Parallel Computing
CM30225
Russell Bradford
2023/24
1. Classifications
Shared Memory
Symmetric shared memory is the model that current small machines (multicore PCs) use
It is well suited to MIMD, but note that SIMD also uses symmetric shared memory, but with a different access pattern
2. Classifications
NUMA
So if symmetric, i.e., uniform access, shared memory does not scale, we can try managing memory in other ways
[image: Pics/hierarch.svg]
Example NUMA
Each processor has a chunk of memory, but can also access memory of other processors, perhaps arranged in a tree
3. Classifications
NUMA
A processor will have fast access to its closest chunk of memory, but slower access to more remote memory
And different chunks of remote memory will have different access speeds
4. Classifications
NUMA
Of course many other topologies have been tried: star, ring, hypercube, full interconnect, and so on
[image: Pics/ring.svg]
Memory in a ring
This architecture evens out the access time to different chunks of memory a little
5. Classifications
NUMA
These are non-uniform memory access
NUMA shared memory scales much better than symmetric shared memory
By scaling here we mean you can build larger machines with more processors cost effectively
But there is a downside: now programs and programmers (and the OS) have to worry about data locality: data a processor needs should be kept close to that processor
It can make a huge difference to the speed of a program if the data is not where it should be
6. Classifications
NUMA
If data is close to the processor that is using it, it will go faster than if the data has to be fetched from further away
So you try to keep data near the relevant processor
Or the computation on a processor near to the data
Of course, if data needs to be used by several processors, this becomes a very difficult scheduling problem
7. Classifications
NUMA
NUMA implementations stratify the memory in terms of “distance”
For example:
· direct connection on the local memory bus
· on the same node
· one hop away
· two hops away
· and so on
8. Classifications
NUMA
Though this is often simplified to: local, remote, and “far away”
The OS or system libraries or the programmer will try their best to place data in appropriate memory to minimise latency, using their knowledge of the NUMA hierarchy and their knowledge of the program’s needs
The programmer ideally would have a good idea of the architecture of a machine before writing code for it
And so the portability of a program is in question
This is still a matter of great research and development!
9. Classifications
NUMA
And, of course, there are hybrids where CPUs share some memory symmetrically and some memory NUMA
[image: Pics/numa.svg]
Hybrid NUMA
10. Classifications
Distributed Memory
NUMA allows architectures to scale to greater numbers of processors, but it won’t scale indefinitely, perhaps a few 1000s of cores
If the problem is the memory bus bottleneck which means you have to keep cached copies of a value, and then you have the problem of keeping coherence amongst the copies, why not simply not have shared memory?
Distributed memory says each processor’s memory it its own and is entirely separate from every other processor’s memory
11. Classifications
Distributed Memory
Shared memory processors share a single memory address space: within a single process memory location 42 on one processor refers to the same thing as memory location 42 on every other processor, as it’s the same memory
The variable x on this processor is the same as the x on that processor (assuming SPMD)
12. Classifications
Distributed Memory
[image: Pics/shared2a.svg]
Shared address space
13. Classifications
Distributed Memory
Processors in a distributed memory architecture each have their own, separate, address space
Memory location 42 on one processor is entirely separate from memory location 42 on every other processor
Each processor has their own version of variable x, nothing to do with any other x on other processors
14. Classifications
Distributed Memory
Each processor has its own memory
[image: Pics/distmem.svg]
Distributed memory architecture
Typically connected by a network, rather than an expensive memory bus
15. Classifications
Distributed Memory
To get at data on another node a processor sends a message to that node, which will reply with the data
Clearly this message passing will be very much slower than simple shared memory accesses
Memory access across a network can be factors of thousands, perhaps millions times slower than local memory
The position of data is now very important
Your code has to change, too
16. Classifications
Distributed Memory
Think of a shared memory operation:
x = y;
x gets the value of y, “simply” read from memory
Compared with the overhead in distributed memory of creating a message, sending, waiting, reading the reply
See MPI (Message Passing Interface) later, but conceptually we have to write
x = FetchDouble(remotecpuname, "y");
17. Classifications
Distributed Memory
Some underlying message passing library does the hard work of the messaging
Your code become much more complex to write
Both in needing a lot more text, and in needing thought on where to put your data
18. Classifications
Message Passing
Note that you can also use message passing on a shared memory architecture
Doing so might be useful for coding or program structure reasons
The underlying messages are now probably implemented as simple accesses to shared memory
Some parallel programming systems (see later) only provide messaging across threads (often via mechanisms called channels), thus masking the underlying architecture and improving program portability across architectures
19. Classifications
Distributed Memory
When using distributed memory you try to keep the data a process needs on the processor it is running on, maybe even replicating data or replicating computations, and access remote data as little as you get away with
You have to balance the cost of the computations against the cost of the data movement
An ideal that is rarely achieved in real programs
Of course, if you replicate data that gets updated, you immediately have a coherence problem again, but now your own code has to deal with it
20. Classifications
Distributed Memory
Note that replicating read-only data (e.g., tables of values) will be fine: there is no coherence issue with multiple copies of data that never changes
But you do need to put a lot of thought into replicating read-write (mutable) data
21. Classifications
DMA
More sophisticated systems have extensive hardware support for messaging
They have specific direct memory access (DMA) hardware that accesses memory independently of the CPUs
Thus messaging proceeds independently of the CPU: communication is asynchronous with computation, freeing the CPU to do something else while the message is being processed by the DMA hardware
Thus allowing more computation; but at the cost of more complicated programming
22. Classifications
Computation vs. Communication
The call to FetchDouble above could return immediately and allow your code to continue computing on something else, rather than waiting for the value of y to appear: but you can’t use x until the value has arrived some time later
Of course, you now need some mechanism to be notified when the value has arrived, and so you can now use x
Such asynchronous programming is very hard to get right
But this idea of overlapping computation and communication is important and will reappear many times
23. Classifications
Distributed Memory
In distributed systems the concept of single shared values has to go completely out of the window
The value of x here is nothing to do with the value of x there
Programs have to be written with this in mind: global shared mutable values are simply not a good idea, even in uniprocessor programs!
24. Classifications
Distributed Memory
Distributed memory is the architecture used by clusters: each node is effectively a PC
Very suitable for SPMD, not so suitable for SIMD
Even with the huge message passing overhead, clusters are very popular, particularly with very large problems where the overhead is small relative to the rest of the computation
The computations do have to be huge!
25. Classifications
Distributed Memory
Not suitable for small problems, or problems where data need to move a lot between processors
Scales very well as an architecture. Clusters of over a million cores exist: see the TOP500 list
26. Classifications
Scaling
Making big machines is easier with distributed systems, too
When we try to add CPUs to a shared memory system, we have to pay a great deal for the complicated memory architecture as it means redesigning the silicon and building new chips
This can quickly swamp all other costs, so making scaling a shared memory system impractical
In contrast, the cost of adding CPUs to a distributed memory system is “simply” the cost of the CPUs and the networking
This is roughly linear (per CPU) price scaling
27. Classifications
Distributed Memory
However, when scaling a cluster we should take care to scale the network, too, otherwise we have exactly the same kinds of bottleneck issues that shared memory systems have
In a network like
[image: Pics/cluster1.svg]
Simple shared network
the single shared network is clearly a bottleneck
28. Classifications
Distributed Memory
So we need to scale the network. There are many choices:
[image: Pics/cluster2.svg]
Network with two interfaces
Each processor would use one interface to communicate with processors 0, 2, 4, etc.., and the other interface to processors 1, 3, 5, etc., thus spreading the load
29. Classifications
Distributed Memory
Or three interfaces
[image: Pics/cluster2a.svg]
Network with three interfaces
But this gets expensive very quickly
30. Classifications
Distributed Memory
Trees are a good way of connecting things:
[image: Pics/cluster4a.svg]
Tree network
Though the upper links now are a bottleneck, and we have introduced another non-uniformity
31. Classifications
Distributed Memory
[image: Pics/cluster4.svg]
Fat Tree
In a fat tree links up the tree have larger bandwidths, thus allowing full simultaneous bandwidth between each pair of nodes
32. Classifications
Distributed Memory
Though the latency between nodes will vary
In practice, a full fat tree is quite expensive, so real fat trees tend to skimp on the upper links a bit, e.g, 1, 2, 2 in the above diagram would be much cheaper to build (and a “2” would probably be a pair of “1”s)
Thus trading bandwidth for cost
Many other topologies exist, such as hypercube, torus, Banyan, etc.
Exercise Azure uses a Clos network within its datacentres. Read about this
33. Classifications
Distributed Memory
The point here is that this is relatively cheap to do with a distributed memory network. But adding bandwidth by doing this kind of connectivity in a shared memory system is extremely expensive as it likely needs new silicon
Adding bandwidth in a network is relatively cheap
But decreasing latency is very expensive whatever the system
34. Classifications
Virtual Shared/Distributed Virtual Memory
Some programmers don’t like the fact that distributed memory machines require programming using message passing and prefer the shared address space model: shared memory is easier to write programs for (they claim)
They can use virtual shared memory
Just as virtual memory is a way of converting virtual memory addresses into physical memory addresses, virtual shared memory is a mechanism to have a single, virtual, address space that is converted into distributed physical addresses
Thus this is also called distributed virtual memory and distributed shared memory
35. Classifications
Virtual Shared/Distributed Virtual Memory
Reading and writing variables will be implemented by a message passing layer hidden from the programmer in the OS or systems libraries
So the programmer won’t have to care about it and they can write programs as if the whole of memory was one big chunk
The programmer writes the simple “x = y” and the compiler/OS converts this into a shared memory access or a message call as appropriate
But it will be very NUMA to data
36. Classifications
Virtual Shared/Distributed Virtual Memory
Unfortunately, programmers do have to care as the speed of a program will be very hard to predict or control, depending on how data is distributed across memory and the particular NUMA architecture it is running on
How long does the assignment “x = y” take? Is it different from “x = z”?
A good programmer looking for a good, consistent performance from their code will still need to think hard
A poor programmer will think their life is easier
37. Classifications
Virtual Shared/Distributed Virtual Memory
The underlying system also needs to solve all the problems of cache coherence that shared memory hardware has, but now using the (relatively) slow messaging passing layer rather than custom-designed hardware
The NUMA aspect is so unpredictable that many programmers prefer to be in control and have an explicitly non-shared model
When you write FetchDouble you know it is going to be slow
Compare with “how fast is x = y?” in VSM
38. Classifications
Virtual Shared/Distributed Virtual Memory
The underlying communications layer in VSM might be implemented
· in the Operating System, such as Mosix. This means all standard system libraries and user code can be used unchanged and a cluster looks like a single big machine: a single system image (SSI)
· by the programming language and libraries, such as Cluster OpenMP or Unified Parallel C (see later), so the language may need a bit of learning by the programmer
39. Classifications
Virtual Shared/Distributed Virtual Memory
VSM is currently fairly rare in practice, though as NUMA techniques improve, people are starting to talk about shared memory clusters as being a viable and useful way to proceed
40. Latency numbers every programmer should know
	L1 Cache hit
	0.5 ns
	0.5 sec

	
	
	one heart beat

	Mutex lock/unlock
	25 ns
	25 sec

	
	
	making coffee

	Main memory access
	100 ns
	100 sec

	
	
	brushing your teeth

	Read 1MB from memory
	250,000 ns
	2.9 days

	
	
	a long weekend

	Round trip within
	500,000 ns
	5.8 days

	datacentre
	
	a short holiday

	Read 1MB from disk
	30,000,000 ns
	1 year

	Send a packet California
	150,000,000 ns
	4.8 years

	Netherlands California
	
	two round trips

	
	
	to Mars

https://gist.github.com/hellerbarde/2843375
41. Classifications
The next class of architecture is one we have already touched on
It has elements of both shared and distributed memory
It is used for data parallel computation
42. Classifications
Vectors
A vector processor is a SIMD collection of CPUs (actually ALUs), often with a chunk of global shared memory (and a single control unit)
[image: Pics/vector.svg]
Vector processor
Each processor also has its own chunk of local memory that it operates on
43. Classifications
Vectors
The local memory allows each ALU to work on a different set of values
Note: this is not cache, but simply per-ALU memory
44. Classifications
Cache vs Local
Cache memory: a fast local copy of a slower memory location. If a value of a variable is cached on different cores, we want all the caches to contain the same value for that variable
Local memory: per core memory (not always fast, by the way!) where we expect to have different values for a given variable in each
rId101.png
DO0000000

rId104.svg

rId107.png
[‘][OO0

rId110.svg

rId113.png

rId116.svg

 1

 4

 8

rId119.png
OO0 OO0 OO0 OO0

rId141.svg

	

	

	

	

 memory

 mem

 mem

 mem

 mem

 mem

 ALU

 ALU

 ALU

 ALU

 ALU

 Control

rId144.png

rId22.svg

 mem

 mem

 mem

 mem

 mem

 mem

 mem

 CPU

 CPU

 CPU

 CPU

 CPU

 CPU

 CPU

rId25.png
g

1]
[

Bir

3

rId30.svg

 mem

 mem

 mem

 mem

 CPU

 CPU

 CPU

 CPU

rId33.png

rId44.svg

 mem

 CPU

 CPU

 mem

 mem

 CPU

 CPU

 CPU

 CPU

rId47.png
(308

[5]]¢]

rId54.svg

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 a value in

 memory

rId57.png
(o) (o]

[ED

(o)

(o)

rId62.svg

 Network

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 23

 x: 99

rId65.png

rId92.svg

rId95.png
|
)OO0 0)

rId98.svg

