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1 Introduction

Network communication protocols such as the IEEE 802.11 wireless protocol are
currently best modelled as Markov chains. In these situations we have some protocol
parameters α, and a transition matrix P (α) from which we can compute the steady state
(equilibrium) distribution z(α) and hence final desired quantities q(α), which might be
for example the throughput of the protocol. Typically the chain will have thousands of
states, and a particular example of interest is the Bianchi chain defined later. Generally
we want to optimise q, perhaps subject to some constraints that also depend on the
Markov chain. To do this efficiently we need the gradient of q with respect to α, and
therefore need the gradient of z and other properties of the chain with respect to α. The
matrix formulas available for this (e.g. in [12] and [4]) involve the so-called fundamental
matrix (I−P )# = (I−P +1zT)−1−1zT, where z is the equilibrium state and 1 a vector
of 1s. Then dzT/dα = zT (dP/dα) (I−P )#, but is this the best numerical method, and is
it stable ? Are there approximate gradients available which are faster and still sufficiently
accurate ? In some cases BT would like to do the whole calculation in computer algebra,
and get a series expansion of the equilibrium z with respect to a parameter in P . In
addition to the steady state z, the same questions arise for the mixing time and the mean
hitting times. The mixing time can here be thought of as (| log |λ2||)−1 or 1/(1 − |λ2|)
where |λ2| is the second largest absolute value of the eigenvalues of P (although Example
26 of [1] shows this may not always have such a close link to mixing as is sometimes
claimed).

Two qualitative features that were brought to the Study Group’s attention were:

• the transition matrix P is large, but sparse.

• the systems of linear equations to be solved are generally singular and need some
additional normalisation condition, such as is provided by using the fundamental
matrix (I − P )#.

We also note a third highly important property regarding applications of numerical linear
algebra:

• the transition matrix P is asymmetric.

A realistic dimension for the matrix P in the Bianchi model [3] described below is
8064 × 8064, but on average there are only a few nonzero entries per column. Merely
storing such a large matrix in dense form would require nearly 0.5 GBytes using 64-bit
floating point numbers, and computing its LU factorisation takes around 80 seconds on
a modern microprocessor. It is thus highly desirable to employ specialised algorithms for
sparse matrices. These algorithms are generally divided between those only applicable to
symmetric matrices, the most prominent being the conjugate-gradient (CG) algorithm
for solving linear equations (e.g. [8]), and those applicable to general matrices. A similar
division is present in the literature on numerical eigenvalue problems.
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In the problems encountered at the Study Group, the singular matrices of dimension n
had rank n− 1. We restored each matrix to full rank by replacing one row or column to
impose a suitable normalisation condition: examples of how this was done will be given
in Section 3.1.

We shall also show how the derivatives of the steady state and eigenvalues with respect
to the parameters in P may be computed in terms of the corresponding derivatives of P .
These computations may be formulated using matrix perturbation theory, as commonly
met for Hermitian matrices in the context of quantum mechanics.

This study is motivated by the Bianchi model [3] for which some quantities of interest,
notably the equilibrium population, may be written down explicitly. However, the
numerical techniques employed should be applicable much more widely. The key feature
that we exploit is the presence of “escalator” structures in the transition matrix.
Escalators correspond to deterministic increments of a backoff time counter in the
communication protocol. In linear algebra terms, the escalators contribute transposed
Jordan blocks to the transition matrix. The spectra of the transition matrices shown
below in Figure 5 are typical of the behaviour of Jordan blocks under the addition of
small perturbations. Each Jordan block has a single degenerate eigenvalue that splits
into a circular pattern when perturbed. These spectra are highly undesirable for efficient
performance of iterative methods like GMRES [14], but the lower triangular part of the
matrix (or even just the bidiagonal matrix of the unperturbed Jordan block) makes a
highly effective preconditioner. A concrete example is given below in Section 4.3.

1.1 The Bianchi chain

A particular example of interest is the Bianchi model of an RTS/CTS WAP protocol.
This has parameters

W = minimum congestion window (1)

m = value such that 2mW is the maximum congestion window (2)

p = packet loss probability, computed from the number of users. (3)

The states of the system form m + 1 downward-going escalators E0, E1, . . . , Em of
heights W0, W1, . . . , Wm where Wi = 2iW . The states are labelled by (i, k) where
i ∈ {0, 1, . . . , m} labels the backoff stage (i.e. which escalator), and k ∈ {0, 1, . . . , Wi−1}
is the backoff time counter (height on that escalator). The dynamics may be summarised
by the following rules.

• From (i, k) with k ≥ 1, move with probability one to state (i, k−1), one step down
Ei.

• From (i, 0) (the bottom of Ei) jump with probability 1 − p to a random point on
escalator E0.

• From (i, 0) jump with probability p to a random point on escalator Emin(i+1,m).
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In formulae,

p(i, k; i, k − 1) = 1 for each i and for 1 ≤ k ≤ Wi − 1, (4)

p(i, 0; 0, k) =
1 − p

W0

for each i and for 0 ≤ k ≤ W0 − 1, (5)

p(i, 0; i + 1, k) =
p

Wi+1

for 0 ≤ i ≤ m − 1 and for 0 ≤ k ≤ Wi+1 − 1, (6)

p(m, 0; m, k) =
p

Wm

for 0 ≤ k ≤ Wm − 1, (7)

where we use p(i, k; j, l) to denote the 1-step transition probability from (i, k) to (j, l).
We can perhaps picture the state as a boy playing on this set of downwards-moving
escalators, making random jumps according to these rules when he reaches the bottom
of an escalator, but strictly obeying a sign that says “No jumping on the escalators”.
The system is represented schematically in the (i, k)-plane in Figure 1.

p

1 − p 1 − p 1 − p

pp

p

1 − p

(0, 0) (1, 0)

(m, Wm − 1)

etc.

etc.

{{ { {

(m − 1, 0) (m, 0)

E1

E0

Em−1

Em

(0, W0 − 1)

(1, W1 − 1)

Figure 1: Schematic diagram of the Bianchi Markov chain. When the system
is on an escalator Ei it descends deterministically at unit rate. When it is at
the bottom of Ei it jumps with probability 1− p to a random state of E0, and
with probability p to a random state of Ei+1 (or Em if i = m).

There are n = (2m+1 − 1)W states, and the case m = 3, W = 32 has 480 states, about
the smallest reasonable model. But m might in practice be up to 5, and W up to 128, in
which case n = 8064. The values of p of interest are generally small, perhaps up to 0.05
but with 0.01 as more typical. To arrange the states in a linear order we take first E0

with k increasing, then E1 etc, so (i, k) maps to α = 1 + k + (2i − 1)W with 1 ≤ α ≤ n.

Figure 2 shows the sparsity pattern of the transition matrix for two different choices of
m and W : the black entries are those that are positive, the others are 0. Both choices
give much smaller matrices than would be realistic. Choosing m = 5 and W = 128 gives
an 8064 × 8064 matrix that would be difficult to plot.

The diagram in Figure 3 shows the transitions for m = 2, W = 4, and Figure 4 is for
m = 3, W = 6. The “escalators” visible in these graphs and in the sparsity pattern
diagrams are a typical structure, whatever the values of W and m.
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Figure 2: Nonzero elements of the Bianchi transition matrix for (a) m = 2 and W = 4,
and (b) m = 4 and W = 6.
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Figure 3: State graph for the Bianchi model m = 2, W = 4.
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Figure 4: State graph for the Bianchi model, m = 3, W = 6.

Figure 5 shows the distribution of the eigenvalues of the transition matrix for the same
two choices of m and W as Figure 2. As for any transition matrix, there is an eigenvalue
λ = 1 whose left eigenvector gives the equilibrium population, as described later. All
other eigenvalues lie inside the unit circle as shown. The distribution of eigenvalues on
circles is typical of perturbed Jordan blocks as shown in Appendix B.

2 General notation and theory

For a discrete-time Markov chain with states denoted by i, j, etc, we shall let

pij = Pr(Xt+1 = j|Xt = i) (8)
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Figure 5: Complex eigenvalues of the Bianchi transition matrix for (a) m = 2
and W = 4, and (b) m = 4 and W = 6. The unit circle is also shown.

be the 1-step transition probability from i to j, and n be the number of states.1 We also
think of the states as the vertices of a directed graph, in which there is an edge from i
to j if and only if pij > 0, and these are the graphs illustrated in Figures 3 and 4. We
shall assume that the states form a single closed class, i.e. for any states i and j there
is a path from i to j in that graph. We shall also assume that the chain is aperiodic,
i.e. it is not possible to partition the states into r ≥ 2 sets A1, A2, . . . , Ar such that
from each As you can only get to As+1, and from Ar only to A1. A sufficient condition
for this is that some pii > 0, or that from some i to some j there are paths of coprime
lengths. When these conditions hold, the Markov chain has steady state probabilities

zi = lim
t→∞

(Pr(Xt = i)) , (9)

and the system is ergodic in the sense that zi is also the long-term proportion of the time
that is spent in state i. Coming now to the matrix formulation, the matrix P = (pij)
has P1 = 1 where 1 is a column vector with every entry 1. So λ1 = 1 is an eigenvalue
of P , and under the conditions we have assumed, each other eigenvalue lies in |λ| < 1.
When the initial probabilities of the system being in state i form a row vector pT

0 , the
probabilities at times 1, 2, . . . are pT

0 P , pT
0 P 2 etc. Since zT = (z1, z2, . . . , zn) is the

steady-state distribution, it therefore obeys zTP = zT, so it is the left eigenvector for
the eigenvalue λ1 = 1. The normalisation is fixed by the fact that it is a probability
distribution over the states and so

∑
zi = zT1 = 1. So from the viewpoint of linear

algebra, zT is determined by zT = zTP together with the condition zT1 = 1 that resolves
the ambiguity caused by 1 being an eigenvalue of P .

In general if the eigenvalues λi of P are distinct then there will be left eigenvectors zT
i

1Of course when we come the the particular example of the Bianchi chain, this i and j will each have
to be replaced by an index α that encodes the pair of indices (i, k) in the Bianchi description.
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and right eigenvectors vi such that

zT
i P = λiz

T
i , Pvi = λivi, zT

i vj = δij, (10)

with λ1 = 1, zT
1 = zT, v1 = 1, and then

P =
n∑

i=1

λiviz
T
i = 1zT +

n∑
i=2

λiviz
T
i . (11)

Any initial probability distribution over the states, pT
0 , will then have the form

pT
0 = zT +

∑n
i=2 ξiz

T
i where ξi = pT

0 vi, and after r steps of the Markov process it will
become

pT
0 P r = zT +

n∑
i=2

λr
i ξiz

T
i . (12)

So this tends to zT as r → ∞ and the rate of convergence is governed by the subdominant
eigenvalue, i.e. |λ2| if we arrange the eigenvalues by decreasing magnitude,

λ1 = 1 > |λ2| ≥ |λ3| ≥ . . . . (13)

So zT
2 is the most persistent (slowest decaying) non-equilibrium behaviour.

In the circumstances we are considering, the mean time to reach state i starting from
any other state j is finite, called the mean hitting time (or just the hitting time) and we
denote it by

Hji = Ex(least t such that Xt = i|X0 = j), (j �= i). (14)

The equations for these come from considering how we get from j to i. We must first
take 1 step, and then if we have gone to some k �= i the mean number of steps from
there to i is Hki, so

Hji = 1 +
∑
k �=i

pjkHki (j �= i). (15)

For fixed i these are n− 1 equations for the n− 1 unknowns Hji and uniquely determine
them. The matrix involved is I − P with row and column i deleted. A further property
of the hitting times is that

1

zi

= 1 +
∑
k �=i

pikHki, (16)

since 1/zi is the mean recurrence time for state i, i.e. the mean time between successive
visits to i, which we can write down by the same argument that led to (15). If we define
a matrix H0 to be Hij off the diagonal and 0 on the diagonal then these two equations
are combined in

H0 + diag(1/zi) = J + PH0, (17)

where every entry of J is 1: off the diagonal this is (15), and on the diagonal it is (16).
Although (17) alone does not determine H0 because I − P is singular, the additional
condition that H0 has zero diagonal elements resolves that ambiguity.
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2.1 Derivatives with respect to parameters

When the matrix P depends on a vector of parameters α in a differentiable way, we can
find the derivatives of the various properties of the chain by differentiating the defining
equations. So from zTP = zT and zT1 = 1 we have(

zT
)′

P + zTP ′ =
(
zT

)′
,

(
zT

)′
1 = 0, (18)

where ′ denotes differentiation with respect to α. So, like zT itself, the vector
(
zT

)′
obeys

a system of linear equations with matrix I − P , together with a condition that resolves
the ambiguity caused by 1 being an eigenvalue of P .

For differentiating the subdominant eigenvalue λ2, we deal first with the case where λ2 is
real with |λ2| > |λ3|. Then λ2 is an isolated eigenvalue so its left and right eigenvectors
are well-defined and from differentiating the conditions (10) for i = 2 we find that

λ′
2 = zT

2 P ′v2. (19)

Equally, if λ2 and λ3 are a complex conjugate pair, with |λ2| = |λ3| > |λ4| then λ2 is
isolated and the same result holds, and of course, zT

3 , v3 and λ′
3 are just the conjugates of

zT
2 , v2 and λ′

2. However, when λ2 is real with |λ2| = |λ3| then there is generally a failure
of differentiability. Either λ2 = λ3 in which case the eigenvectors are either not defined
or not unique and perturbing P by O(ε) splits the eigenvalues by O(

√
ε). Or λ2 �= λ3 in

which case even though the eigenvalues of P vary continuously there is a discontinuous
switch in which of them is subdominant. The same kind of failure of differentiability
will happen when λ2 is complex and |λ2| = |λ4|. These cases are not generic as far as
P is concerned. However, when one tries to solve an optimisation problem where the
objective function or constraints may involve λ2, then this kind of difficulty can easily
arise because the optimum may well be at a point of non-differentiability of |λ2|. For
instance if one tries to minimise M = |λ2| subject to some constraints then one can easily
envisage this optimum occurring for a configuration where P has several eigenvalues on
the circle |λ| = M , but where any feasible perturbation causes some of those eigenvalues
to move into |λ| > M . So the fact that |λ2| is not everywhere differentiable could be of
more importance than its non-genericity might suggest.

To differentiate the hitting times, we differentiate (17) and see

H ′
0 − diag(z′i/z

2
i ) = P ′H0 + PH ′

0, (20)

so again H ′
0 obeys a system of linear equations with matrix I−P and with the condition

of zero diagonal elements to resolve the ambiguity caused by 1 being an eigenvalue of P .

Whether these equations are solved analytically or numerically, these formulae are the
key to calculating the derivatives.

3 Numerical methods

As explained in the introduction, our aim here is to describe numerical methods that
will be effective for this kind of problem in general, with a large sparse transition matrix
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P having an escalator structure. The particular illustrations will use the Bianchi chain
as the example.

3.1 Equilibrium population

The equilibrium population, zT
1 in our notation, is given by

zT
1 (I − P ) = 0 , (21)

and to define a unique solution we impose the condition zT
1 1 = 1 that makes zT

1 a
normalised probability distribution.

When the states of the Markov chain form a single closed class, the matrix I − P is
rank-deficient by 1, and we found experimentally that replacing the leftmost column of
the matrix by a column of ones (1, . . . , 1)T created a matrix with full rank. We chose the
leftmost column so that this dense column lies in the lower triangular part of the matrix.
This is convenient when using the lower triangular part of the matrix as a preconditioner
for iterative methods, as in Section 4.3 below, but in principle any other column could
be chosen. One could also add 1 to each entry in the original column of I −P instead of
replacing the existing entries with 1s. The resulting linear system, written in partitioned
form, is

zT
1

⎛
⎜⎝1

... [I − P ]2...n

1

⎞
⎟⎠ = (1, 0, . . . , 0), (22)

where [I − P ]2...n denotes columns 2 to n of the n × n matrix I − P . The transpose of
equation (22) may be treated using numerical methods for solving systems of full rank
in the standard form Ax = b, as described in Section 4 below.

An alternative approach to finding eigenvectors is to solve the obvious (notionally
singular) linear system instead of changing one row or column to impose a normalisation
condition. There are matrices where the “eigenvector” computed by changing a row
or column varies wildly depending upon precisely which row or column is chosen. (We
chose column 1 to keep the triangular structure.) By contrast, a naive solution of the
notionally singular system, possibly changed by O(machine epsilon) to avoid a genuine
division by zero, gives the eigenvector to very high precision. The notional singularity of
the matrix makes the coefficient in front of the eigenvector highly inaccurate, but that
is of no interest anyway. This is what the MATLAB eigs routine does internally to find
eigenvectors.

The hitting times are also found by solving the linear algebra problem (17) with the
same matrix I − P .

4 Numerical solution of equilibrium equations

As noted before, realistic-sized problems involve large, sparse, and asymmetric matrices.
Since matrices with these properties arise in many applications, notably from discrete
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approximations to partial differential equations, many numerical methods have been
developed for solving linear systems involving large, sparse matrices that perform better
than standard methods like LU factorisation. In the Study Group we pursued three
different approaches — two that are applicable to generic matrices, and one that makes
greater use of the special structure of the Bianchi matrices. These approaches are
described in the subsections below, while results and timings will be presented in the
conclusions in Section 8.

4.1 Sparse direct factorisation method

The standard numerical method for solving a system of linear equations, conventionally
written as Ax = b, is by factorising the matrix A into the product of a lower triangular
matrix L and an upper triangular matrix U . In other words, one writes A = LU , which
inspires the name “LU factorisation”. The original linear system then decomposes into
two separate linear systems,

Ax = b ⇔ LUx = b ⇔ Ly = b and Ux = y, (23)

whose solutions y and x may be found by forward and backwards substitution
respectively. The factors are commonly rendered unique by requiring L to have unit
entries on its diagonal. Efficient routines to compute the factors L and U for generic
matrices may be found in packages such as LAPACK [2]. LU factorisation is a “direct
method” for solving linear equations, because one would find the exact solution after a
finite number of computations, in the absence of round-off error associated with finite
precision arithmetic.

Even if the original matrix A is sparse, with a large proportion of zero entries, the
computed factors L and U typically contain many more nonzero entries than A. This
phenomenon is known as “fill-in”. However, the same system of linear equations Ax = b
may be rewritten in many different ways by arranging the individual equations in different
orders. Each rearrangement is equivalent to a permutation of the elements of the vectors
x and b, and of the rows and/or columns of the matrix A. Various algorithms have been
developed to find permutations that are likely to reduce the number of nonzero entries
in the factors, by analysing the pattern of nonzero entries in the original matrix. These
algorithms often use techniques from the theories of graphs and trees.

MATLAB has some sparse matrix capabilities [7] including an interface to the package
UMFPACK [6] that solves large, sparse linear systems by a sparse LU factorisation.
Figure 6 shows the results of computing the sparse factors L and U for two Bianchi
matrices, those with m = 2 and W = 4, and m = 4 and W = 6. For each matrix, the
figure shows first the permuted matrix, then the lower factor L, and finally the upper
factor U . It is remarkable that the factors L and U share the high degree of sparsity of
the original matrix P . Nonzero elements in all three matrices (P , L, U) are confined to a
narrow band on the diagonal, plus a few dense rows or columns. Table 1 shows that this
trend continues to much larger Bianchi matrices, with L containing roughly 2 nonzero
elements per row, and U containing roughly 1.5 nonzero elements per row. By contrast,
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upper factor U    285 nonzero elements

Figure 6: Sparse LU factors of the permuted Bianchi transition matrices for (a) m = 2
and W = 4, and (b) m = 4 and W = 6.
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Parameters n nnz(P ) nnz(L) nnz(U)
m = 2, W = 4 28 77 (2.75n) 65 (2.32n) 39 (1.39n)
m = 4, W = 64 186 487 (2.62n) 387 (2.08n) 285 (1.53n)
m = 5, W = 128 8064 20858 (2.59n) 16509 (2.05n) 12412 (1.54n)
m = 8, W = 256 130816 329207 (2.52n) 262397 (2.01n) 197625 (1.51n)

Table 1: Sparsity properties for LU factors of permuted Bianchi matrices P .
The number of nonzero elements (nnz) for P , the factors L and U , and the
average number of nonzero elements per row. These averages, or the sparsity
fractions, appear roughly constant as the matrix dimension n increases.

the factors of matrices arising as discrete approximations to elliptic partial differential
equations typically contain many more nonzero entries than their product.

Note for an efficient implementation that many sparse matrix packages have the facility
to perform the structural analysis, permutation, and symbolic factorisation once for a
given pattern of non-zero entries. A recalculation of just the numerical coefficients in the
factors after changing parameters in the original matrix will then be much faster than
performing the whole sparse factorisation from scratch each time.

4.2 Block direct factorisation

The previous approach using a sparse direct method is applicable, at least in principle,
to arbitrary matrices. The sparse matrix package determines a reordering of the matrix
designed to lead to sparse factors L and U . For the particular case of the Bianchi
matrices, a natural permutation collects the m+1 dense rows together at the top. After
this permutation of a Bianchi matrix P , the matrix appearing in equation (22) for the
equilibrium population,

A =

⎛
⎜⎝1

... [I − P ]2...n

1

⎞
⎟⎠ (24)

has the block structure illustrated in Figure 7,

A =

(
A11 A12

A21 A22

)
, (25)

where A11 is a small (m + 1) × (m + 1) dense matrix. The much larger (n − m − 1) ×
(n−m− 1) matrix A22 is bidiagonal, and thus easily invertible. The matrix A12 is quite
dense, while the matrix A21 below the diagonal contains only a column of 1s from the
normalisation, plus an additional m nonzero elements.

The bidiagonal structure of A22 motivates a block factorisation of the matrix A according
to

A = UL or

(
A11 A12

A21 A22

)
=

(
I A12 A−1

22

Z I

)(
S Z

A21 A22

)
, (26)
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Figure 7: Block structure of the modified and permuted Bianchi transition matrix for
m = 2 and W = 4.
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Figure 8: Block factors U and L of the modified and permuted Bianchi transition matrix
for m = 2 and W = 4.
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where the (m + 1) × (m + 1) matrix S is the Schur complement of A22,

S = A11 − A12 A−1
22 A21 (27)

and Z represents matrices of zeros. The matrices U and L are illustrated in Figure 8.
The matrix L is only block lower triangular, not strictly lower triangular, due to the
dense block S in the upper left corner.

A half-way step towards the solution of the linear system xTA = bT may be achieved by
writing yTL = bT, or in block form

(
bT

1 ,bT
2

)
=

(
yT

1 ,yT
2

) (
S Z

A21 A22

)
. (28)

Here bT = (bT
1 ,bT

2 ) denotes a partitioning of the vector bT into m + 1 and n − m − 1
elements respectively, and similarly for yT = (yT

1 ,yT
2 ). These partitionings correspond

to the earlier partitioning of the matrix A into blocks in (25). Simplifying the right hand
side of (28) gives

bT
2 = yT

2 A22, bT
1 = yT

1 S + yT
2 A21. (29)

The matrix A22 is large but bidiagonal. Computing y2 therefore requires only O(n−m−1)
operations to solve the linear system involving A22 by substitution. Computing y1 then
requires a multiplication of yT

2 by A21, followed by the solution of a small (m+1)×(m+1)
linear system involving S. The solution x follows easily from y using the block inverse
of U ,

xT = yTU−1 =
(
yT

1 ,yT
2

) (
I −A12 A−1

22

Z I

)
=

(
yT

1 ,yT
2 − yT

1 A12 A−1
22

)
. (30)

Computation of yT
1 A12 A−1

22 requires only a matrix multiplication by A12, followed by
another solution of a bidiagonal system involving A22.

4.3 An iterative method: preconditioned GMRES

The previous two approaches are “direct methods”. They perform some fixed amount
of computation that yields the exact solution, at least in exact arithmetic. For many
problems it is preferable to adopt an iterative approach that yields successively better
approximations to the exact solution with each iteration, halting as soon as one obtains
a sufficiently accurate approximation. For example, it seems reasonable to be content
with an approximate solution whose accuracy is comparable with that of the underlying
floating point arithmetic, a relative error of about 10−15.

GMRES (generalised minimum residual) by Saad and Schultz [14] is one of a family of
iterative methods for solving linear systems that finds successive approximate solutions
x0,x1, . . . to the linear system Ax = b in the form of polynomials in the matrix A
multiplying the right hand side vector b. Thus xm = Pm(A)b, where Pm is a polynomial
of degree m. The xm are therefore elements of the successive Krylov spaces Km defined
by

Km = span{b, Ab, A2b, . . . , Am−1b} (31)
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with the property that Km ⊆ Km+1 for all m ≥ 1. This family of methods, often called
Krylov space methods, typically converge to an adequate solution in far fewer iterations
than the classical methods like Jacobi or Gauss–Seidel iteration.

In GMRES each xm is chosen to be the element of Km that minimises the �2 norm
of the residual rm = Axm − b. By constructing orthonormal bases of the successive
Krylov spaces, finding each minimising element xm reduces to one further multiplication
of a vector by the matrix A, followed by the solution of an m × m Hessenberg system
of linear equations. (The nonzero elements of a Hessenberg matrix are confined to
the upper triangular part and the first sub-diagonal.) Since each Krylov space Km

contains its predecessors Km−1,Km−2, . . ., the sequence of residuals is guaranteed to be
non-increasing if the computations are performed in exact arithmetic.

GMRES is also guaranteed to find the exact solution after a number of iterations equal
to the dimension of the matrix (m = n) again assuming exact arithmetic. However,
one hopes to find an acceptable approximate solution in far fewer iterations, or when
m � n. A good heuristic for the number of necessary iterations is the number of distinct
eigenvalues, or eigenvalue clusters, of the matrix.

The eigenvalues of the Bianchi matrices are distributed on circles, as shown in Fig. 5,
which is not encouraging for the application of Krylov space methods. Indeed, we shall
find that convergence of the bare GMRES algorithm is exceedingly slow, taking even
longer than a direct solution of the linear system by dense LU factorisation.

However, the situation may be salvaged by replacing the original linear system Ax = b
with the equivalent system

(M−1A)x = M−1b, (32)

where in principle M may be any invertible matrix. As suggested by the parentheses in
(32), the GMRES algorithm may be applied to the product matrix M−1A instead of to
A alone. Convergence will be much more rapid if a matrix M , called the preconditioner
(e.g. [13, 8, 15]) can be found that satisfies the following two properties:

• linear systems My = z are relatively efficient to solve (equivalently, y = M−1z is
easy to compute);

• M approximates A in the sense that M−1A has a more tightly clustered spectrum
than A.

These two properties conflict, since M = I satisfies the first property perfectly, yet offers
no help towards satisfying the second property. Conversely, M = A satisfies the second
property perfectly, yet if linear systems involving A were easy to solve there would be
no need for GMRES.

For the Bianchi matrices, we found that the lower triangular part of the original matrix
made an extremely effective preconditioner. A linear system with a lower triangular
matrix is extremely easy to solve by back substitution, and the preconditioned GMRES
then converged to machine accuracy in just a few iterations, as shown in Figure 9.
This behaviour is a consequence of the Bianchi matrices’ structure as a collection of
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Jordan blocks, one per escalator, coupled by a small number of dense rows. In fact,
just the lower bidiagonal part of the matrix would be sufficient, but in our MATLAB
implementation there was only a very small improvement in performance over using
the full lower triangular part, despite the bidiagonal preconditioner having only 2/3 the
number of nonzero elements. GMRES stagnates without a preconditioner at all, making
only tiny reductions in the residual with successive iterations, as shown by the almost
horizontal dotted line in Figure 9.
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Figure 9: Performance of GMRES for computing the equilibrium population
of the Bianchi matrix with m = 5 and W = 128. The residual norm at each
iteration is shown for the algorithm using a lower triangular preconditioner, a
lower bidiagonal preconditioner, and no preconditioner.

A Jordan block has a single degenerate eigenvalue with multiplicity equal to the
dimension of the block. The degenerate eigenvalue splits into a circle of single eigenvalues
under the perturbation caused by the dense rows of the Bianchi matrix (recall Fig. 5).
Using the unperturbed Jordan block (a bidiagonal matrix) as a preconditioner collapses
the circle of eigenvalues onto the unit eigenvalue, except for a single distinct eigenvalue
that is displaced by the perturbation. The mathematical details are given in Appendix
B.

5 Numerical eigenvalues: mixing time estimates

As explained in Section 2, estimating how quickly the population approaches equilibrium
depends on finding the eigenvalues of P , and in particular the subdominant eigenvalue
defined by (13).

There is no “direct method” for computing eigenvalues, since computing the eigenvalues
of an n × n matrix is equivalent to finding the roots of the corresponding characteristic
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polynomial of degree n. No finite computation can determine the roots of an arbitrary
quintic or higher polynomial, so finding the eigenvalues of even a 5 × 5 matrix requires
an iterative procedure.

QR iteration, or the QR algorithm, is the standard technique for computing eigenvalues.
An arbitrary matrix A may be expressed as the product of an orthogonal matrix Q and
an upper triangular matrix R. The successive columns of the orthogonal matrix Q form
orthonormal bases for the spaces spanned by successive columns a1, a2, . . . , an of the
matrix A,

span{a1} ⊂ span{a1, a2} ⊂ · · · ⊂ span{a1, a2, . . . , an}. (33)

The matrices Q and R may be constructed by modified Gram–Schmidt, Householder, or
Givens rotations, all of which are exact in exact arithmetic.

The QR algorithm takes a matrix A, computes its factors Q and R, then multiplies them
together backwards to obtain a new matrix A(1). Continuing this procedure,

Q(k)R(k) = A(k−1), A(k) = R(k)Q(k), for k = 2, 3, . . . (34)

the factors Q(k) and A(k) converge towards a Schur factorisation of the original matrix
A,

A = Q(k)A(k)Q(k)T. (35)

Convergence may be improved using shifts, and typically becomes cubic, tripling the
number of significant digits with each iteration. The matrices A(k) converge to a matrix
that is close to upper triangular, and would be upper triangular in complex arithmetic.
In real arithmetic, complex eigenvalue pairs λ± = σ± iω are represented by 2× 2 blocks(

σ ω
−ω σ

)
on the diagonal. Once convergence is complete, typically after O(n) iterations,

the eigenvalues may be read off from the diagonal of A(k). The Schur factorisation (35)
is preferred for computational work because the orthogonal matrix Q(k) cannot become
ill-conditioned, unlike the matrix that would bring A into Jordan normal form.

An efficient implementation for asymmetric matrices first reduces the matrix A to
Hessenberg form, which may be done exactly using O(n3) operations in exact arithmetic.
The Hessenberg form then allows an efficient QR iteration using only O(n2) operations
per iteration. Section 7.6 of [8] covers the asymmetric eigenvalue problems. Other books
such as [15] cover the simpler eigenvalue problem for symmetric matrices.

5.1 Finding a few eigenvalues of a sparse matrix

For a Bianchi matrix of realistic size, a standard dense eigenvalue routine such as DGEEV
from LAPACK [2] would require prohibitive amounts of storage and computation.
Moreover, the sparse structure of the Bianchi matrices, that was preserved in the sparse
factors L and U , is not preserved in the factors Q and R, or even by a reduction to
Hessenberg form. These matrices are all full, or close to full.

However, we do not need to find all the eigenvalues of the Bianchi matrix, as found
by routines like DGEEV, but only the two eigenvalues with largest real parts in order
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to determine λ2 and the mixing time tmix. The Arnoldi algorithm, which is closely
related to GMRES, constructs successive Hessenberg matrices of some small, specified
size such that the eigenvalues of the Hessenberg matrices approximate the largest few
eigenvalues of the original matrix. Like GMRES, the original matrix is only employed
through computing matrix-vector products, which are cheap to compute when the
original matrix is sparse. Although the Arnoldi algorithm thus bears some resemblance
to the straightforward power method, computing successive powers Amb for m = 1, 2, . . .
and some fixed vector b in the hope of approximating the eigenvector corresponding to
the eigenvalue of largest modulus, the Arnoldi algorithm makes much greater use of
the information in the sequence of vectors b, Ab, A2b, . . . Amb, which is nothing other
than a basis for the Krylov space Km defined in equation (31). The MATLAB sparse
eigenvalue routine eigs provides a convenient interface to an implementation of the
Arnoldi algorithm called ARPACK [11].

The Arnoldi algorithm is likely to perform poorly for an unmodified Bianchi matrix, just
as GMRES performs poorly without a preconditioner, because λ2 is merely one of many
eigenvalues of approximately equal modulus arranged in a circle. Although the art of
preconditioning eigenvalue problems is still in its infancy, the simple technique of “shift
and invert” suffices to find λ2 relatively easily. Given an estimate σ for λ2, the matrix
(P −σI)−1 has an eigenvalue (λ2−σ)−1 that will be much larger in modulus than any of
the other eigenvalues (λi − σ)−1 if σ is closer to λ2 than to any of the other eigenvalues
λi of the original matrix P .

A good estimate for λ2 is available from an asymptotic formula for Bianchi matrices when
2mW is sufficiently large (see Section 7.2 and Appendix A) but in numerical experiments
the much cruder estimate σ = 1 − 10−4 sufficed when using eigs to compute the two
largest eigenvalues of (P −σI)−1. Some examples of mixing times are shown in Figure 12
and compared with the asymptotic formula. By default, the MATLAB implementation
eigs in “shift and invert” mode computes an LU factorisation of P − σI internally.
As one would expect from the relative performance of the algorithms for solving linear
systems (see Section 8), replacing the general purpose LU factorisation with a call to
the specialised block factorisation algorithm described in Section 4.2 offers a substantial
gain in performance.

5.2 Second left eigenvector zT
2 and right eigenvector v2

For some purposes we may also need to know the eigenvectors corresponding to λ2,
i.e. the states of the system that are involved in the slowest convergence to equilibrium
in (12). These are specified by

zT
2 P = λ2z

T
2 , Pv2 = λ2v2, (36)

and one can solve for zT
2 , v2, and λ2 using a sparse eigenvalue solver, e.g. eigs in

MATLAB or ARPACK. Computing the eigenvectors is a straightforward and inexpensive
addition to computing just the eigenvalue. Many routines, such as eigs in MATLAB,
compute only right eigenvectors, so one must compute left eigenvectors by calling eigs

again with the transpose of the original matrix.
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They can be normalised as in (10) so that

zT
2 v2 = 1, (37)

but note that this still does not define either zT
2 or v2 uniquely.

Given both the left and right eigenvectors, the condition number of the second eigenvalue
is given by the reciprocal of their normalised inner product,

cond (λ2) =
||z2||2||v2||2

zT
2 v2

. (38)

Figure 10 shows the condition numbers of the first and second eigenvalues for two Bianchi
matrices with W = 128 and m = 3 and m = 5. Varying W had little effect upon these
condition numbers.
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Figure 10: Condition numbers of the first two eigenvalues as p varies for two
Bianchi matrices with W = 128, m = 5 and W = 128, m = 3.

6 Derivatives with respect to parameters

The material in this section is all based on Section 1.6 (page 15 onwards) of Hinch [9].

6.1 Derivative of the equilibrium population

As mentioned in Section 2 the derivative of the steady state is given by (18) which we
write here as (

zT
1

)′
(I − P ) = zT

1 P ′, (39a)(
zT

1

)′
1 = 0. (39b)
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Equation (39a) is rank deficient by one, so replace one column of the matrix I − P by
a column of ones (1, . . . , 1) to impose the normalisation condition. Notice that this is
the same linear system (22) that we solved to find zT

1 in the first place, only the right
hand sides are different. This is a generic feature of perturbation theory applied to linear
equations.

6.2 Derivative of the second eigenvalue and vectors

The derivative of the second eigenvalue is found by (19) earlier, subject to the caveats
in that section. To calculate the derivatives of the second eigenvectors if necessary, we
differentiate equations (36) with respect to the parameter and obtain(

zT
2

)′
(λ2I − P ) = −zT

2 (λ′
2I − P ′) , (λ2I − P )v′

2 = − (λ′
2I − P ′)v2. (40)

Differentiating the normalisation zT
2 v2 = 1 gives

(
zT

2

)′
v2 + zT

2 v
′
2 = 0, which we choose

to split into the two independent conditions(
zT

2

)′
v2 = 0, and zT

2 v
′
2 = 0. (41)

(We can impose this because it is still arbitrary how a scalar factor is partitioned between
zT

2 and v2.) The two linear systems now separate into one for
(
zT

2

)′
,(

zT
2

)′
(λ2I − P ) = −zT

2 (λ′
2I − P ′) , (42a)(

zT
2

)′
v2 = 0 (42b)

and another one for v′
2,

(λ2I − P )v′
2 = − (λ′

2I − P ′)v2 , (43a)

zT
2 v

′
2 = 0. (43b)

As before, these are the same linear systems that one would solve to find the left and
right eigenvectors in the first place, only with different right hand sides.

7 Bianchi Markov chain

For the Bianchi chain we here give the explicit formulae for the steady state, an
asymptotic result for the subdominant eigenvalue, and explicit formulae for the hitting
times. The explicit formulae enable exact derivatives to be calculated, and the
asymptotic formula allows good approximate derivatives to be calculated.

7.1 Steady state

The states of the Bianchi Markov chain clearly form a single closed class if 0 < p < 1,
and it is aperiodic (e.g. since p(0, 0; 0, 0) = 1/W > 0) so the general theory applies. We
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denote the steady state probability distribution of the Bianchi chain by z(i, k), so the
balance equations we need to satisfy are

z(i, k) =
∑
j,l

z(j, l)p(j, l; i, k), (44a)

∑
i,k

z(i, k) = 1. (44b)

We shall first find a solution Z(i, k) of the homogeneous system (44a) and then normalise
at the end. For the state at the top of Ei, (44a) says that Z(i,Wi − 1) = fi/Wi where
fi is the total flow into Ei from the bottoms of the other escalators, which is

fi =

⎧⎪⎨
⎪⎩

(1 − p)(Z0 + Z1 + . . . + Zm) if i = 0,

pZi−1 if 1 ≤ i ≤ m − 1,

p(Zm−1 + Zm) if i = m.

(45)

Here we are using Zi to denote Z(i, 0). Then (44a) at any state (i, k) below the top of
Ei gives Z(i, k) = Z(i, k + 1) + fi/Wi. So we obtain

Z(i, k) =
Wi − k

Wi

fi. (46)

For consistency at the states with k = 0 we therefore need Zi = fi for each i, and solving
this with the definition (45) and choosing the normalisation with Z0 = 1 we obtain

Zi =

⎧⎨
⎩

pi if 0 ≤ i ≤ m − 1,
pm

1 − p
if i = m.

(47)

The normalised steady state is therefore

z(i, k) =
Wi − k

Wi

Zi

S
, (48)

where the normalisation constant is

S =
m∑

i=0

Wi−1∑
k=0

Wi − k

Wi

Zi (49)

=
m∑

i=0

Wi + 1

2
Zi (50)

=

(
1

2(1 − p)
+

W

2(1 − 2p)

)
︸ ︷︷ ︸

S0

−
(

Wpm+12m−1

(1 − p)(1 − 2p)

)
︸ ︷︷ ︸

S1

(51)

= S0 − S1. (52)

The factor 1 − 2p in the denominator comes from summing the geometric progression
with ratio 2p, which occurs because the system combines a probability p of going from
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one escalator to the next with a growth by a factor of 2 in their sizes. The value p = 1
2

is a removable singularity of S and in fact when p = 1
2
, S = 1 + W (1 + m/2) so there is

no difficulty about calculating the steady state in that case, although in practice p < 1
2
.

Another way of thinking of the significance of p = 1
2

is to consider the system with m
infinite: it is still persistent, in that the probability of returning to any state is 1, but
it has a change of behaviour at p = 1

2
. For 0 < p < 1

2
it is positive persistent, i.e. the

expected time to return to any state from itself is finite. But for 1
2
≤ p < 1 the infinite

Markov chain is null persistent, i.e. the expected time to return is infinite, essentially
because the time spent descending the large escalators, O(2i), outweighs the infrequency
of reaching them, O(pi).

7.2 Subdominant eigenvalue for the Bianchi chain

One way to think of the eigenvalues of P is to consider what they are for p = 0 and how
they are perturbed from that when p > 0. When p = 0 each escalator other than E0 is
transient, and in fact each Ei for 1 ≤ i ≤ m corresponds to Wi eigenvalues all zero, in
the form of a Jordan block of size Wi. The only persistent behaviour of the system is on
E0 where the eigenvalue equation is

λW = Y0 =def

(
1 + λ + λ2 + . . . + λW0−1

W0

)
, (53)

with one eigenvalue at 1. When this is perturbed by small p > 0, it is to be expected
that the perturbed Jordan block of size Wi will produce Wi non-zero eigenvalues of
order p1/Wi , and this is the case computationally as we have seen. We can also obtain
analytically some results on these lines. The eigenvalue equation from solving λzT = zTP
turns out to be

λW0 = Y0(1 − p)

(
1 +

Y1p

λW1

(
1 +

Y2p

λW2

(
1 + . . .

(
1 +

Ymp

λWm − Ymp

))))
, (54)

where each Yi is like Y0 but with Wi in place of W . If this is multiplied up by λW
m − Ymp

then every term has that as a factor except the innermost term from the product on the
right. However, that term is of order pm, which we expect to be small, so it is reasonable
to hope that the roots of

λWm = Ymp =

(
1 + λ + λ2 + . . . + λWm−1

Wm

)
p (55)

will be a good approximation to the subdominant eigenvalue of P . In fact there is a
natural interpretation of this too: the most persistent non-equilibrium behaviour of the
system is playing on the largest escalator, because when we reach the bottom of that we
have probability p of jumping back onto it for another go. So it is plausible that we can
approximate the subdominant eigenvalue by that of a simplified system consisting of an
escalator of height Wm with probability p of recycling from the bottom and 1−p of going
to some absorbing state. The eigenvalue equation for the λ �= 1 of that simplified system
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is just (55). This is considered further in Appendix A, where the method of obtaining
derivatives of the approximate eigenvalue with respect to parameters is also given.

In fact the next set of Wm−1 eigenvalues are all exactly zero, and form an unperturbed
Jordan block. To see this, first note that the transition probabilities from the bottoms
of Em−1 and Em are equal. So P has two identical rows, and so 0 is an eigenvalue, with
a left (row) eigenvector having ±1 at those states (m− 1, 0) and (m, 0). If we consider a
row vector with entries ±1 at (m− 1, k) and (m, k) (for k ≤ Wm−1 − 1) then the action
of P pushes those entries down the escalators to the bottoms and then annihilates them.
So we have a Jordan block of size Wm−1 and eigenvalue exactly 0 as asserted.

7.3 Hitting times for the Bianchi Markov chain

We shall denote the mean hitting time from (j, l) to (i, k) by H(j, l; i, k), and we shall
show that they are given by (56) for j = i, by (60) for j < i, and by (61) for j > i. For
j = i we have

H(i, l; i, k) =

{
l − k if l > k,

l − k + 1/z(i, k) if l < k,
(56)

since if l > k the state simply descends Ei deterministically from (i, l) to (i, k) in l − k
steps, while if l < k the mean recurrence time 1/z(i, k) from state (i, k) can be considered
as made up of k − l deterministic steps down to (i, l) followed by a mean of H(i, l; i, k)
steps to return to (i, k) again, so 1/z(i, k) = k − l + H(i, l; i, k) as required.

To obtain H(j, l; i, k) for j �= i, the first thing to note is that H(j, l; i, k) = l+H(j, 0; i, k),
since to get from (j, l) to (i, k) for j �= i we must first take the l deterministic steps down
to (j, 0). So we let uj = H(j, 0; i, k) and obtain and solve the appropriate recurrence
relation, which is

uj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + (1 − p)

(
W − 1

2
+ u0

)
+ p

(
Wj+1 − 1

2
+ uj+1

)
if 0 ≤ j ≤ i − 2

or i + 1 ≤ j ≤ m − 1,

1 + (1 − p)

(
W − 1

2
+ u0

)
+ p

(
Wi − 1

2
− k +

k

Wiz(i, k)

)
if j = i − 1,

1 + (1 − p)

(
W − 1

2
+ u0

)
+ p

(
Wm − 1

2
+ um

)
if j = m.

(57)
The first case (57a) arises because from (j, 0) we must take 1 jump, and then with
probability 1−p that first jump takes us to a random point of E0, in which case we have
a mean of (W − 1)/2 steps to get down to (0, 0) followed by u0 to hit (i, k) from there;
or with probability p that first jump takes us to a random point of Ej+1, in which case
we have a mean of (Wj+1 − 1)/2 steps to get down to (j +1, 0) and then uj+1 steps from
there. The final case (57c) where j = m is the same except that j + 1 is replaced by m.
The special case j = i − 1 in (57b) is also similar except that when we jump to Ei with
probability p we can calculate exactly the expected hitting time on (i, k) from a random
point of Ei by the result (56). We therefore have the recurrence relation

uj = c + (1 − p)u0 + pW2j + puj+1, for 0 ≤ j ≤ i − 2 and i + 1 ≤ j ≤ m − 1, (58)
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where c = 1 + (1 − p)(W − 1)/2 − p/2. The general solution of this is

uj =
c

1 − p
+ u0 +

pW2j

1 − 2p
+

A

pj
, (59)

so this will hold with the constant A taking one value A0 for 0 ≤ j ≤ i−1 and a different
value A1 for i + 1 ≤ j ≤ m, and we have to find those two constants and u0. For the
range 0 ≤ j ≤ i− 1, consistency at j = 0 gives A0 = −S0. Then matching the condition
on ui−1 given by (57b) determines the value of u0 and produces

H(j, l; i, k) = l − k +
k

Wiz(i, k)
+

pW (2j − 2i)

1 − 2p
+

S0

pi
− S0

pj
for j < i. (60)

When the value of u0 has been fixed by this, the value of A1 for the range i+1 ≤ j ≤ m
is fixed by (57c) and turns out to be A1 = −S1, so

H(j, l; i, k) = l − k +
k

Wiz(i, k)
+

pW (2j − 2i)

1 − 2p
+

S0

pi
− S1

pj
for j > i, (61)

where the only change from (60) is replacing S0 by S1 in the last term. The apparent
singularities at p = 1

2
are in fact removable like those of z(i, k) earlier.

8 Conclusions and further work

We have found and demonstrated the appropriate numerical techniques for analysis of
Markov chains with the escalator structure typified by the Bianchi chain. This analysis
covers the computation of the steady state, mixing time and hitting times, and their
derivatives with respect to the system parameters. We have illustrated these techniques
for the Bianchi chain. We have also carried out an exact calculation of the steady state
and hitting times of the Bianchi chain, and an asymptotic calculation of the mixing time
that is accurate for the regions of interest. These exact and asymptotic results also allow
computation of derivatives.

We now give some details of the timing to show the efficiency of the methods described
here over “unthinking” use of standard software. The Bianchi matrix with m = 5 and
W = 128 has 8064 × 8064 elements, and would occupy 0.5 GBytes when stored as
a dense matrix using 64 bit floating point numbers. We found that the CPU time (in
seconds) required to find the equilibrium population zT

1 using various different techniques
implemented in MATLAB (version 7.1) may be broken down as:

Creating the sparse matrix 1.40s
Sparse LU factorisation (interface to UMFPACK) 0.16s
Custom block factorisation 0.04s
Preconditioned GMRES 0.10s
Dense LU factorisation (interface to LAPACK) 41.00s
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These timings were made on a Intel Pentium D830 based workstation with two CPU
cores, running MATLAB version 7.1 for 64 bit Linux. The dense direct solution algorithm
made effective use of the two CPU cores through MATLAB’s internal use of the Intel
Mathematics Kernel Library (MKL) for dense linear algebra. The other tasks used only
one core.

The preconditioned GMRES brought the residual down to ∼ 10−15 after eight iterations
when p = 0.1. The convergence rate seems to be roughly uniform over the whole range
0 ≤ p ≤ 1, with some improvement for very small values of p. By contrast, GMRES
with no preconditioning brought the residual down to 4 × 10−9 only after 150 seconds
and 10000 iterations (including 100 restarts). Preconditioned GMRES is thus 400 times
faster than the dense method, while the custom block factorisation is 1000 times faster.
Even a general-purpose sparse LU factorisation is 250 times faster than a dense LU
factorisation. In all these numerical experiments, especially for the very large Bianchi
matrices listed in Table 1, the time taken to create the sparse matrix (and also its
derivative) far outweighed any subsequent computations.

The computational times taken to compute the second eigenvalue, and one of its
eigenvectors, were:

Creating the sparse matrix 1.4s
eigs using built-in sparse LU factorisation 2.8s
eigs using custom block factorisation 0.5s
Dense eigenvalue computation (interface to LAPACK) 4 hours

The last figure, 4 hours, is an estimate extrapolated from the time taken to compute all
the eigenvalues of Bianchi matrices of 1/2 and 1/4 the size, in other words 2016 × 2016
and 4032 × 4032 instead of 8064 × 8064.

A The Bianchi subdominant eigenvalue

For fixed p and Wm = 2mW large, the second largest eigenvalue λ2 is given asymptotically
as the root close to 1 of

p

Wm

(
1 + λ + · · · + λWm−1

)
= λWm−1. (62)

Summing the geometric progression, substituting λ2 = 1 − ξ/Wm, and taking the limit
Wm → ∞ of both sides, we obtain the transcendental equation

eξ − 1

ξ
=

1

p
. (63)

The solution ξ may be expressed as

ξ = −W−1(−pe−p) − p, (64)
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Figure 11: The two real branches of the Lambert W function. The branch W−1(x)
relevant to the solution of equation (66) is shown solid, while the principal branch W0(x)
is shown dotted. The branches meet at x = −1/e with W−1(x) = W0(x) = −1.
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Figure 12: The mixing times tmix = (1 − λ2)
−1 for four different Bianchi matrices with

m = 5 and W = 8, 32, 64, 128. The dots result from computing λ2 using eigs, while the
continuous lines show tmix = Wm/ξ with ξ given by the asymptotic formula (64).
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where W−1(x) is the branch of the Lambert W function satisfying W−1(x) exp[W−1(x)] =
x, and W−1(x) < −1 for x in the open interval (−e−1, 0). The two real branches of the
Lambert W function are shown in Figure 11. Corless et al. [5] have published a survey
of the history, properties, and numerical aspects of the Lambert W function.

Figure 12 compares the mixing time tmix as given by (64),

tmix =
1

1 − λ2

=
Wm

ξ
, (65)

with the mixing times computed numerically using eigs for four different sizes of Bianchi
matrix. Although equations (62) and (63) were derived for large values of Wm = 2mW ,
these results suggest that the approximation is excellent for p � 0.2 over a wide range of
matrix sizes. The solution of the original equation (62) and the further approximation
(63) are indistinguishable, even for the smallest matrix shown with m = 5 and W = 8.
For an even smaller matrix with m = 3 and W = 8, solving the original equation (62)
gives some improved agreement with the exact eigenvalues over solving (63).

Taking logarithms of (63) and rearranging gives

ξ = log(1/p) + log(ξ + p), (66)

which is more amenable to approximate solution. When p � 1, and thus
ξ ∼ log(1/p) � 1, one may neglect the O(p/ξ) contribution from log(1 + p/ξ) and
approximate (66) by

ξ = log(1/p) + log(ξ). (67)

The W−1 branch of the Lambert W function satisfies (from [10])

W−1(z) + logW−1(z) = log z, (68)

so judicious use of log(−z) = log z ± iπ gives the solution to (67) as

ξ = −W−1(−p). (69)

An asymptotic expansion of the Lambert W function is given by equation (4.19) of [5].
With the correct choice of signs for the W−1 branch, this gives

ξ = L1 + L2 +
L2

L1

+
L2(2 − L2)

2L2
1

+ · · · (70)

where L1 = log(1/p) and L2 = log log(1/p). The same expansion may be obtained using
an iterative procedure, taking ξ0 = log(1/p) and setting ξn+1 = log(1/p) + log ξn, then
expanding logarithms of sums (see [9]).

Given the appearance of L2 = log log(1/p), it is not surprising that this asymptotic
expansion converges very slowly unless p is extremely small. However, two iterations of
Newton’s method to ξ = log(ξ/p + 1), beginning with ξ0 = log(1/p), gives an excellent,
though unwieldy, approximation to the solution of the earlier equation (66) for p � 0.3.
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For analytical work it would probably be preferable to use known properties of the
Lambert W function directly. For example,

d

dz
W−1(z) =

W−1(z)

z(1 + W−1(z))
, (71)

(from [5]) so the derivative of (64) gives the derivative of ξ with respect to p as

dξ

dp
= − p + W−1(−pe−p)

p(1 + W−1(−pe−p))
= − ξ

p(ξ + p − 1)
. (72)

For the mixing time tmix = Wm/ξ,

d

dp

(
Wm

ξ

)
=

Wm

p(1 + W−1(−pe−p))(p + W−1(−pe−p))
=

Wm

pξ(ξ + p − 1)
. (73)

B Preconditioning a perturbed Jordan block

Consider the n × n Jordan block with eigenvalue −μ, the minus sign being for later
convenience, and make a perturbation ε to the bottom left matrix element. The resulting
matrix

Jε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ 1 0 0 . . . 0 0
0 −μ 1 0 . . . 0 0
0 0 −μ 1 . . . 0 0
...

. . . . . .
...

0 0 . . . . . . −μ 1 0
0 0 . . . . . . . . . −μ 1
ε 0 . . . . . . . . . 0 −μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(74)

has characteristic polynomial (λ + μ)n − ε = 0. The eigenvalues are thus given by

λm = −μ + ε1/ne2πim/n for m = 0, . . . , n − 1. (75)

The single n-fold degenerate eigenvalue of the unperturbed Jordan block J0 splits under
the perturbation into n separate eigenvalues evenly distributed on a circle of radius ε1/n

around the unperturbed eigenvalue −μ (recall Figure 5). Iterative methods like GMRES
based on Krylov spaces may therefore be expected to perform poorly for the matrix Jε,
requiring n iterations to converge in exact arithmetic.

The inverse of the unperturbed Jordan block J0 is the (non-cyclic) Toeplitz matrix

J−1
0 = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ−1 μ−2 μ−3 μ−4 . . . μ1−n μ−n

0 μ−1 μ−2 μ−3 . . . μ2−n μ1−n

0 0 μ−1 μ−2 . . . μ3−n μ2−n

...
. . . . . .

...
0 0 . . . . . . μ−1 μ−2 μ−3

0 0 . . . . . . . . . μ−1 μ−2

0 0 . . . . . . . . . 0 μ−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (76)
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Using the matrix J−1
0 as a preconditioner on the left for the perturbed matrix Jε, we

obtain a rank-1 update of the identity matrix,

J−1
0 Jε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − εμ−n 0 0 0 . . . 0 0
−εμ1−n 1 0 0 . . . 0 0
−εμ2−n 0 1 0 . . . 0 0

...
. . . . . .

...
−εμ−3 0 . . . . . . 1 0 0
−εμ−2 0 . . . . . . 0 1 0
−εμ−1 0 . . . . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (77)

with O(ε) modifications to the first column. The matrix J−1
0 Jε has characteristic

polynomial
(λ − 1)n−1

(
λ − 1 + εμ−n

)
= 0, (78)

with an (n − 1)-fold degenerate eigenvalue λ = 1, and a single distinct eigenvalue at
λ = 1 − εμ−n due to the perturbation. One therefore expects GMRES to converge
in two iterations when applied to the preconditioned matrix J−1

0 Jε. In a concrete
implementation one would not compute the inverse matrix J−1

0 , but instead compute
solutions to the upper bidiagonal linear system J0x = b by back substitution.
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