b]

]
≈ E

[
P r,δ

[a,b]

]
∀[a, b] ⊂ [0, H]. (6.2)

The piecewise constant approximation of ρ(X) is then obtained by dividing the quan-
tity of interest in equation (6.2) by the length of the interval. As before we use δ = 0.1

and r = 4. As discussed in Section 3.2.2, in order to compute the number of samples
Nl on each level of the MLMC algorithm for a scalar-valued quantity of interest, we
use the following formula from Giles (2008)

Nl =

⌈
2ε−2

√
V ar(Yl)hl

(
L∑
i=0

√
V ar(Yi)/hi

)⌉
, (6.3)

where V ar(Yl) is the variance on level l. Since we now have a vector-valued quantity
of interest we estimateNl by choosing the maximal absolute variance over all intervals
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Figure 6-5: Piecewise constant approximation of probability density function for re-
lease height 0.05 (top left), 0.10 (top right) and 0.20 (bottom).

(which guarantees that the error is below the tolerance in all intervals). In particular,
we let Pl,i = P r,δ

[ai,ai+1](XT,l) and Y0,i = P0,i, Yl,i = Pl,i − Pl−1,i, for l = 1, . . . , L and
i = 0, . . . , k − 1. Then, we use max

i=0,...,k−1
|V ar(Yl,i)| in place of V ar(Yl) in equation

6.3 (Katsiolides et al., 2018).
With the p.d.f. setting as above we can now construct density function plots. In

Figure 6-5 we plot piecewise constant approximations of the p.d.f. of X(T ) using
Symplectic Euler and MLMC with intervals of size 0.05. The plot on the top left
uses X(0) = 0.05 that corresponds to a release height of 50m above ground, which
is the same initial condition used to obtain all results in Sections 6.1 and 6.2. We also
include results for X(0) = 0.1 and X(0) = 0.2 since we found that the computational
cost is very sensitive to the release height. These heights correspond to 100m and
200m above ground, respectively. For all release heights the initial velocity is given
by U(0) = 0.1.

In Table 6.3 we present the computational cost in CPU times necessary to compute
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release height StMC MLMC
SE GL BAOAB SE GL

0.05 (50m) 2561.41 321.77 91.21 218.52 265.84
0.10 (100m) 867.32 277.72 79.25 120.17 125.92
0.20 (200m) 316.33 280.04 78.15 64.78 103.69

Table 6.3: Computational cost (CPU time in seconds) for different release heights.

the p.d.f. with a root mean square error below a tolerance of ε = 4 · 10−3. For SE and
GL we use M0 = 80 and for BAOAB we use M0 = 40.

Comparing the StMC results for each release height separately we can see that
with GL and BAOAB we have a large increase in the performance when compared
to SE. The reason for this is the same as in the previous quantities of interest that we
studied and is due to the fact that the splitting methods are less affected by the large
values of λ(X) near the ground. The bias error is therefore smaller for BAOAB and as
a result we can use larger timesteps. As X(0) increases however, the particles spend
less time near the ground and the bias error of the SE method decreases which gives
an improvement in the performance. GL and BAOAB are not affected much by the
release height and there is no significant change in the bias error.

For the MLMC algorithms we can see that the performance improves as the release
height increases. Results for BAOAB are not included since the number of levels is
too small to achieve any speed-up for the chosen tolerance. Comparing Standard and
Multilevel Monte Carlo results we can see that MLMC is faster especially for the low
release heights. Finally, for X(0) = 0.05 and X(0) = 0.1 the fastest method is StMC-
BAOAB and for X(0) = 0.2 the fastest method is MLMC-SE.

We conclude that the splitting methods and the MLMC estimator significantly re-
duce the cost of computing p.d.f.’s when compared to the StMC-SE algorithm used
in many Lagrangian atmospheric dispersion models. For a low release height StMC-
BAOAB leads to speedups of 28× (X(0) = 0.05) and 11× (X(0) = 0.10) when
compared to StMC-SE. At higher release heights (X(0) = 0.20) MLMC method with
the SE integrator is 5× faster than the algorithm currently used in many operational
atmospheric dispersion models.

As a final comment we note that there are also alternative methods to etsimate
p.d.f.’s, like for example the kernel density method used in Ramli and Esler (2016).
In this thesis however, we only consider the method described above and the reader is
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referred to Ramli and Esler (2016) for more details.

6.4 Adaptive timestepping

In Section 3.1 we defined our timestepping methods and we also discussed the stability
constraints of the SE method. For a reminder, we deduced the following constraint on
the timestep size h

h <
2

max
X∈[0,H]

λ(X)
=

2

λ(εreg)
, (6.4)

where λ(X) is as in equation (2.7). The function λ(X) is very large close to the
ground, which leads to tight constraints on the timestep size as can be seen from in-
equality 6.4. However, in the rest of the domain it is unnecessary to have a very
small timestep, making the method prohibitively expensive. To address this problem,
we adaptively choose smaller timesteps in those parts of the domain where they are
required to ensure stability. In the literature there are various methods that describe
adaptive timestepping in MLMC and some of them can be found in Hoel et al. (2012),
Hoel et al. (2014), Giles et al. (2016). In this thesis we apply the method described in
Giles et al. (2016).

6.4.1 Sensitivity to regularisation height

An important question is the sensitivity on the regularisation height εreg. In Figures
6-6a and 6-6b we plot V ar[Yl] as a function of the timestep size hl to check whether
the decay is quadratic as required by condition (iii) of Theorem 3.1. We show results
for SE and GL timestepping methods as εreg is varied and in both cases the quantity of
interest is the particle position X(T ) with the same model parameters used in section
6.1.

For GL we use M0 = 40 timesteps on the coarsest level. For SE we must be
more careful with the timestep sizes since we have the stability constraint described by
equation (6.4). In addition, λ(εreg) increases with decreasing εreg which further restricts
the timestep size. For εreg = 0.1 and εreg = 0.01 we use the same timestep sizes as
for the GL method but for εreg = 0.001 we use more timesteps on the coarsest level by
setting M0 = 270.

From the plots we observe that for εreg = 0.1 and εreg = 0.01 the variance rate
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Figure 6-6: Variance rates for different εreg - Mean particle position

is quadratic but for εreg = 0.001 the rate is linear. The reason why the variance is
linear for small εreg can be explained using the theory of modified equations (Shardlow,
2006), (Zygalakis, 2011), (Müller et al., 2015) considered in Section 5.3.

As εreg → 0 we have that max
X∈[0,H]

λ(X) → ∞ and therefore the correction terms

of the modified equations containing λ(X) (see equations (5.66) and (5.67)) are not
of order hl since hlλ(X) is not small enough. The result of this is that the modified
equations analysis breaks down. However, as hl → 0 for fixed εreg, the term hlλ(X)

becomes smaller and we recover the expected quadratic variance decay rate since the
correction terms are of order hl again. Also, the value of εreg affects the absolute value
of the variance and as we can see from the plots the variance increases with decreasing
εreg again due to the fact that λ(X) varies strongly near the lower boundary.

For all experiments in the previous sections we used εreg = 0.01 which is similar to
what the Met Office uses (see Section 2.2). The variance rate is quadratic and therefore
condition (iii) of Theorem 3.1 is satisfied. In addition, we have seen that by decreasing
the timestep size, the variance decreases but at the same time the total cost increases.
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6.4.2 Adaptive timestepping

Our adaptive MLMC method is as described in Giles et al. (2016) and we adjust the
timestep size at every time tn such that the method is stable. In particular, we use

h(adaptive)
n := min

{
h,
λ(Xadapt)

λ(Xn)
h

}
, (6.5)

where Xn is the current particle position and Xadapt is a reference height. With this
choice of adaptive timestep we then have

h(adaptive)
n λ(Xn) < λ(Xadapt)h, (6.6)

so if we pick a value for the maximal timestep h andXadapt such that λ(Xadapt)h < 2 we
then guarantee the stability of the SE method (see inequality (6.4)). A very important
observation about this method of adaptive timestepping is that it is independent of the
MLMC level and therefore the telescoping sum in equation (3.22) is not violated which
means that it does not introduce any additional bias (Giles et al., 2016).

Now since λ(X) is a decreasing function we only change the timestep size when
the particles are below the height Xadapt. Note however that although the product
h

(adaptive)
n λ(Xn) is always bounded such that the SE method is stable, we still need

to regularise λ(X) as in Section 2.2. This is because without regularisation we have
λ → ∞ near the ground which implies that h(adaptive)

n → 0 and therefore it can take an
infinite amount of time to calculate just one trajectory since the number of timesteps
might not be bounded..

As we explain below, when using adaptivity, the fine and coarse steps are not nec-
essarily nested as in the uniform timestepping (two fine steps correspond to one coarse
step) and it is possible to have more than two steps on the fine level corresponding to
one step on the coarse level. Details of the adaptive MLMC algorithm for the Euler
method can be found in Giles et al. (2016) and here we only give some details for
how to construct the random increments. In addition, we describe how the boundary
conditions treatment (Section 5.2) can be combined with adaptivity as presented in
Katsiolides et al. (2018).

On the coarse level, the interval [0, T ] is partitioned into small sub-intervals through
the points t(c)i and one step of the numerical method calculates the solution at time t(c)i ,
given the solution at time t(c)i−1. Similarly, on the fine level, the interval [0, T ] is divided
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Figure 6-7: Non-nested adaptive timesteps

into sub-intervals by the points t(f)
i . However, in contrast to the previously described

MLMC method where for each t(c)i there existed a j such that t(f)
j = t

(c)
i , the sub-

intervals on two subsequent levels are not nested, i.e. the t(c)i are not related to the
t
(f)
i .

With these two sets of partition points the interval [0, T ] is then divided into a
number of sub-intervals [τj, τj+1], j = 0, . . . , N − 1 such that τ0 = 0, τN = T . Each
τj can be either a fine or a coarse time point as defined above and we denote this
graphically in Figure 6-7 (adapted from Figure 1 in Giles et al. (2016)). In particular,
we define

τj =

t
(c)
i for coarse time points,

t
(f)
i for fine time points,

(6.7)

and for each interval [τj, τj+1] we generate an independent random variable ξj ∼
Normal(0, 1). Then, by using the algorithm from Giles et al. (2016) for SE we can
combine these random numbers for each interval [t

(x)
i , t

(x)
i+1] (where x = c, f ) and con-

struct a random increment ∆W (t
(x)
i , t

(x)
i+1) ∼ Normal(0, t(x)

i+1 − t
(x)
i ). If in addition we

multiply each generated random variable ξj with S(·)
j = (−1)number of reflections up to time τj

as in Section 5.2 we obtain an increment which takes into account both adaptive
timestepping and boundary conditions treatment. From Katsiolides et al. (2018) the
random increment for the SE coarse step is given by

∆W (t
(c)
i , t

(c)
i+1) = S

(c)
i

j+−1∑
j=j−

S
(f)
j ξj

√
τj+1 − τj, where τj− = t

(c)
i and τj+ = t

(c)
i+1,

(6.8)
and replaces the term

√
hξn in equation (3.1). It is also easy to see that it has variance

t
(c)
i+1 − t

(c)
i since it is a sum of Gaussian random variables. For the GL coarse step we

114



use

∆W (t
(c)
i , t

(c)
i+1) = S

(c)
i

j+−1∑
j=j−

{
S

(f)
j ξj

√
1− exp[−2λ(X(τj)) · (τj+1 − τj)]

2λ(X(τj))

· exp

[
−

j+−1∑
k=j+1

λ(X(τk)) · (τk+1 − τk)

]}
,

(6.9)

which replaces the term
√

1−exp[−2λ(Xn)h]
2λ(Xn)

ξn in equation (3.8). For both methods we

use the same expression for the fine step random increment ∆W (t
(f)
i , t

(f)
i+1) but without

the factors S(·)
j .

6.4.3 Numerical results

We now present some numerical results for adaptive timestepping. As a quantity of
interest we use the mean particle position with the same model parameters as in Section
6.1 and Xadapt = 0.05. We use both SE and GL timestepping methods. In Figure 6-8
we first plot the variance rates to check numerically if condition (iii) from Theorem
3.1 holds, i.e. if we have quadratic variance decay rates when adaptivity is used. We
observe that for both methods the variance decays with a quadratic rate with respect
to the maximal timestep h. Also, we observe that the absolute value of the variance
decreases with adaptive timestepping which is expected since on average we use a
smaller timestep size when compared to the uniform case.

In Figure 6-9 we plot the corresponding cost rates. In Figure 6-9a we can see that
adaptivity reduces the cost of the SE method. As ε becomes smaller however, the
two costs converge to the same value since a smaller ε implies a smaller timestep and
therefore we adapt less times when using a fixed Xadapt. Also, the bias error for SE
is reduced (≈ 6×) when using adaptivity which is one of the reasons why the cost
decreases.

Now by looking at Figure 6-9b and the cost of the GL method we can see that
adaptivity increases the cost. The main reason for the increase in the cost is that in this
case adaptivity increases the bias error (≈ 3×). This is a counter-intuitive result since
with adaptivity a smaller timestep is used on average when comparing to the uniform
case. In the ODE case one obviously expects the error to be smaller with adaptive
timestepping, but in the SDE case this is less clear. Studying the problem theoretically
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Figure 6-8: Variance rates - Uniform and adaptive timesteps

to see what behaviour we should expect is hard for our non-linear SDE and beyond the
scope of this thesis. However, to make sure that there are no bugs in the code we made
several tests like for example testing the case when σ = 0. For this ODE we confirmed
that GL reduces the bias error. Further investigation of this problem which might be
linked to the divergence of λ(X) near the ground, can be a topic for future research.
Also, it will be interesting to see results when using the BAOAB method which can be
another direction for future research.
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Figure 6-9: Cost rates - Uniform and adaptive timesteps
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Chapter 7

Higher Dimensional Models

After presenting theoretical and numerical results for the one-dimensional models we
now study higher dimensional models which give a better description of the atmo-
spheric conditions since turbulence is not just one-dimensional. In a realistic model
for the transport and spread of particles in the atmosphere there are two main things
happening: Firstly, the particles are advected by a background velocity field, which at
the Met Office is obtained from the numerical forecast model. However, this field has
a finite resolution, so can only represent eddies which are larger than some cutoff Λ.
Secondly, any processes at scales below this cutoff are modelled by the turbulent com-
ponent U(t) of the particles’ velocity. In the model, this is described by the random
terms.

Based on the above two properties, we construct a set of synthetic background
velocity fields and study the transport and spread of particles in those fields. The back-
ground velocity field is constructed as a sum of modes with the correct energy spectrum
and is such that it is non-divergent in order to avoid the unphysical accumulation of
particles in some parts of the domain. The non-divergent property was also one of the
reasons that we did not consider a background velocity in the one-dimensional case
since this would require a constant vertical quantity in the entire boundary layer which
is not physical. Lastly, the parameters of the turbulence model are adjusted such that
they correctly represent the unresolved processes at the scales below the cutoff Λ.

Our models have the general form given in the Introduction by equations (1.1)
and (1.2) for d = 2 and d = 3. For d = 2 the model will describe horizontal two-
dimensional homogeneous turbulence. Since the atmospheric boundary layer is very
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thin when you consider a global scale, this model can be a good approximation and
therefore we study it first. For d = 3 the model will combine the horizontal structure
of the homogeneous two-dimensional model with the vertical structure of the inhomo-
geneous one-dimensional model intoduced in Section 2.1. In Sections 7.1 and 7.2 we
study the two- and three-dimensional models respectively and we present some nu-
merical results to compare the efficiency of Standard and Multilevel Monte Carlo with
the Symplectic Euler method. Finally, in Section 7.3 we study the effect on the perfor-
mance when we change some of the model parameters and we present some numerical
results with the BAOAB method.

All numerical results in this chapter were generated with an updated version of
the C++ code used in Chapter 6. The code can be downloaded freely under the GPL
license from https://bitbucket.org/em459/mlmclangevin.

7.1 Two-dimensional model for homogeneous
turbulence

Our two-dimensional model describes homogeneous turbulence on the horizontal plane
and U(t) = (U1(t), U2(t)), X(t) = (X1(t), X2(t)) denote the two-dimensional veloc-
ity and position respectively. The model is given by the following SDEs

dUi(t) = −Ui(t)
τ

dt+

√
2σ2

U

τ
dWi(t), (7.1)

dXi(t) = (vi(X(t), t) + Ui(t)) dt, i = 1, 2, (7.2)

which are a special case of the general model given by equations (1.1) and (1.2) with
d = 2. W1(t) and W2(t) are independent Brownian motions and we assume that there
are no boundary conditions so that the particles can travel anywhere.

Since the turbulence is homogeneous, τ (velocity decorrelation timescale) and σ2
U

(variance at equilibrium) are constants and we also assume that they are isotropic (i.e.
the same in all directions). Equation (7.1) can therefore be seen as a higher dimensional
extension of the one-dimensional homogeneous model described by equation (2.13).
τ and σU could be different in each direction and also depend on X = (X1, X2) but
for simplicity we do not consider any of these cases. The reader can refer to Webster
et al. (2003) for more information on how these functions are chosen for practical
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applications. We define τ and σU in Section 7.1.2. Also note that in the most general
case we could have something like

dUi(t) = −
d∑
j=1

AijUj(t)dt+
d∑
j=1

BijdWj(t),

for some non-diagonal matrices A and B. However, in our models we assume that the
matrices A and B are diagonal and studying this more general model would be out of
the scope of this thesis.

In contrast to the model in the previous chapter, the background velocity field
(v1(X(t), t), v2(X(t), t)) is non-zero and in the higher dimensional cases we study
how it affects the Monte Carlo results. In Section 7.1.1 we define the background
velocity field as described in Fung and Vassilicos (1998) and Thomson and Devenish
(2005).

Finally, we define our initial conditions. In the one-dimensional case we used
deterministic initial conditions but for higher dimensional models we study random
initial conditions. The reason why we choose random initial conditions is due to the
fact that the background velocity is non-zero and we assume that the initial velocity
adapts to the ambient velocity of the flow when the particles are released. In particular,
we use X(0) = (0, 0) and U(0) = (U1(0), U2(0)) with U1(0), U2(0) independent and
distributed as Normal(0, σ2

U).

7.1.1 The background velocity field

Our background velocity field v(X, t) = (v1(X, t), v2(X, t)) describes the wind field
as a sum of modes, each with a characteristic length scale Li and associated wavenum-
ber ki = 2π/Li. The modes have length scales between Λ (the grid size of the weather
forecast model) and L (the largest scale, which is of order of the radius of the Earth)
and the kinetic energy carried by each of them should be consistent with the energy
carried in the real atmosphere. From Nastrom and Gage (1985) the energy spectrum
in the atmosphere is given by

E(k) = E0L(kL)−p with 1 ≤ p ≤ 3, (7.3)

120



for some constant E0, which means that the energy carried by modes in the range
[ka, . . . , kb] is given by ∫ kb

ka

E(k)dk. (7.4)

In addition, the background velocity field should be divergence free.
These lead to the following function from Fung and Vassilicos (1998) and Thom-

son and Devenish (2005)

v(X, t) =
N∑
n=1

[An cos(kn ·X + ωnt) + Bn sin(kn ·X + ωnt)] , (7.5)

which can also be written in complex form as

v(X, t) =
N∑
n=1

[An Re(gn) + Bn Im(gn)] , (7.6)

where gn = cos(kn ·X + ωnt) + i sin(kn ·X + ωnt). Here, N is the number of modes
and for each n we compute a random unit vector n̂ and set kn = knn̂ where

kn = kLa
n−1 with a =

(
L

Λ

) 1
N−1

. (7.7)

The vector kn is the wavenumber vector of the nth mode, kL = 2π
L

, L is the size of
the largest eddy and Λ is the size of the smallest eddy which can be represented by the
numerical weather forecast model, i.e. the grid resolution.

The vectors An and Bn are the mode amplitudes and since we require that the
background velocity is incompressible, i.e. ∇·v = 0, it is sufficient to have kn ·An =

kn ·Bn = 0. Therefore, An and Bn are chosen to be random but perpendicular to kn.
Their length is given by

|An|2 = |Bn|2 = 2E(kn)∆kn, (7.8)
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where E(k) is a kinetic energy spectrum and ∆kn is defined by

∆kn =


k2−k1

2
for n = 1,

kn+1−kn−1

2
for 2 ≤ n ≤ N − 1,

kN−kN−1

2
for n = N.

(7.9)

Lastly, as in Fung and Vassilicos (1998) we set ωn (the frequency of the nth mode)
to be proportional to the inverse eddy turnover time and use

ωn = C
√
k3
nE(kn), (7.10)

where C is a dimensionless constant of proportionality. Equation (7.10) was used for
experiments in Fung and Vassilicos (1998) and Thomson and Devenish (2005). In
Fung and Vassilicos (1998) they also study the case when ωn = Ukn with a constant
velocity U and in Thomson and Devenish (2005) they also consider a stationary field
with ωn = 0. In this thesis we only consider equation (7.10).

7.1.2 σU and τ

We now define σU and τ which are the last two components to complete our model.
The constant σU is chosen such that the total kinetic energy carried by the turbulent
modes (which are represented by the random part of the SDE) is equal to the kinetic
energy of the unresolved modes whose wavenumber vector modulus is greater than 2π

Λ
.

It is then given by

σ2
U =

∫ ∞
2π
Λ

E(k)dk, (7.11)

where E(k) is the kinetic energy spectrum given by equation (7.3). This integral eval-
uates to

σ2
U = E0

∫ ∞
2πL/Λ

(kL)−pd(kL) = E0
z1−p

p− 1

∣∣∣∞
2πL/Λ

=
(2π)1−p

p− 1
E0

(
Λ

L

)p−1

. (7.12)

The constant τ is chosen to be proportional to the eddy turnover time at the N th mode
kN = 2π

Λ
and is given by

τ =
1

C
√
k3
NE(kN)

. (7.13)
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7.1.3 Model scales

Before presenting any numerical results we first analyse the scales of the model vari-
ables as we did in Section 2.1.2 for the one-dimensional model. For a physical quantity
α we consider a reference scale αref and write

α = αrefα̂, (7.14)

where α̂ is the corresponding dimensionless parameter. In particular, we consider a
reference length Lref, a reference time T ref and a reference speed U ref. These three
quantities are related by (see Section 2.1.2)

Lref = U refT ref. (7.15)

For the physical values X,U, L,Λ and t we then have

X = LrefX̂, U = U refÛ, L = LrefL̂, Λ = LrefΛ̂, t = T reft̂, (7.16)

where X̂, Û, L̂, Λ̂ and t̂ are the dimensionless parameters.
We set Lref = 1km = 1000m and we determine U ref by considering E0 in equation

(7.3). Since the energy E(k)dk of a unit particle has the dimension of a squared
velocity we have that E0 has the same dimension which implies that

E0 = (U ref)2Ê0. (7.17)

Using this equation, we fix U ref such that Ê0 = 1 which gives

E0 = (U ref)2. (7.18)

If we now find the physical value of E0 we can then compute U ref. In order to find this
value we use Figure 4 from Nastrom and Gage (1985) where we obtainE(10−5m−1) ≈
106m3s−2. Later, in our numerical results we use L = 1000km = 106m and p = 5

3
so

using equation (7.3) gives
E0 ≈ 10

5
3m2s−2. (7.19)
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Substituting in equation (7.18) we obtain the reference speed

U ref ≈ 6.8m/s, (7.20)

which implies
T ref ≈ 147s. (7.21)

As in the one-dimensional case, we drop the hats from these variables and use dimen-
sionless quantities in the equations.

The values of the parameters Λ, number of modes N and travel time T will depend
on the experiment since we would like to investigate how the results are affected by
the choice of the scale Λ which separates the resolved and unresolved modes. In this
thesis, we first fix the largest value of N with its corresponding Λ and then we vary N .
In order to keep the modes in the lowest part of the spectrum unchanged we apply the
following technique. For a new value of modesN ′ < N we compute the corresponding
Λ′ such that

kN ′ =
2π

Λ′
=

2π

Λ

(
L

Λ

)N′−1
N−1

. (7.22)

With this method we guarantee that the first N ′ modes of the first experiment that
uses N and Λ are the same as the modes of the second experiment that uses N ′ and Λ′.
Also, the firstN ′ values of kn, An and Bn from the first experiment are the same as the
corresponding values from the second experiment. For all random variables involved
we are using the same realisations.

7.1.4 Background velocity and spread plots

After defining all components of our two-dimensional model and the model scales
we can now construct background velocity and spread plots. A background velocity
snapshot can be seen in Figure 7-1 where the arrows indicate the direction and relative
magnitude of the background velocity at each point of the domain. For this plot we
used the dimensionless parameters N = 250, L = 1000, Λ = 0.2, E0 = 1, p = 5/3,
C = 1 and T = 1. With the reference scales defined above we have that L = 1000

means 1000km, Λ = 0.2 means 200m and T = 1 means 147s. Note that while
our choice of parameters might not represent exactly how the background velocity is
observed in practice, our conclusions will not be affected much by choosing a different
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Figure 7-1: A background velocity field snapshot for two-dimensional turbulence.

set of parameters.
Next, we study the spread of the plume with respect to the travel time T . With a

non-zero background velocity field we expect the particles to be spread by two pro-
cesses: (a) turbulence described by the stochastic part of the SDEs and (b) particles
getting caught up in different eddies of the background velocity field. Since the parti-
cles are initially close together, we expect the effect of (a) to dominate for small times
and the effect of (b) to dominate for large times. Our aim for the rest of this section
is to determine at what times these different processes dominate, in order to study the
performance of MLMC in those very different regimes.

Mathematically the spread is described by the standard deviation of the particle’s
position, which is estimated using

s =

√√√√ 1

NL − 1

NL∑
j=1

[(
X1

(j)
ML
− µ1

)2

+
(
X2

(j)
ML
− µ2

)2
]
, (7.23)

where

µi =
1

NL

NL∑
j=1

Xi
(j)
ML
, i = 1, 2, (7.24)

is an estimate for the mean particle position. The value Xi
(j)
ML

is an approximation of
the jth independent sample path of Xi(T ) using some timestepping method with ML
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timesteps.
For the one-dimensional homogeneous model with zero background velocity stud-

ied in Section 2.1.1 (equations (2.13) and (2.8)) it is possible to derive an exact expres-
sion for the spread s. Details of the derivation can be found in Appendix A.2.2 from
which we obtain

s ∼

t for t� τ,
√
t for t� τ,

for stochastic U(0) ∼ Normal(0, σ2
U) and

s ∼

t
3
2 for t� τ,
√
t for t� τ,

for constant U(0). The same behaviour can also be obtained theoretically for a two-
dimensional homogeneous model with zero background velocity (i.e. v = 0 in equa-
tions (7.1) and (7.2)). The result for stochastic U(0) agrees with the analysis from
Taylor (1921) and the short time behaviour for constant U(0) agrees with Richard-
son’s t3 law for s2.

For the two-dimensional model described by equations (7.1) and (7.2) with non-
zero background velocity it is difficult to obtain a theoretical expression for the spread
so we just approximate it numerically. However, for small travel times we expect a
similar behaviour as in the case of a zero background velocity (since the particles have
not been separated in different eddies yet) and for large travel times we expect a further
increase in the particle spread.

In Figure 7-2 we plot the spread with respect to time T for random and constant
U(0) using the Symplectic Euler method. The plots contain data for three different
values of N (and also different Λ as discussed at the end of Section 7.1.3) and the
solid vertical lines indicate the value of τ that corresponds to each value of N . The
horizontal dotted lines represent the value of 2Λ since we are interested to see at what
times the spread becomes larger than 2Λ where Λ is the radius of the smallest eddy
corresponding to each number of modes N .

For random U(0) the rate is initially linear and for constant U(0) it is initially
proportional to t

3
2 . Therefore, the short time behaviour agrees with the theoretical

results of the simpler problem considered in Appendix A.2.2. After approximately
time τ (which depends on Λ as can be seen from equation (7.13)) the behaviour for
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Figure 7-2: Spread plots with respect to time for equations (7.1) and (7.2).
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both initial conditions is similar. We observe that for N = 250 and N = 200 the rate
becomes proportional to the square root of t.

For very large values of T the rate becomes linear again and it is also noisy as it can
be seen from the plot. The reason that it becomes linear is due to the fact that for large
times T the particles are separated in different eddies of the background velocity field
which causes an increase in the rate. This separation is expected to happen at times
when the spread exceeds the value 2Λ (since Λ is the radius of the smallest eddy)
which is also the case (approximately) for our model as it can be seen from the plot.
For N = 150 the rate only becomes linear after time τ .

7.1.5 Numerical results

In this section we present some Monte Carlo results in a similar way as in Chapter 6
for the one-dimensional model. We approximate the solution of the two-dimensional
model given by equations (7.1) and (7.2) with τ , σU and v(X, t) as in equations (7.13),
(7.11) and (7.5) respectively. The model parameters areN = 250, L = 1000, Λ = 0.2,
E0 = 1, p = 5/3 and C = 1. For initial conditions we use X(0) = (0, 0) and U(0) =

(U1(0), U2(0)) with U1(0), U2(0) independent and distributed as Normal(0, σ2
U).

Since our model is homogeneous the profiles of σU and τ (see Section 7.1.2) re-
main constant and they do not become large as in the one-dimensional inhomogeneous
model considered in Chapter 6. As a result, we do not expect any large improve-
ments in the Monte Carlo performance when using Geometric Langevin or BAOAB
methods. Therefore, we only consider the Symplectic Euler method which is currently
used by the Met Office and concentrate on investigating the gains of MLMC compared
to StMC.

In order to choose suitable travel times we use the spread plot given in Figure 7-2a.
We consider two travel times, T1 ≈ τ+TΛ

2
and T2 ≈ 3

2
TΛ where TΛ is defined as the

time when the spread becomes larger than 2Λ. We choose the first time T1 in order
to compare results when the spread is linear and the particles are not yet separated
into different eddies which means that we are in the regime where the spread is due
to turbulence. The second time T2 > TΛ is chosen in order to study how the Monte
Carlo methods are affected when the particles are separated in different eddies (since
Λ is the radius of the smallest eddy). In particular, when the travel time is larger than
TΛ it might be harder to couple the random variables in the MLMC coarse step since
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the fine and coarse trajectories might be separated into different eddies.
For our given set of parameters we have that τ ≈ 1.00 and from the plot TΛ ≈ 18.2

and therefore we use T1 = 10 and T2 = 28. From the model scales Section 7.1.3 and
since T ref ≈ 147s we have that T1 corresponds to 1470s = 24.5min of travel time and
T2 corresponds to 4116s = 68.6min of travel time.

Our quantity of interest is the particle concentration in a two-dimensional box
[a1, b1] × [a2, b2] at the final time T . In mathematical terms we would like to ap-
proximate E[1[a1,b1]×[a2,b2](X(T ))] where

1[a1,b1]×[a2,b2](x) =

1 if x ∈ [a1, b1]× [a2, b2],

0 otherwise,
(7.25)

is the two-dimensional indicator function. However, the discontinuity of the indicator
function causes an increase in the MLMC variance and therefore we would like to
use a smooth approximation as discussed in Section 5.4 for the one-dimensional case.
In order to construct this smooth approximation we first write equation (7.25) in the
following form

1[a1,b1]×[a2,b2](x) = 1[a1,b1](x1) ·1[a2,b2](x2) =

1 if x ∈ [a1, b1]× [a2, b2],

0 otherwise,
(7.26)

with x = (x1, x2). Then, we approximate each of the functions 1[a1,b1](x1) and
1[a2,b2](x2) by a smoothing polynomial (Giles et al., 2015) in exactly the same way
as we did in Section 5.4.1. Our quantity of interest then simply becomes the product
of two smoothed indicator functions. We also use the same smoothing polynomial
parameters δ and r, i.e. δ = 0.1 and r = 4. For T1 = 10 the two-dimensional box
is [15.26, 15.46] × [1.68, 1.78] and for T2 = 28 is [37.85, 38.85] × [1.87, 1.97]. These
boxes are chosen such that they are around the mean particle position and contain
approximately 10% of the released particles.

Before we present our Monte Carlo results we first construct some trajectory plots
for our two travel times T1 = 10 and T2 = 28. In Figure 7-3 we construct two trajectory
plots using the Symplectic Euler method and each plot contains 40 trajectories. We
observe that in both cases the particles initially form a narrow plume and at later times
they start spreading.
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Figure 7-3: Two-dimensional trajectory plots
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Figure 7-4: Variance rates - Concentration

Finally, we present our Monte Carlo results. We compare Standard and Multilevel
Monte Carlo with the Symplectic Euler (SE) timestepping method. In Figure 7-4 we
firstly plot V ar[Yl] as a function of the timestep size hl. We observe that for both travel
times the variance rate is proportional to h2

l which confirms condition (iii) of Theorem
3.1 (complexity theorem). Therefore we expect to see O(ε−2) cost rates for MLMC.

In Figure 7-5 we plot the total computational cost of StMC and MLMC. The cost
is plotted as a function of the root mean square error tolerance ε. The MLMC coars-
est level timestep size for T1 = 10 is h0 = T1

180
≈ 5.56 · 10−2 and for T2 = 28 is

h0 = T2

400
≈ 7.0·10−2. For the two computational times we observe a similar behaviour
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Figure 7-5: Cost rates - Concentration

but for T2 = 28 the overall cost is higher. The MLMC cost rates are asymptotically
proportional to ε−2 as expected from the quadratic variance decay rates shown in Fig-
ure 7-4. The StMC cost rates are asymptotically proportional to ε−3 which follows
from the discussion in Section 3.2.1 and equation (3.20).

For the travel time T1 = 10 we can also see that when the tolerance is approx-
imately larger than 3 · 10−3 is better to use the StMC but for smaller tolerances the
MLMC method becomes faster. For T2 = 28 the MLMC method becomes faster when
the tolerance is approximately smaller than 1 ·10−3. Now if we compare the two travel
times, we can see that for T1 = 10 the MLMC method gives a benefit for a larger
tolerance and this is probably due to the fact that there is less separation of particles in
different eddies.

Finally, note that the MLMC cost also depends on the timestep size of the coarsest
level. When Theorem 3.1 holds the cost is concentrated on the coarsest level and
therefore by increasing the corresponding timestep size (and also the number of levels)
we can reduce the overall cost. However, we might need a smaller tolerance to obtain
the ε−2 asymptotic behaviour of the cost and in addition if the timestep size is too large
then the Symplectic Euler method will become unstable (see also Section 3.1 for a
discussion on instability). The effect on the cost of the coarsest level timestep size is
studied in Section 7.3.
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7.2 The three-dimensional model

Next, we study a three-dimensional model. For the horizontal direction we assume that
the motion is described by the two-dimensional model of the previous section with the
addition of vertical wind-shear and for the vertical direction we assume that the motion
is described by the model from Chapter 6. In particular, we assume that σU and τ vary
strongly with height. In this section we denote by U(t) = (U1(t), U2(t), U3(t)) and
X(t) = (X1(t), X2(t), X3(t)) the three-dimensional velocity and position respectively.
The first two components denote the horizontal motion and third component denotes
the vertical motion. The model is given by the following SDEs

dUi(t) = −Ui(t)
τho

dt+

√
2σ2

U,ho

τho
dWi(t), (7.27)

dXi(t) = (vi(X(t), t) + Ui(t)) dt, i = 1, 2, (7.28)

dU3(t) = −λ(X3(t))U3(t)dt− ∂V

∂X3

(X3(t), U3(t))dt+ σ(X3(t))dW3(t), (7.29)

dX3(t) = U3(t)dt, (7.30)

where

λ(X) =
1

τve(X)
, σ(X) =

√
2σ2

U,ve(X)

τve(X)
, (7.31)

∂V

∂X
(X,U) = −1

2

[
1 +

(
U

σU,ve(X)

)2
]
∂σ2

U,ve

∂X
(X), (7.32)

and W(t) = (W1(t),W2(t),W3(t)) is a three-dimensional Brownian motion. The
notation ”ho” is used to denote the horizontal profiles and the notation ”ve” is used to
denote the vertical profiles.

Equations (7.27) and (7.28) are as in the two-dimensional model considered in
Section 7.1 and we use the same profiles for τho and σU,ho. In particular we use

σ2
U,ho =

(2π)1−p

p− 1
E0

(
Λ

L

)p−1

, τho =
1

C
√
k3
NE(kN)

, (7.33)

where E(k) = E0L(kL)−p and Λ, L, E0, p, C and kN are constants. The background
velocity field (v1(X(t), t), v2(X(t), t)) will be slightly different than the one used be-
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fore and it is defined in Section 7.2.1. Also, it is applied only on the horizontal plane
since in reality the vertical background velocities are much smaller than the horizontal
velocities and can be neglected.

For the vertical profiles σU,ve and τve we use the same functions as in Section 2.2
which are given by

σU,ve(X) = κσu
∗
(

1− X

H

) 3
4

, τve(X) = κτ
X

σU,ve(X)
, X ∈ (0, H), (7.34)

where κσ, κτ , u∗ and H are constants. The Met Office’s regularisation given by equa-
tions (2.24) and (2.25) is also applied in this case. Note that for the horizontal profiles
we could use similar functions as in (7.34) (Webster et al., 2003) but for simplicity we
assume the same profiles as in the two-dimensional case.

Next, we define the boundary conditions. On the horizontal plane we assume that
there are no boundary conditions and that the particles can travel anywhere as in Sec-
tion 7.1. On the vertical motion however, we assume reflective boundary conditions as
in the one-dimensional inhomogeneous model. When a particle hits the lower bound-
ary (X3 = 0) or the upper boundary (X3 = H) it is reflected elastically as described
by equations (2.26) and (2.27).

Finally, we define the initial conditions. As in the two-dimensional case we use
X(0) = (0, 0, X3(0)) and U(0) = (U1(0), U2(0), U3(0)) with U1(0), U2(0), U3(0) in-
dependent and normally distributed. U1(0), U2(0) and distributed asNormal(0, σ2

U,ho)

and U3(0) is distributed as Normal(0, σ2
U,ve(X3(0))). The value of X3(0) will be con-

stant.

7.2.1 The background velocity field

For the background velocity field of the three-dimensional model we use the same
equations as in the two-dimensional case but with some changes in order to add de-
pendence on the height. For this, we apply the analysis presented in Holton (2004).
Writing all the details is beyond the scope of this thesis so we just mention some of
the key results and assumptions.

The author of Holton (2004) begins from the Navier-Stokes equations and takes
into account two forces that act on a parcel of air in the boundary layer, the viscous
shear force and the Coriolis force. Then, they make a series of assumptions like for
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example assuming a horizontally homogeneous turbulence (as in our case) and mak-
ing the Boussinesq approximation. With the Boussinesq approximation the density is
assumed to be constant everywhere, except for the terms where it appears multiplied
by the gravity’s acceleration constant (the buoyancy terms). They also assume the no-
slip boundary condition at the bottom of the boundary layer, i.e. that the background
velocity is zero at that point. Then, they assume the existence of a horizontal back-
ground velocity field (v1,g(X1, X2, t), v2,g(X1, X2, t)), called the geostrophic velocity
of the free atmosphere, that depends only on the horizontal variables. In our case this
field can be the one that we have already used for the two-dimensional model which is
given by equation (7.5).

With the above assumptions, they then derive the following equations of what is
called the Ekman layer

Km
∂2v1

∂x2
3

(x1, x2, x3, t) + c(v2(x1, x2, x3, t)− v2,g(x1, x2, t)) = 0, (7.35)

Km
∂2v2

∂x2
3

(x1, x2, x3, t)− c(v1(x1, x2, x3, t)− v1,g(x1, x2, t)) = 0, (7.36)

where Km (eddy viscosity) and c (Coriolis parameter) are constants. The solution
v(X, t) = (v1(X, t), v2(X, t)) of equations (7.35) and (7.36) will then be the back-
ground velocity field that we use in the model equation (7.28).

With the no-slip assumption at the bottom of the boundary layer the following
holds

v1(x1, x2, x3, t) = v2(x1, x2, x3, t) = 0 when x3 = 0. (7.37)

Also, in Holton (2004) they assume that (v1(X, t), v2(X, t)) approaches (v1,g, v2,g)

when you are far from the ground which gives the following conditions

v1(x1, x2, x3, t)→ v1,g(x1, x2, t), as x3 →∞

v2(x1, x2, x3, t)→ v2,g(x1, x2, t), as x3 →∞
(7.38)

The system of ODEs (7.35) and (7.36) with the boundary conditions (7.37) and
(7.38) can now be solved (Holton, 2004) to give

v1 = v1,g(1− e−γx3 cos(γx3))− v2,ge
−γx3 sin(γx3), (7.39)

v2 = v2,g(1− e−γx3 cos(γx3))− v1,ge
−γx3 sin(γx3), (7.40)
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where γ =
√

c
2Km

. Equations (7.39) and (7.40) are called the Ekman spiral and they
lead to wind-shear, i.e. a variation of the horizontal velocity with height. The physical
value of Km is 5m2s−1, c is given by 10−4s−1 and γ by 3 · 10−3m−1. With (v1,g, v2,g)

as in (7.5) we now have our background velocity field.
The model scales for the three-dimensional model are the same as the ones used

for the two-dimensional model in the previous section.

7.2.2 Numerical results

Finally, we present some numerical results. As in the two-dimensional case we con-
sider the Standard and Multilevel Monte Carlo methods with Symplectic Euler (SE).
Our model parameters are N = 250, L = 1000, Λ = 0.2, E0 = 1, p = 5/3 and C = 1

for the horizontal motion and κσ = 1.3, κτ = 0.5, u∗ = 0.2, H = 1 and εreg = 0.01

for the vertical motion. These are the same parameters used for the numerical re-
sults in Sections 7.1 and 6.1 respectively. For the background velocity field equations
(7.39) and (7.40) we use γ = 3. Our initial conditions are X(0) = (0, 0, 0.05) and
U(0) = (U1(0), U2(0), U3(0)) with U1(0), U2(0), U3(0) independent and normally dis-
tributed. U1(0), U2(0) and distributed as Normal(0, σ2

U,ho) and U3(0) is distributed as
Normal(0, σ2

U,ve(0.05)). Our travel times are T1 = 1 and T2 = 8 which correspond to
approximately 147s = 2.45min and 8 · 147s = 19.6min respectively.

Our quantity of interest is the particle concentration in a three-dimensional box
[a1, b1]× [a2, b2]× [a3, b3] which mathematically means that we approximate
E[1[a1,b1]×[a2,b2]×[a3,b3](X(T ))] where

1[a1,b1]×[a2,b2]×[a3,b3](x) =

1 if x ∈ [a1, b1]× [a2, b2]× [a3, b3],

0 otherwise.
(7.41)

As before, we approximate the three dimensional indicator function (7.41) by smooth-
ing polynomials with parameters δ = 0.1 and r = 4. For T1 = 1 the three-dimensional
box is [0.15, 0.25]× [0.15, 0.25]× [0.04, 0.07] and for T2 = 8 is [2.6, 3.2]× [2.1, 2.7]×
[0.06, 0.22]. These boxes are chosen with the same approach as before, i.e. they are
around the mean particle position and contain approximately 10% of the released par-
ticles.

In Figure 7-6 we firstly plot the variance V ar[Yl] as a function of the timestep size
hl. We observe that in both cases the variance decays with a quadratic rate which
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Figure 7-6: Variance rates - Concentration

confirms condition (iii) of Theorem 3.1. Therefore we expect to seeO(ε−2) cost rates
for MLMC.

In Figure 7-7 we plot the total computational cost of StMC and MLMC as a func-
tion of the root mean square error tolerance ε. The MLMC coarsest level timestep
size for T1 = 1 is h0 = T1

40
= 2.5 · 10−2 and for T2 = 8 is h0 = T2

700
≈ 1.14 · 10−2.

For both travel times the StMC cost rates are asymptotically proportional to ε−3 as ex-
pected from the discussion in Section 3.2.1. Also for T1 = 1 the MLMC cost rates are
asymptotically proportional to ε−2 which follows from Theorem 3.1 and the quadratic
variance rates shown in Figure 7-6a.

However for T2 = 8 the MLMC cost rates are not asymptotically proportional to
ε−2. One of the reasons for this is that the timestep size h0 of the coarsest level is not
small enough. By decreasing h0 the cost rates become quadratic but at the same time
the overall cost increases. The effect that h0 has on the MLMC performance will be
examined in Section 7.3. Also, by adding more data points for smaller ε in Figure 7-7b
or by increasing the number of MLMC levels would possibly help in the improvement
of the cost rate, but both approaches will require runs with large computational times.

Our conclusion for T1 = 1 is that when ε is approximately larger than 2 · 10−3

is better is use the StMC but for smaller tolerances the MLMC method is faster. For
T2 = 8 the MLMC method becomes faster when the tolerance is approximately smaller
than 5 ·10−4. As we will see in Section 7.3.1, increasing h0 reduces the orerall MLMC
cost but at the same time it has a small negative impact on the cost rates. As a result,
MLMC can be faster for larger values of ε since the two lines representing the StMC
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Figure 7-7: Cost rates - Concentration

and MLMC cost will intercept earlier.

7.3 Studying the effect of changing some model
parameters on the Monte Carlo performance

7.3.1 Varying the coarsest level timestep size

In this section we study how the MLMC performance is affected when we vary the
timestep size on the coarsest level. Since the MLMC cost is concentrated on the coars-
est level we expect to see a lower cost when we increase the size of the corresponding
timestep. The Symplectic Euler method however can be unstable when the timestep
size on every level is not small enough, so we also show results for BAOAB which does
not have any stability constraints. For all numerical experiments we use the three-
dimensional model and exactly the same model parameters as those used in Section
7.2. We only vary the number of timesteps M0 on the coarsest level and we consider
the travel time T = 1. The timestep on the coarsest level is denoted by h0 = T

M0
.

In Figure 7-8 we plot the same Symplectic Euler cost rates as in Figure 7-7a to-
gether with the corresponding BAOAB cost rates. For both timestepping methods we
have M0 = 40. We observe that BAOAB-MLMC is more expensive than Symplectic
Euler-MLMC and for both methods the cost rates are asymptotically proportional to
O(ε−2).
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Figure 7-8: Symplectic Euler and BAOAB cost rates - Concentration

Also note that BAOAB-StMC has the same cost as Symplectic Euler-StMC. With
this choice of model parameters, the two timestepping methods do not have a large
difference in the bias error as in the one-dimensional case and therefore they have a
similar cost. In Section 7.3.2 we change some values of the model parameters and
study when the BAOAB method can be faster than Symplectic Euler.

In Figure 7-9a we plot MLMC cost rates for different values of M0. For both
timestepping methods, decreasing the size ofM0 (which increases the coarsest timestep
h0) results in a reduction of the overall cost. As it can also be seen from the plot, this
change has a negative impact on the rates of the cost which become slightly larger than
quadratic. However there is still a lot of benefit, especially for larger ε, as can be seen
in Figure 7-9b. In Figure 7-9b we plot the same StMC cost values as in Figure 7-8
together with the MLMC cost rates that correspond to M0 = 10. We observe that for
all the values of ε considered, we have that the MLMC method is faster than StMC.
Therefore, it is possible for MLMC to become faster than StMC for larger values of ε
than those discussed at the end of Section 7.2.

If we compare only the MLMC costs from Figure 7-9b we can see that Symplectic
Euler is still faster than BAOAB when M0 is smaller. However, it is very important to
be careful with any further decrease of M0 since there are stability constaints for the
Symplectic Euler timestep size (see Section 3.1). For BAOAB there are no stability
constaints so it is possible to achieve further reductions in the cost by decreasing M0.
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Figure 7-9: Monte Carlo cost rates

7.3.2 Varying the model parameters

In the last section we change some of the model parameters and study a few scenarios
where we expect BAOAB-StMC to perform better than Symplectic Euler-StMC. The
first change is to reduce the value of the regularisation height to εreg = 0.002 from
εreg = 0.01 (see equations (2.24) and (2.25)). As discussed at the end of Section 2.2,
the function λ(X) present in the drift term of the vertical component of our three-
dimensional model (equation (7.29)) is bounded above by 1/τ(εreg). Reducing the
value of εreg increases the upper bound 1/τ(εreg) and therefore the function λ(X) can
take larger values. This property is then combined with the modified equations analysis
from Section 5.3.2 where we show that when λ(X) is large the BAOAB method is
expected to work better than Symplectic Euler.

Our next change is to reduce the height where the particles are reflected. Instead
of reflecting at the height X3 = 1 we reflect at X3 = 0.1 in order for the particles to
spend more time at lower heights where λ(X) is larger. Also, we reduce the particle
release height to X3 = 0.02 from X3 = 0.05 for the same reason. We do not show any
results for MLMC since we have already demonstrated that it has an asymptotically
better cost rate when compared to StMC.

In Figure 7-10a we plot the StMC cost rates for BAOAB and Symplectic Euler.
We observe that in this case the cost of BAOAB is smaller and both methods have an
asymptotic rate proportional to ε−3. This is the behaviour that we expected since the
particles spend more time near the lower boundary where λ(X) is large. The cost of
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Figure 7-10: StMC cost rates with lower regularisation, reflection and release heights

Symplectic Euler is approximately 2× larger than the cost of BAOAB.
In Figure 7-10b we reduce the regularisation and release height even further and

we observe an increase in the cost difference between the two timestepping methods.
This observation was expected since the function λ(X) can now take larger values
which slows down the Symplectic Euler method. The cost of Symplectic Euler is now
approximately 5× larger than the cost of BAOAB.

The conclusion from the numerical results of Figure 7-10 is that BAOAB-StMC
can be very useful in situations where the particles spend a lot of time in regions
where λ(X) is large. In addition, when the physical problem under consideration
does not have this property, we observed that BAOAB-StMC has the same cost as
Symplectic Euler-StMC (see Figure 7-8) and therefore using BAOAB can only result
in an improvement in the cost.

Our overall conclusion is similar to the one-dimensional case. For large tolerances
we recommend using BAOAB-StMC and for small tolerances we recommend using
Symplectic Euler-MLMC.
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Chapter 8

Conclusion

In this thesis we presented several improvements to the StMC-Symplectic Euler al-
gorithm currently used by the Met Office to problems from atmospheric dispersion
modelling. We firstly considered a one-dimensional model for vertical dispersion on
a fixed boundary layer and computed the particles’ mean position, concentration and
density function. We demonstrated that with improved timestepping methods and in
particular with Geometric Langevin and BAOAB, we can achieve significant speed-
ups for the StMC method when compared to using Symplectic Euler. In particular,
Geometric Langevin was approximately 13× faster and BAOAB was approximately
52× faster. The main reason for this improvement is due to the fact that Geometric
Langevin and BAOAB can work better when the term λ(X) (present in the drift term
of our model) becomes large which reduces the bias error.

In order to produce results for the particles’ concentration and density function we
used polynomial approximations to the indicator function as described in Giles et al.
(2015). For these approximations it was necessary to choose a priori two values for
some parameters δ and r and we then confirmed numerically that for our choice of
parameters the error introduced by the polynomial approximation is negligible when
compared to the bias error. The parameters δ and r can also be computed by using
on-the-fly estimators and the reader is referred to Giles et al. (2017) for more details.
This application can be a topic for future research.

We then developed and implemented a new algorithm for the treatment of reflec-
tive boundary conditions which preserves the quadratic variance decay of the MLMC
method. With this new treatment, which simply changes the sign of the random vari-
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ables when is necessary, we were able to show numerically that the MLMC method
improves the asymptotic cost rates. In particular for a given tolerance ε the correspond-
ing cost rate of the StMC method is asymptotically proportional to ε−3 and MLMC
method improves this rate to ε−2. The MLMC method can therefore be very useful
especially for small tolerances. However, for large tolerances we recommend the use
of StMC with BAOAB since it can be faster than MLMC.

All the above results were also proved theoretically with the addition of suitable
assumptions. We firstly proved existence and uniqueness of a solution to the one-
dimensional model by using a Lyapunov function and the theory from Khasminskii
(2011). Then, by using the theory from Milstein and Tretyakov (2005) and the same
Lyapunov function, we proved the convergence of our timestepping methods. The key
idea for this proof was to reject any trajectories that go outside a fixed domain.

Our next theoretical result was to prove the application of Threorem 3.1 (complex-
ity theorem (Giles, 2008)) to the one-dimensional models and in particular proving
that MLMC improves the asymptotic cost rates. We applied a direct approach based on
strong approximation results for a simplified model and a modified equations (Shard-
low, 2006), (Zygalakis, 2011), (Müller et al., 2015) approach for our inhomogeneous
model. In the case of the inhomogeneous model we computed modified equations for
every timestepping method, which also showed that BAOAB is almost a second order
method and therefore explain why it has a smaller bias error.

Our final result for the one-dimensional models was the implementation of an adap-
tive MLMC algorithm. For Symplectic Euler this gave some small improvements but
for Geometric Langevin we observed some counter-intuitive results such as an increase
in the bias error when reducing the average size of the timesteps. A further investiga-
tion to study these unexpected results can be a topic for future research.

Next, we considered higher dimensional models. Firstly, we studied a two-dimen-
sional model for homogeneous turbulence on the horizontal plane. We implemented
MLMC and showed numerically that improves the asymptotic cost rate to ε−2 from ε−3

which is the corresponding rate of StMC. Then, we studied a three-dimensional model
which is a combination of the horizontal structure of the two-dimensional model with
the vertical structure of the one-dimensional inhomogeneous model studied earlier. We
observed that in this case MLMC also improves the asymptotic cost rate to ε−2 and in
addition we demonstrated that in some special cases we have that the BAOAB method
reduces the overall cost of StMC.
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As mentioned above, one of the basic outcomes of this thesis is to show that
MLMC can reduce the asymptotic cost rate from ε−3 to ε−2 which is the best that
can be achieved for a Monte Carlo method. A possible direction for future research
can therefore be the study of Quasi-Monte Carlo methods which can reduce this rate
even further. In particular, with the Multilevel Quasi-Monte Carlo (MLQMC) method
we can reduce this rate to ε−α for some 1 < α < 2 that depends on the problem.
Examples of Standard Quasi-Monte Carlo and MLQMC can be found in Giles and
Waterhouse (2009) and Kuo et al. (2015).

Another topic for future research can be the study of higher dimensional models
with larger travel times. For the travel times that we considered in this thesis, the parti-
cles where not separated in different eddies (see also Figure 7-3) and this is something
that we believe will affect the MLMC method. Also, it is interesting to see how the
performance of the timestepping methods will be affected after this change.

Finally, another direction for future research could be studying the code of the Met
Office’s atmospheric dispersion model NAME and obtain a better understanding of
how the models are used in practice. The ultimate goal will then be to implement
MLMC and our timestepping methods in the NAME model in order to improve its
performance. This application will create even more directions for future research
since the NAME model also studies problems where the particles interact with each
other or are affected by chemical reactions.
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Lipschitz Noise Coefficient. SIAM Journal on Mathematical Analysis, 48(3):2189–
2226.

Watanabe, S. and Ikeda, N. (1981). Stochastic Differential Equations and Diffusion

Processes, volume 24. Elsevier.

Webster, H., Thomson, D., Johnson, B., Heard, I., Turnbull, K., Marenco, F., Kris-
tiansen, N., Dorsey, J., Minikin, A., Weinzierl, B., Schumann, U., Sparks, R.,
Loughlin, S., Hort, M., Leadbetter, S., Devenish, B., Manning, A., Witham, C.,
Haywood, J., and Golding, B. (2012). Operational prediction of ash concentrations
in the distal volcanic cloud from the 2010 Eyjafjallajökull eruption. Journal of Geo-

physical Research: Atmospheres, 117(D20).

Webster, H., Thomson, D., and Morrison, N. (2003). New turbulence profiles for
NAME. Met Office Turbulence and Diffusion note 288.

Wilson, J., Yee, E., Ek, N., and d’Amours, R. (2009). Lagrangian simulation of wind
transport in the urban environment. Quarterly Journal of the Royal Meteorological

Society, 135(643):1586–1602.

Zygalakis, K. C. (2011). On the existence and the applications of modified equa-
tions for stochastic differential equations. SIAM Journal on Scientific Computing,
33(1):102–130.

148



Appendix A

A.1 Verifying equation (2.17)

The simplified model is given by

dU(t) = −U(t)

τ
dt+

√
2σ2

U

τ
dW (t). (A.1)

This is an Ornstein-Uhlenbeck process so in order to find the solution we follow the
standard technique by considering the random variable Y (t) = e

1
τ
tU(t).

Applying Itô’s formula to Y (t) gives

dY (t) =

√
2σ2

U

τ
e

1
τ
tdW (t). (A.2)

Since τ and σU are constants we assume for simplicity that the system is at equilibrium
by setting the start time equal to minus infinity. Integrating equation (A.2) gives

Y (t) =

√
2σ2

U

τ

∫ t

−∞
e

1
τ
sdW (s), (A.3)

which implies

U(t) =

√
2σ2

U

τ
e−

1
τ
t

∫ t

−∞
e

1
τ
sdW (s). (A.4)
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Therefore, U(t) is Gaussian with mean zero and variance

V ar(U(t)) =
2σ2

U

τ
e−

2
τ
tV ar

(∫ t

−∞
e

1
τ
sdW (s)

)
=

2σ2
U

τ
e−

2
τ
tE
(∫ t

−∞
e

1
τ
sdW (s)

)2

=
2σ2

U

τ
e−

2
τ
t

∫ t

−∞
e

2
τ
sds (Itô isometry)

= σ2
U .

Then,

〈U(t)U(t0)〉 =
2σ2

U

τ
e−

1
τ
te−

1
τ
t0〈
∫ t

−∞
e

1
τ
sdW (s)

∫ t0

−∞
e

1
τ
sdW (s)〉

=
2σ2

U

τ
e−

1
τ
te−

1
τ
t0

[
〈
∫ t0

−∞
e

1
τ
sdW (s)

∫ t0

−∞
e

1
τ
sdW (s)〉

+ 〈
∫ t

t0

e
1
τ
sdW (s)

∫ t0

−∞
e

1
τ
sdW (s)〉

]
=

2σ2
U

τ
e−

1
τ
te−

1
τ
t0

[
〈
(∫ t0

−∞
e

1
τ
sdW (s)

)2

〉

+ 〈
∫ t

t0

e
1
τ
sdW (s)〉〈

∫ t0

−∞
e

1
τ
sdW (s)〉

]
by independence

=
2σ2

U

τ
e−

1
τ
te−

1
τ
t0

[
E
(∫ t0

−∞
e

1
τ
sdW (s)

)2
]

=
2σ2

U

τ
e−

1
τ
te−

1
τ
t0

(∫ t0

−∞
e

2
τ
sds

)
= σ2

Ue
−(t−t0)/τ .

By definition of R

R(t− t0) =
〈U(t)U(t0)〉
〈U2(t0)〉

=
σ2
Ue
−(t−t0)/τ

σ2
U

= e−(t−t0)/τ ,

150



which is equal to equation (2.17).

A.2 One-dimensional homogeneous model - Exact
solution and particle spread

We now compute the exact solution and an expression of the particle spread for the
one-dimensional homogeneous model given by

dU(t) = −λU(t)dt+ σdW (t), (A.5)

dX(t) = U(t)dt, (A.6)

with λ = 1
τ

and σ =

√
2σ2
U

τ
positive constants.

A.2.1 Exact solution

For the exact solution we let

Y(t) =

(
X(t)

U(t)

)
, Λ =

(
0 1

0 −λ

)
, Σ =

(
0

σ

)
(A.7)

so that equations (A.5) and (A.6) can be written as the following Ornstein-Uhlenbeck
process

dY(t) = ΛY(t)dt+ ΣdW(t). (A.8)

Applying Itô’s formula to Z(t) = e−ΛtY(t) gives

dZ(t) = e−ΛtΣdW(t). (A.9)

Integrating gives

Z(t) = Z(0) +

∫ t

0

e−ΛsΣdW(s), (A.10)

which implies that

Y(t) = eΛtY(0) +

∫ t

0

e−Λ(s−t)ΣdW(s). (A.11)
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The function eΛt is given by

eΛt =
∞∑
n=0

(Λt)n

n!
, (A.12)

and by considering matrix multiplication we can write

eΛt =

(
1 1−e−λt

λ

0 e−λt

)
. (A.13)

Substituting in equation (A.11) we obtain

Y(t) =

(
1 1−e−λt

λ

0 e−λt

)
Y(0)︸ ︷︷ ︸

A

+

∫ t

0

(
1 1−eλ(s−t)

λ

0 eλ(s−t)

)(
0

σ

)
dW(s)︸ ︷︷ ︸

B

. (A.14)

We assume that Y(0) is independent from the Brownian motion W(t) and that
X(0) is a constant. Therefore, Y(t) is a random variable with mean E[A] and variance
V ar[A] + V ar[B].

Computing E[Y(t)]:

By linearity we have that

E[Y(t)] =

(
1 1−e−λt

λ

0 e−λt

)
E[Y(0)] =

(
1 1−e−λt

λ

0 e−λt

)(
X(0)

E[U(0)]

)
. (A.15)

Computing V ar[Y(t)]:

For the variable A

V ar[A] = V ar

[(
1 1−e−λt

λ

0 e−λt

)(
X(0)

U(0)

)]

=

(
1 1−e−λt

λ

0 e−λt

)
V ar

[(
X(0)

U(0)

)](
1 0

1−e−λt
λ

e−λt

)

=

(
1 1−e−λt

λ

0 e−λt

)(
0 0

0 V ar[U(0)]

)(
1 0

1−e−λt
λ

e−λt

)
since X(0) constant

=

(
(1−e−λt)2

λ2
1−e−λt

λ
e−λt

1−e−λt
λ

e−λt e−2λt

)
V ar[U(0)].
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For the variable B

V ar[B] = V ar

[∫ t

0

(
σ
λ
(1− eλ(s−t))

σeλ(s−t)

)
dW(s)

]

=

∫ t

0

(
σ
λ
(1− eλ(s−t))

σeλ(s−t)

)(
σ
λ
(1− eλ(s−t)) σeλ(s−t)

)
ds

=

(
σ2

2λ3 (2λt− 3 + 4e−λt − e−2λt) σ2

2λ2 (1− 2e−λt + e−2λt)
σ2

2λ2 (1− 2e−λt + e−2λt) σ2

2λ
(1− e−2λt)

)

By sampling from the distribution of the random variable U(0) and by knowing the
mean and covariance matrix of the normally distributed random variable B we have
the exact solution of the homogeneous model.

A.2.2 Particle spread

As described in Section 7.1.4 the particle spread is given by the standard deviation of
Xt i.e.

√
V ar[X(t)]. From Section A.2.1 we have

V ar[X(t)] =
(1− e−λt)2

λ2
V ar[U(0)] +

σ2

2λ3
(2λt− 3 + 4e−λt − e−2λt), (A.16)

and by taking the square root we have an expression for the particle spread with respect
to time. Next, we analyse how the short and long time behaviour of the spread is
affected by the choice of U(0) which can be deterministic or random.

Deterministic U(0)

When U(0) is deterministic we have that V ar[U(0)] = 0 which gives

V ar[X(t)] =
σ2

2λ3
(2λt− 3 + 4e−λt − e−2λt). (A.17)

For the short time behaviour we Taylor expand equation (A.17) to obtain

V ar[X(t)] =
σ2

3
t3 + higher order terms, (A.18)
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and for the long time behaviour we neglect the terms e−λt and e−2λt in equation (A.17)
to obtain

V ar[X(t)] ≈ σ2

2λ3
(2λt− 3). (A.19)

Therefore we have

spread ∼

t
3
2 for small t,
√
t for large t.

Random U(0)

When U(0) is random we assume that U(0) ∼ Normal(0, σ2
U) which gives

V ar[X(t)] =
(1− e−λt)2

λ2
σ2
U +

σ2

2λ3
(2λt− 3 + 4e−λt − e−2λt). (A.20)

As before, for the short time behaviour we Taylor expand equation (A.20) to obtain

V ar[X(t)] = σ2
U t

2 + higher order terms, (A.21)

and for the long time behaviour we neglect the terms e−λt and e−2λt to obtain

V ar[X(t)] ≈ σ2
U

λ2
+

σ2

2λ3
(2λt− 3). (A.22)

Therefore we have

spread ∼

t for small t,
√
t for large t.

A.3 A Taylor series expansion approach for the weak
convergence of the Geometric Langevin method

In this section we prove the equivalent of Corollary 4.18 for the Geometric Langevin
method.

Corollary A.1. If the Euler-Maruyama method applied to SDEs (2.7) and (2.8) con-

verges with a weak error of order 1 then the weak error of the Geometric Langevin

method, applied to the same equations, also converges with at least order 1.
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Proof . As before we denote by (XGL
1 , UGL

1 ) the Geometric Langevin approximation
to the exact solution (X(h), U(h)) of the inhomogeneous model after one timestep as
described by equations (3.8), (3.9) and (3.10). This approximation can also be written
as

UGL
1 = e−λ(X0)hU0 + σ(X0)αhξ0 −

∂V

∂X
(X0, e

−λ(X0)hU0 + σ(X0)αhξ0)h, (A.23)

XGL
1 = X0 + UGL

1 h, (A.24)

with αh =
√

(1− e−2λ(X0)h) /2λ(X0) and ξ0 ∼ Normal(0, 1).
We begin by expanding some of the above functions. For e−λ(X0)h we have

e−λ(X0)h = 1− λ(X0)h+O(h2). (A.25)

For αh we have

αh =

√
h− λ(X0)h2 +

2

3
λ2(X0)h3 +O(h4) by Taylor expanding the numerator,

=
√
h

√
1− λ(X0)h+

2

3
λ2(X0)h2 +O(h3),

=
√
h

(
1− λ(X0)h+

2

3
λ2(X0)h2 +O(h3)

) 1
2

,

=
√
h(1 +O(h)) by using the binomial theorem.

And finally, for the ∂V
∂X

term

∂V

∂X
(X0, e

−λ(X0)hU0 + σ(X0)αhξ0) =
∂V

∂X
(X0, (1− λ(X0)h)U0 + σ(X0)

√
hξ0 + A1),

where A1 contains terms which are either constant multiples of h
3
2 ξ0 or of the order

O(h2). Then, by Taylor expanding with respect to the second argument and multipying
by h we obtain

h
∂V

∂X
(X0, e

−λ(X0)hU0 + σ(X0)αhξ0) = h
∂V

∂X
(X0, U0) + A2, (A.26)

where A2 has the same form of lead order terms as A1.
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Substituting in equations (A.23), (A.24) they become

UGL
1 = (1− λ(X0)h)U0 + σ(X0)

√
hξ0 −

∂V

∂X
(X0, U0)h+ A3 = UEM

1 + A3,

(A.27)

XGL
1 = X0 + U0h+ A4 = XEM

1 + A4, (A.28)

where (XEM
1 , UEM

1 ) is the corresponding Euler-Maruyama approximation and A3, A4

are of the same form as A1, A2.
We then consider the Taylor expansion of φ(XGL

1 , UGL
1 ) where φ is a polynomial as

in Theorem 4.17.

φ(XGL
1 , UGL

1 ) = φ(XEM
1 + A4, U

EM
1 + A3)

= φ(XEM
1 , UEM

1 + A3) +
∂φ

∂X
(XEM

1 , UEM
1 + A3)A4 +O(h3)

= φ(XEM
1 , UEM

1 ) +
∂φ

∂U
(XEM

1 , UEM
1 )A3 +

∂φ

∂X
(XEM

1 , UEM
1 + A3)A4

+O(h3).

All terms except from φ(XEM
1 , UEM

1 ) are either constant multiples of ξ0 or of the order
O(h2) (since φ is a polynomial) so their expectation is either 0 or of the order O(h2).
Therefore we have,

E[φ(XGL
1 , UGL

1 )] = E[φ(XEM
1 , UEM

1 )] +O(h2). (A.29)

As in Definition 4.11 we consider the following difference or bias error

∣∣E [φ(X(h), U(h))]− E
[
φ(XGL

1 , UGL
1 )
]∣∣ = | E [φ(X(h), U(h))]− E

[
φ(XEM

1 , UEM
1 )
]

+O(h2) | .

Since we assume that the Euler-Maruyama method converges weakly with order 1 we
have ∣∣E [φ(X(h), U(h))]− E

[
φ(XEM

1 , UEM
1 )
]∣∣ ≤ CEMh2, (A.30)

for some constant CEM > 0 which implies

∣∣E [φ(X(h), U(h))]− E
[
φ(XGL

1 , UGL
1 )
]∣∣ = O(h2), (A.31)
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and completes the proof by using Theorem 4.17.

A.4 Number of samples on each MLMC level for the
one-dimensional inhomogeneous model

In Table A.1 we present some data on the parameters and number of samples per level
for two representative MLMC runs, one for the mean particle position and one for the
smoothed indicator function. For each timestepping method we choose a tolerance ε
and present the corresponding number of timesteps M0 on the coarsest level, the total
number of levels L, the timestep size hL = T

M02L
on the finest level and the number of

samples Nl on each level l.

Mean particle position Concentration using P r=4,δ=0.1
[a,b] (X(T ))

SE GL BAOAB SE GL BAOAB
ε 6.9 · 10−5 8.8 · 10−5 8.8 · 10−5 6.9 · 10−5 8.8 · 10−5 8.8 · 10−5

M0 40 40 40 80 80 40
L 8 4 2 7 3 2
hL 9.8 · 10−5 1.6 · 10−3 6.3 · 10−3 9.8 · 10−5 1.6 · 10−3 6.3 · 10−3

N0 6787563 3899945 3432656 68039360 37703814 43656860
N1 843711 357389 305644 10473620 5864870 11875896
N2 190585 133744 113927 3220810 2197495 4735493
N3 55965 48913 1055256 788799
N4 18142 17103 361439
N5 6064 126656
N6 2016 44076
N7 748 15776
N8 266

Table A.1: MLMC parameters and number of samples per level for the mean particle
position and concentration.
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