Parallel Computing
CM30225
Russell Bradford
2023/24
1. Background
There is nothing new in Computer Science and that includes parallelism. Back when large supercomputers were first popular they had been parallel for a long time
For example, a common kind of hardware was the vector processor
This is for data parallelism, namely scaling the data, not the speed (directly)
E.g., add together these 100 pairs of numbers to produce 100 results
2. Background
A vector processor is a collection of 10s, or 100s or 1000s of fairly simple CPUs (technically not proper full CPUs, just ALUs: see later)
However, in a vector processor, the CPUs are not independent of each other: at each point in time each processor is doing the same operation
But on different data
So it can add 100 pairs of numbers simultaneously: data parallel
This is called single instruction multiple data (SIMD) processing
3. Background
And there are other ways of making parallel machines: if you want to make a really big machine, for a long time the architecture of choice has been the cluster
This is “simply” large numbers of normal PCs connected together with a network, with your program spread across the nodes (the PCs)
We can get both process and data parallelism from this architecture
The hardware is commodity, so clusters with thousands of CPUs are common; clusters with millions of cores exist
4. Background
Some words: be aware different people use these terms in different ways
· core: a single processing element, can be just an ALU or can have its own instruction decoding unit
· cpu: sometimes just a synonym for core, sometimes a chip which contains one or more cores
· processor: similar to cpu
· node: a motherboard that can have one or more slots for multi-core cpus that share some local resource on the motherboard, particularly memory
· cluster: a collection of nodes connected by a network
5. Background
For example, the Azure machine you will be using for the coursework has four nodes, each consisting of two chips, each with 24 cores
6. Background
From www.top500.org, the fastest (publicly known) computer in the world is (June 2023):
Frontier (USA), 8,699,904 cores, comprising AMD EPYC 64C cpus at 2GHz; plus Radeon Instinct GPUs; using 23MW power; with Slingshot-11 interconnect; running HPE Cray OS
This peaks at about 1.2 exaflops
1 exaflop is a quintillion () floating point operations per second
7. Background
This is the first machine to pass the “exaflop barrier”
HPE is Hewlett Packard Enterprise
Slingshot is a high performance network; a Cray technology, with (e.g.) hardware support for MPI
HPE Cray OS is a variant of SUSE Linux Enterprise Server
8. Background
But lots of cores is easy: just expensive
Anyone can build a fast CPU. The trick is to build a fast system.
Seymour Cray
9. Background
The main problem in a cluster is the slow communications between the CPUs
A typical network connection is millions of times slower than a memory bus: milliseconds rather than nanoseconds
To move data from one node in a cluster to another is (relatively) immensely slow
Programming a cluster is all about moving the data: we might be able to do a million machine instructions in the time it takes to fetch some data from another node
10. Background
On a machine with a million cores it can be faster to do a million adds on one core rather than ship out the adds to the CPUs; do a million adds in parallel; then collect the data back together
Just having an immensely parallel machine doesn’t mean it’s always better to use the parallelism
11. Background
In a large parallel machine (cluster or otherwise) processing power is cheap, but data are expensive
This means you have to think about your programs differently
It might be faster to recompute the same value 1000s of times across many cores than compute it once and communicate it everywhere
A very different mindset is needed!
12. Classifications
We need to classify the kinds of parallelism we shall be looking at
A simple classification was devised by Flynn (1966)
· Single Instruction, Single Data (SISD). Traditional, von Neumann, single core machines
· Single Instruction, Multiple Data (SIMD). As in a vector processor. Multiple cores all doing the same operation in lockstep, but on different datastreams
· Multiple Instruction, Multiple Data (MIMD). Multiple cores doing different things to different datastreams. What most people (wrongly) think parallel computing is all about
13. Classifications
· Multiple Instruction, Single Data (MISD). Something to fill in the last combination of letters. Sometimes interpreted as redundancy, e.g., airplane flight control where they have multiple (different!) computers all processing the same data
<+(0)->
	
	Data

	
	Single
	Multiple

	Instruc-
	Single
	SISD
	SIMD

	tion
	Multiple
	MISD
	MIMD

14. Classifications
Flynn’s classification is nice and simple, so people have extended it further, in particular sub-dividing MIMD
· Single Program, Multiple Data (SPMD). Recall SIMD runs the same program on multiple cores in lockstep, so every core is executing the same instruction. SPMD runs the same program (on different data) on a MIMD machine, with each core going their own way, particularly on loops and conditionals
· Multiple Program Multiple Data (MPMD). A MIMD machine not running SPMD. So each core running potentially different programs, e.g., producer-consumer models, or systolic pipelines (see later)
15. Classifications
Of course, there are many more classifications we need to look at
We can think of how the parts of the architecture are connected
16. Classifications
Uniprocessor
A uniprocessor (unicore) or sequential processor is the traditional von Neumann architecture of a single CPU, memory, etc.
[image: Pics/vonN.svg]
von Neumann Architecture
A hugely successful model that enabled the computer revolution to take place
17. Classifications
Coprocessor
A coprocessor is a non-general processor used as a worker by the processor
[image: Pics/coproc.svg]
Coprocessor
Currently very popular in the form of graphics cards
18. Classifications
Multiprocessor
A multiprocessor is a loose term applying to most parallel architectures, except occasionally SIMD, which usually doesn’t have multiple full cores
19. Classifications
Shared Memory
A multiprocessor has shared memory when the cores access memory on a shared bus
[image: Pics/shared.svg]
Shared Memory
Cores share each other’s data: if one core modifies the value of a value in memory, the other cores see that change
20. Classifications
Shared Memory
In reality, the shared bus can be a lot more complicated, e.g., a tree or ring structure
In this example, we have symmetric shared memory: every CPU has the same equal access to the shared memory
21. Classifications
Shared Memory
This is possibly what most people think of as a typical parallel architecture
Unfortunately, it has a lot of problems as an architecture
In particular, the memory is a bottleneck
Memory and memory buses are slow relative to a processor anyway, and when you have several cores all trying to access memory simultaneously it gets much worse
22. Classifications
Shared Memory
Even single core processors have a problem with the speed disparity, so they use fast (but small) intermediate cache memory
A small (because it’s expensive) chunk of very fast memory where you store copies of a few of the values you are currently using from main memory
Sometime two or three (occasionally four) levels of cache of increasing size but decreasing speed
<+(0)->
[image: Pics/shared1.svg]
Levels of cache
23. Classifications
Shared Memory
So shared memory machines try to cut down the traffic on the bus by using caches
[image: Pics/shared2.svg]
Memory caches
Each core has its own chunk of fast cache memory: this cuts down on use of the bus
24. Classifications
Shared Memory
If a core is manipulating the value of a variable it will be loaded into the cache and operated on there, rather than over the bus in main memory
[image: Pics/shared2a.svg]
A value in memory
[image: Pics/shared2b.svg]
Read value
[image: Pics/shared2c.svg]
Copy in cache
[image: Pics/shared2d.svg]
Update x (in cache)
[image: Pics/shared2e.svg]
Update x again
[image: Pics/shared2f.svg]
Store x later
25. Classifications
Shared Memory
This reduces pressure on the shared bus: but now we have the problem of cache coherence
A CPU only updates its cached copy; the global copy remains at its old value for a while
So if another core want to read the value before the updated version has been written back, it will get the old value
26. Classifications
Shared Memory
[image: Pics/shared3a.svg]
x has been updated in cache
[image: Pics/shared3b.svg]
Another CPU wants x
27. Classifications
Shared Memory
Even worse, dependent on timing, you don’t know if the first CPU has written the value back or not
Meaning different runs of the same program can produce different results, dependent on what else happens to be going on in the system
This is an example of a race condition: differing orders of execution of concurrent parts of a system produces varying outcomes
This particular example is a data race: a race condition that involves updating data
28. Classifications
Shared Memory
Not what we want, as we can’t control the vagaries of hardware operation
You might get the right answer on hundreds of runs; it doesn’t mean your program is correct!
And it might always happen to be right on your machine, but wrong when run on some other machine
29. Classifications
Shared Memory
There are other ways to fail, too
Others cores might be doing the same: reading and updating the value. Thus there can be several conflicting copies of what is supposed to be the same variable in different caches
When one core updates the variable the other cores will still be using their own in their caches
30. Classifications
Shared Memory
[image: Pics/shared4a.svg]
Multiple copies of x
[image: Pics/shared4b.svg]
Multiple inconsistent copies
31. Classifications
Shared Memory
The cache coherence problem is the issue of trying to make sure all cached copies of a variable are kept in sync
This might be done in several ways
E.g., in the snarfing protocol, whenever an update is made the value is immediately written through the bus (increasing traffic on the bus…) to main memory. The other caches are watching the bus and if they have a copy of the variable they update their copy with the value being written (they “snarf” the new value)
This is expensive in hardware and does not scale well to large number of cores as every write must go through the bus
32. Classifications
Shared Memory
[image: Pics/shared5a.svg]
New value immediately written to memory
[image: Pics/shared5b.svg]
Caches copy update from bus
33. Classifications
Shared Memory
But this is better than you might imagine as typical code reads values much more than it updates values
In x = y + z two values are read, one is written
So this kind of cache-watching is more effective than you might think
Secondly, well-written code will avoid using shared values in the first place. Sharing mutable state across threads is bad design (more on this later)
34. Classifications
Shared Memory
Other solutions might be to try to balance the memory/cpu speed disparity
You could use very fast buses and main memory: not a solution due to cost
Or use slow processors: IBM tried this and it was surprisingly good!
35. Classifications
Shared Memory
Exercise Modern architectures are more like:
[image: Pics/shared6.svg]
Modern memory architectures
Does this solve the problem?
36. Classifications
Shared Memory
Unfortunately, such symmetric shared memory does not scale well, perhaps a few 100s of cores, with complex hardware support in the caches
Ampere has a 128 core Arm architecture
Intel have just announced a 288 core x86 chip (Sept 2023)
37. Classifications
Shared Memory
Exercise Read about cache coherence mechanisms: snoopy caches; directory based; snarfing; MSI; MESI
Exercise Another complication to symmetric shared memory is when the cores are not identical: read about performance and efficiency cores (P-cores and E-cores) used by Intel, Apple and others
rId100.svg

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 x: 2

 x has been

 updated

rId103.png
(o) (o]

[ED

(o)

(o)

rId104.svg

	

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 x: 2

 another CPU

 wants x

rId107.png

rId116.svg

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 x: 1

 x: 1

 multiple

 copies of

 x

rId119.png
(o) (o]

e

[ED

(o)

(o)

rId120.svg

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 multiple

 x: 2

 x: 3

 updates

 inconsistent

rId123.png
(o) (o]

[ED

(o)

(o)

rId128.svg

	

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 x: 2

 x: 1

 new value

 immediately

 written

rId131.png
(o) (o]

[ED

(o)

(o)

rId132.svg

	

	

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 2

 cache copies

 update from

 bus

 x: 2

 x: 2

rId135.png
(o) (o]

[ED

(o)

(o)

rId142.svg

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 x: 2

 CPU

 CPU

 CPU

 CPU

 x: 2

 x: 2

rId145.png
&3] w‘(-;]u\w‘l}@ %r-;]”w}g

I

rId36.svg

	

	

	

	

 input

 output

 ALU

 Control

 memory

 CPU

rId39.png

rId42.svg

	

	

	

 memory

 CPU

 coprocessor

rId45.png
[

rId50.svg

	

	

	

	

	

	

 memory

 CPU

 CPU

 CPU

 CPU

 CPU

rId53.png

rId60.svg

	

	

	

	

 CPU

 L1 cache

 L2 cache

 L3 cache

 memory

rId63.png

rId66.svg

	

	

	

	

	

	

	

	

	

	

	

 cache

 CPU

 cache

 CPU

 cache

 CPU

 cache

 CPU

 cache

 CPU

 memory

rId69.png
i

TTITIT

rId72.svg

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 a value in

 memory

rId75.png
(o) (o]

[ED

(o)

(o)

rId76.svg

	

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 read x

 uses the bus

rId79.png
(o) (o]

[ED

(o)

(o)

rId80.svg

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 x: 1

 cache x

rId83.png
(o) (o]

[ED

(o)

(o)

rId84.svg

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 x: 2

 update x

rId87.png
(o) (o]

[ED

(o)

(o)

rId88.svg

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 1

 x: 3

 update x

 again

rId91.png
(o) (o]

iy

[ED

(o)

(o)

rId92.svg

	

	

	

	

	

	

	

	

	

	

	

	

 CPU

 CPU

 CPU

 CPU

 CPU

 x: 3

 x: 3

 sometime later

 store x; uses

 the bus

rId95.png
) ()

?

D)
lw

&3

