Parallel Computing
CM30225
Russell Bradford
2023/24
1. Threads
Aside
Incidentally, using threads as a way of structuring your program can sometimes be a good approach, even if you are not concerned with parallelism
For example, have a GUI running on one thread and the computation it controls on another thread
Called structure by process
2. Concurrency Control
POSIX
More realistically we type cast in the create:
void hello(int *n)
{
  printf("hello %
}

int main(void)
{
  int m;
  pthread_t thr;

  m = 1;
  pthread_create(&thr, NULL, (void*(*)(void*))hello, (void*)&m);
  ...
}
3. Concurrency Control
POSIX
How about two new threads?
void hello(int *n)
{
  printf("hello %
}

int main(void)
{
  int m;
  pthread_t thr1, thr2;

  m = 1;
  pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m);
  m = 2;
  pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m);
  ...
}
4. Concurrency Control
POSIX
This creates two threads, both running the same code, namely hello, but on separate threads. Each thread has its own stack, thus its own copy of n
Unfortunately, it is buggy code!
As usual, it may appear to run correctly several times, printing "hello 1" and "hello 2" (in either order!)
But sometimes it prints "hello 2" and "hello 2"
5. Concurrency Control
POSIX
This is another case of sequential assumptions not following into parallel code: another race condition
It looks like we update m in between the two new threads
But the new threads are in parallel, running  asynchronously with the main thread
6. Concurrency Control
POSIX
What we expect is
main             1                   2
creates 1         1 starts running
                   reads m=1
updates m          prints 1
creates 2                             2 starts running
                                       reads m=2
                                       prints 2
7. Concurrency Control
POSIX
What might happen is
main             1                  2
creates 1
updates m         1 starts running
creates 2        reads m=2          2 starts running
                  prints 2           reads m=2
                                     prints 2
If thread 1 starts running slightly later
In fact, this is quite likely, as creating a new thread takes a fair amount of time
8. Concurrency Control
POSIX
There are three threads in the program: the two running hello and the one running main
The threads are sharing the variable m (via the pointers), so the behaviour of the program is dependent on what order the threads happen to access m. This is again bad programming, a data race
Be very careful about the values you pass into the thread
9. Concurrency Control
POSIX
We can fix that race by not sharing:
void hello(int *n) {
  printf("hello %
}

int main(void) {
  int m1, m2;
  pthread_t thr1, thr2;

  m1 = 1;
  pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m1);
  m2 = 2;
  pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m2);

  return 0;
}
10. Concurrency Control
POSIX
But now we (still) have another race condition, which fortunately is easier to spot
We might see both hellos, but more likely is we will see nothing at all
Again, the main thread continues to run and main might return before the new threads have had chance to get started
In C, when the main function returns the whole process exits, and all of the threads are terminated, possibly before they have had chance to print
11. Concurrency Control
POSIX
To fix this the initial thread should wait for the other threads to finish
int pthread_join(pthread_t thread, void **retval);
This blocks the calling thread until the named thread exits
This is the main use of the thread identifiers: joining threads (waiting for threads to finish)
A thread can end by returning from its initial function or by calling pthread_exit(void *retval);
12. Concurrency Control
POSIX
The thread can return a value, which is a pointer. This will be copied into where retval in pthread_join points
Use NULL if you don’t need a return value
Be careful not to return a pointer to something on the stack of the exiting thread!
Any thread can wait for any other thread to terminate, as long as it knows the thread’s id (the pthread_t)
13. Concurrency Control
POSIX
int main(void)
{
  int m1, m2;
  pthread_t thr1, thr2;

  m1 = 1;
  pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m1);
  m2 = 2;
  pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m2);
  pthread_join(thr1, NULL);
  pthread_join(thr2, NULL);
  return 0;
}
14. Concurrency Control
POSIX
· If any thread calls exit() anywhere, the entire process dies: the exit function means “exit process”
· if any thread calls pthread_exit() anywhere, that thread dies
· if any thread returns from its initial function, that thread dies
· there is no hierarchy of threads, all threads are equal and independent once created
15. Concurrency Control
POSIX
The only thing to watch out for is the thread running main, because in C the main() function has an implicit exit() after its end. So if it finishes, the entire process subsequently dies
Exercise (For later) Think about what coding would be needed if we wanted always to get hello 1 printed first and hello 2 second
Exercise Then generalise to  threads
16. Concurrency Control
POSIX
Advanced Exercise The following code might cause a segmentation violation. Why?
int main(void)
{
  int m1, m2;
  pthread_t thr1, thr2;

  m1 = 1;
  pthread_create(&thr1, NULL, (void*(*)(void*))hello, (void*)&m1);
  m2 = 2;
  pthread_create(&thr2, NULL, (void*(*)(void*))hello, (void*)&m2);
  return 0;
}
17. Concurrency Control
Threads
It’s not just C that invites these kinds of racy bugs, but they are common to all library-based parallelisms used in sequential languages
And to sequential-trained programmers
There is nothing in the C language itself to stop parallel stupidities as it was designed as a sequential language
As were many other languages in popular use today
18. Concurrency Primitives
Atomic Update
Back to primitives
The problem with updates is that there is more than one operation involved: first read, then modify, then store
Another thread may access the shared resource in between the read and store
This leads us to another approach to the update race condition by having indivisible atomic update
19. Concurrency Primitives
Atomic Update
This where the hardware supplies a special instruction to, say, increment an integer as a single atomic operation (read-add 1-store)
This must be in the hardware: the increment instruction must prevent other modifications of that value while it is being incremented
The hardware sorts out the sequentialisation in the case of simultaneous (or near-simultaneous) update by different threads
The operation is guaranteed not to be interrupted or interleaved with other threads
20. Concurrency Primitives
Atomic Update
Note that “atomic” does not mean “fast”
Depending on the cpu architecture, a single atomic instruction might take possibly hundreds of cpu cycles to execute
The hardware might need to sort out memory buses, or cache coherence, or pausing other cores trying to do a simultaneous update, or other low-level stuff
21. Concurrency Primitives
Atomic Update
Atomics are indeed a reasonable approach, used by many, but they have limitations
· Atomic instructions are hard to build in the context of the complexity of caching and so on in modern architectures
· you would need an atomic instruction for each kind of update you might want to do
· getting a high-level language compiler to generate code using that instruction will not be straightforward
· they can be slow to execute
22. Concurrency Primitives
Atomic Update
You do see machine instructions in modern CPUs to do some selection of atomic increment and decrement of integers, add, subtract, logical and, logical or, swap a value in a register with a value in memory, swap two values in memory, and a couple of conditional tests but usually nothing much more than those
Instead, the best approach is to use a more flexible machine instruction that you can build on to make more generic higher-level solutions (see “test and set” and friends, later)
Indeed, we shall soon see how a lock implementation might be built from atomic operations
23. Concurrency Primitives
Atomic Update
Do not use atomics for the coursework
To use them effectively you need more more detail that we can’t go into right now
24. Concurrency Primitives
Atomic Update
Exercise For hardware geeks: atomic operations often lock an entire cache line, and can stall the CPU for hundreds of clock cycles while the caches synchronise, so they can slow you down more than you think. Read about this
Exercise For hardware geeks: compare the cost of using a lock against the cost of using an atomic update (the answer can depend on the pattern of access)
Exercise Effective use of atomics involves understanding memory consistency orderings. Read about this
Exercise Some programming languages offer atomic datatypes, e.g., Java, C++, Rust. These usually eventually just call the machine instruction atomics. Read about this
25. Concurrency Primitives
Implementation of Locks
A little more to say about locks…
How are locks implemented?
They are a flag: say an integer, or even just one bit
We might use 1 to indicate locked, and 0 to indicate unlocked
26. Concurrency Primitives
Implementation of Locks
int lock = 0;

void get_lock()
{
   while (lock == 1) {
     deschedule();
   }
   lock = 1;
}
i.e., test the flag. If it is already 1, wait; else we can grab it by setting the flag to 1
Spot the bug!
27. Concurrency Primitives
Implementation of Locks
There is another update race condition
1                     2
test flag: OK          test flag: OK
set flag               set flag
And now both calls to get_lock succeed and both threads proceed to enter the critical region
28. Concurrency Primitives
Implementation of Locks
In between the testing of the flag and the setting of the flag all kinds of other things might happen
Code lines that are textually next to each other like this are widely separated in some sense: what we want is the testing and setting to be atomic
That is the test and the set are inseparable: nothing can get between them
This is another kind of critical region, so we could solve it by using locks…
29. Concurrency Primitives
Implementation of Locks
Fortunately we don’t have to go into an infinite regression as there are two kinds of solution: hardware and software
Hardware designers understand mutual exclusion, so the instruction sets of all modern processors have an instruction specifically designed for this
For example the compare and swap instruction
30. Concurrency Primitives
Implementation of Locks
Intel has cmpxchgb that atomically operates on a register and a byte in memory
CMPXCHG r/m8, r8
Compare AL with r/m8. If equal, ZF is set and r8 is loaded into r/m8. Else, clear ZF and load r/m8 into AL.
This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically
31. Concurrency Primitives
Implementation of Locks
In C, its action is like
int compare_and_swap(int *reg, int *mem, int new)
{
    if (*reg == *mem) {
       *mem = new;
       return 1;  /* got lock */
    }
    *reg = *mem;
    return 0;    /* fail */
}
but the entire thing is done atomically
32. Concurrency Primitives
Implementation of Locks
Using this:
int flag = 0;
...
int reg = 0;
// try to set flag to 1
while (compare_and_swap(&reg, &flag, 1) == 0) {
  reg = 0; // try again
}
<CR>
flag = 0;
This implements a busy wait
You should spend some time going through this!
33. Concurrency Primitives
Implementation of Locks
Instructions found in other architectures include test_and_set and an atomic swap
Early architectures did not have such instructions, so software versions were devised
These include: Dekker, Dijkstra and Lamport
They are very subtle as they must construct an atomic effect from non-atomic code
Exercise Go and read about these
