
Equality

We now return to the question of equality: what does it mean
when we say two things are equal?

We will have to approach this carefully, starting with the way
datastructures are stored in memory

1 / 146

Equality

We now return to the question of equality: what does it mean
when we say two things are equal?

We will have to approach this carefully, starting with the way
datastructures are stored in memory

2 / 146

Equality
Lists in Memory

We often draw pairs (also called cons cells) as blocks:

(a b c) is

a b c

()

Each cons is a pair of memory locations

The car is a pointer to (i.e., is the memory address of) where
the symbol a is stored in memory, etc.

A pair really is a pair of pointers in memory

3 / 146

Equality
Lists in Memory

We often draw pairs (also called cons cells) as blocks:

(a b c) is

a b c

()

Each cons is a pair of memory locations

The car is a pointer to (i.e., is the memory address of) where
the symbol a is stored in memory, etc.

A pair really is a pair of pointers in memory

4 / 146

Equality
Lists in Memory

We often draw pairs (also called cons cells) as blocks:

(a b c) is

a b c

()

Each cons is a pair of memory locations

The car is a pointer to (i.e., is the memory address of) where
the symbol a is stored in memory, etc.

A pair really is a pair of pointers in memory

5 / 146

Equality
Lists in Memory

We often draw pairs (also called cons cells) as blocks:

(a b c) is

a b c

()

Each cons is a pair of memory locations

The car is a pointer to (i.e., is the memory address of) where
the symbol a is stored in memory, etc.

A pair really is a pair of pointers in memory

6 / 146

Equality
Lists in Memory

The pair made by (cons ’a ’a), namely (a . a) is

a

Both parts point to the symbol a

In Lisp, a symbol of a given name is unique within the system,
unlike strings: there may be several copies of "cat" in memory

Uniqueness of symbols is pretty much a defining property of
symbols in Lisp

7 / 146

Equality
Lists in Memory

The pair made by (cons ’a ’a), namely (a . a) is

a

Both parts point to the symbol a

In Lisp, a symbol of a given name is unique within the system,
unlike strings: there may be several copies of "cat" in memory

Uniqueness of symbols is pretty much a defining property of
symbols in Lisp

8 / 146

Equality
Lists in Memory

The pair made by (cons ’a ’a), namely (a . a) is

a

Both parts point to the symbol a

In Lisp, a symbol of a given name is unique within the system,
unlike strings: there may be several copies of "cat" in memory

Uniqueness of symbols is pretty much a defining property of
symbols in Lisp

9 / 146

Equality
Lists in Memory

The pair made by (cons ’a ’a), namely (a . a) is

a

Both parts point to the symbol a

In Lisp, a symbol of a given name is unique within the system,
unlike strings: there may be several copies of "cat" in memory

Uniqueness of symbols is pretty much a defining property of
symbols in Lisp

10 / 146

Equality
Aside

Another subtle point:

(let ((x 1))

(let ((x 2))

... x ...)

... x ...)

Regarded as variables (code), the two xs are different, and they
refer to different memory locations

You could uniformly replace the inner x with, say, y, and (name
clashes aside) the code does the same thing

But regarded as symbols (data), there is just one x

It’s a matter of which properties you are thinking about

11 / 146

Equality
Aside

Another subtle point:

(let ((x 1))

(let ((x 2))

... x ...)

... x ...)

Regarded as variables (code), the two xs are different, and they
refer to different memory locations

You could uniformly replace the inner x with, say, y, and (name
clashes aside) the code does the same thing

But regarded as symbols (data), there is just one x

It’s a matter of which properties you are thinking about

12 / 146

Equality
Aside

Another subtle point:

(let ((x 1))

(let ((x 2))

... x ...)

... x ...)

Regarded as variables (code), the two xs are different, and they
refer to different memory locations

You could uniformly replace the inner x with, say, y, and (name
clashes aside) the code does the same thing

But regarded as symbols (data), there is just one x

It’s a matter of which properties you are thinking about

13 / 146

Equality
Aside

Another subtle point:

(let ((x 1))

(let ((x 2))

... x ...)

... x ...)

Regarded as variables (code), the two xs are different, and they
refer to different memory locations

You could uniformly replace the inner x with, say, y, and (name
clashes aside) the code does the same thing

But regarded as symbols (data), there is just one x

It’s a matter of which properties you are thinking about

14 / 146

Equality
Lists in Memory

The locations of the cons pairs can be anywhere in memory

The successive pairs in a list need not be next to each other in
memory and quite likely are not

In (1 2 3), i.e., (1 . (2 . (3 . ()))) the cons cell
(1) has no particular placement in memory relative to
the cons cell (2)

Some implementations may even have the car and cdr parts
in entirely separate areas of memory

It doesn’t really matter and the Lisp system deals with it: you
never see memory locations in Lisp (unless. . .)

15 / 146

Equality
Lists in Memory

The locations of the cons pairs can be anywhere in memory

The successive pairs in a list need not be next to each other in
memory and quite likely are not

In (1 2 3), i.e., (1 . (2 . (3 . ()))) the cons cell
(1) has no particular placement in memory relative to
the cons cell (2)

Some implementations may even have the car and cdr parts
in entirely separate areas of memory

It doesn’t really matter and the Lisp system deals with it: you
never see memory locations in Lisp (unless. . .)

16 / 146

Equality
Lists in Memory

The locations of the cons pairs can be anywhere in memory

The successive pairs in a list need not be next to each other in
memory and quite likely are not

In (1 2 3), i.e., (1 . (2 . (3 . ()))) the cons cell
(1) has no particular placement in memory relative to
the cons cell (2)

Some implementations may even have the car and cdr parts
in entirely separate areas of memory

It doesn’t really matter and the Lisp system deals with it: you
never see memory locations in Lisp (unless. . .)

17 / 146

Equality
Lists in Memory

The locations of the cons pairs can be anywhere in memory

The successive pairs in a list need not be next to each other in
memory and quite likely are not

In (1 2 3), i.e., (1 . (2 . (3 . ()))) the cons cell
(1) has no particular placement in memory relative to
the cons cell (2)

Some implementations may even have the car and cdr parts
in entirely separate areas of memory

It doesn’t really matter and the Lisp system deals with it: you
never see memory locations in Lisp (unless. . .)

18 / 146

Equality
Lists in Memory

The locations of the cons pairs can be anywhere in memory

The successive pairs in a list need not be next to each other in
memory and quite likely are not

In (1 2 3), i.e., (1 . (2 . (3 . ()))) the cons cell
(1) has no particular placement in memory relative to
the cons cell (2)

Some implementations may even have the car and cdr parts
in entirely separate areas of memory

It doesn’t really matter and the Lisp system deals with it: you
never see memory locations in Lisp (unless. . .)

19 / 146

Equality
Lists in Memory

Each call to the function cons will return a newly allocated pair
that is somewhere in memory, but nowhere in particular

This is one of the defining properties of cons: it guarantees
always to allocate a new pair

And, as a consequence, list guarantees to create an all-new
list

20 / 146

Equality
Lists in Memory

Each call to the function cons will return a newly allocated pair
that is somewhere in memory, but nowhere in particular

This is one of the defining properties of cons: it guarantees
always to allocate a new pair

And, as a consequence, list guarantees to create an all-new
list

21 / 146

Equality
Lists in Memory

Each call to the function cons will return a newly allocated pair
that is somewhere in memory, but nowhere in particular

This is one of the defining properties of cons: it guarantees
always to allocate a new pair

And, as a consequence, list guarantees to create an all-new
list

22 / 146

Equality
Lists in Memory

The list made by (list (list ’a ’b) (list ’a ’b)) is
((a b) (a b))

()

()()

a

b

For convenience, I have drawn pointers to () as ()

23 / 146

Equality
Lists in Memory

Contrast with the list made in

(let ((lab (list ’a ’b)))

(list lab lab)) → ((a b) (a b))

()

()

a

b

Very different from the previous picture!

24 / 146

Equality
Lists in Memory

Contrast with the list made in

(let ((lab (list ’a ’b)))

(list lab lab)) → ((a b) (a b))

()

()

a

b

Very different from the previous picture!

25 / 146

Equality
Lists in Memory

Understanding the implications of what is going on here is one
of the important things in Computer Science

Both lists print as ((a b) (a b)) but their structures are very
different

In the second, the sublists are shared : the second sublist is the
same memory as the first sublist

In the first, the sublists are separate: the second sublist
occupies different memory from the first sublist

26 / 146

Equality
Lists in Memory

Understanding the implications of what is going on here is one
of the important things in Computer Science

Both lists print as ((a b) (a b)) but their structures are very
different

In the second, the sublists are shared : the second sublist is the
same memory as the first sublist

In the first, the sublists are separate: the second sublist
occupies different memory from the first sublist

27 / 146

Equality
Lists in Memory

Understanding the implications of what is going on here is one
of the important things in Computer Science

Both lists print as ((a b) (a b)) but their structures are very
different

In the second, the sublists are shared : the second sublist is the
same memory as the first sublist

In the first, the sublists are separate: the second sublist
occupies different memory from the first sublist

28 / 146

Equality
Lists in Memory

Understanding the implications of what is going on here is one
of the important things in Computer Science

Both lists print as ((a b) (a b)) but their structures are very
different

In the second, the sublists are shared : the second sublist is the
same memory as the first sublist

In the first, the sublists are separate: the second sublist
occupies different memory from the first sublist

29 / 146

Equality
Lists in Memory

If we take the first example and somehow update the first
sublist to have a c instead of the a we get

()

()()

a

b

c

or ((c b) (a b))

30 / 146

Equality
Lists in Memory

If we take the second example and somehow update the first
sublist to have a c instead of the a we get

()

()b

c

or ((c b) (c b))

31 / 146

Equality
Lists in Memory

As the second sublist is the first sublist, updating the first
updates them both

But it’s not “both” as there’s only one

32 / 146

Equality
Lists in Memory

As the second sublist is the first sublist, updating the first
updates them both

But it’s not “both” as there’s only one

33 / 146

Equality
Lists in Memory

Sometimes we want shared structures: it uses less memory

Sometimes we want non-shared structures: we can manipulate
parts independently

Both are useful

But we must be aware which we are getting

And this applies to all such structures in all languages, not just
Lisp

34 / 146

Equality
Lists in Memory

Sometimes we want shared structures: it uses less memory

Sometimes we want non-shared structures: we can manipulate
parts independently

Both are useful

But we must be aware which we are getting

And this applies to all such structures in all languages, not just
Lisp

35 / 146

Equality
Lists in Memory

Sometimes we want shared structures: it uses less memory

Sometimes we want non-shared structures: we can manipulate
parts independently

Both are useful

But we must be aware which we are getting

And this applies to all such structures in all languages, not just
Lisp

36 / 146

Equality
Lists in Memory

Sometimes we want shared structures: it uses less memory

Sometimes we want non-shared structures: we can manipulate
parts independently

Both are useful

But we must be aware which we are getting

And this applies to all such structures in all languages, not just
Lisp

37 / 146

Equality
Lists in Memory

Sometimes we want shared structures: it uses less memory

Sometimes we want non-shared structures: we can manipulate
parts independently

Both are useful

But we must be aware which we are getting

And this applies to all such structures in all languages, not just
Lisp

38 / 146

Equality
Lists in Memory

The thing to remember is that cons (and therefore list and
append and similar) always allocates new pairs from memory

So the first example guarantees separate sublists

The second, with (list lab lab) we are being explicit about
sharing the list lab

39 / 146

Equality
Lists in Memory

The thing to remember is that cons (and therefore list and
append and similar) always allocates new pairs from memory

So the first example guarantees separate sublists

The second, with (list lab lab) we are being explicit about
sharing the list lab

40 / 146

Equality
Lists in Memory

The thing to remember is that cons (and therefore list and
append and similar) always allocates new pairs from memory

So the first example guarantees separate sublists

The second, with (list lab lab) we are being explicit about
sharing the list lab

41 / 146

Equality
Lists in Memory

Exercise. Draw boxes and arrows to explain the differences
between

• (list ’(a b) ’(c d))

• (cons ’(a b) ’(c d))

• (append ’(a b) ’(c d))

Each function here makes new cons cells: they do not modify
existing cons cells

Also: the results from append shares the second argument, but
makes a new copy of the first argument (Exercise: why?). This
makes append a very expensive operation if the first argument
is a long list

42 / 146

Equality

Though different in memory, the two variants of ((a b) (a
b)) are the “same” in some sense

They certainly print the same

Sometimes we want to say they are the same, sometimes not

So Lisp provides two (and more) tests of equality of objects

It is rare that other languages are even aware of this issue,
leading to all kinds of bugs from programmers using them

43 / 146

Equality

Though different in memory, the two variants of ((a b) (a
b)) are the “same” in some sense

They certainly print the same

Sometimes we want to say they are the same, sometimes not

So Lisp provides two (and more) tests of equality of objects

It is rare that other languages are even aware of this issue,
leading to all kinds of bugs from programmers using them

44 / 146

Equality

Though different in memory, the two variants of ((a b) (a
b)) are the “same” in some sense

They certainly print the same

Sometimes we want to say they are the same, sometimes not

So Lisp provides two (and more) tests of equality of objects

It is rare that other languages are even aware of this issue,
leading to all kinds of bugs from programmers using them

45 / 146

Equality

Though different in memory, the two variants of ((a b) (a
b)) are the “same” in some sense

They certainly print the same

Sometimes we want to say they are the same, sometimes not

So Lisp provides two (and more) tests of equality of objects

It is rare that other languages are even aware of this issue,
leading to all kinds of bugs from programmers using them

46 / 146

Equality

Though different in memory, the two variants of ((a b) (a
b)) are the “same” in some sense

They certainly print the same

Sometimes we want to say they are the same, sometimes not

So Lisp provides two (and more) tests of equality of objects

It is rare that other languages are even aware of this issue,
leading to all kinds of bugs from programmers using them

47 / 146

Equality

The question is: what do we mean by equality?

Suppose lab1 and lab2 have the values created by separate
calls (list ’a ’b)

(let ((lab1 (list ’a ’b))

(lab2 (list ’a ’b)))

...)

48 / 146

Equality

The question is: what do we mean by equality?

Suppose lab1 and lab2 have the values created by separate
calls (list ’a ’b)

(let ((lab1 (list ’a ’b))

(lab2 (list ’a ’b)))

...)

49 / 146

Equality

So the two lists occupy different chunks of memory

() ()

a

b

lab1 lab2

50 / 146

Equality

One kind of equality, structural equality , says things are “equal”
if they “look the same”

This can be made precise

In Lisp there is a function named equal for this type of equality

(equal lab1 lab2) → t
(equal lab1 lab1) → t

51 / 146

Equality

One kind of equality, structural equality , says things are “equal”
if they “look the same”

This can be made precise

In Lisp there is a function named equal for this type of equality

(equal lab1 lab2) → t
(equal lab1 lab1) → t

52 / 146

Equality

One kind of equality, structural equality , says things are “equal”
if they “look the same”

This can be made precise

In Lisp there is a function named equal for this type of equality

(equal lab1 lab2) → t
(equal lab1 lab1) → t

53 / 146

Equality

One kind of equality, structural equality , says things are “equal”
if they “look the same”

This can be made precise

In Lisp there is a function named equal for this type of equality

(equal lab1 lab2) → t
(equal lab1 lab1) → t

54 / 146

Equality

Another type of equality is “these two objects are the same
object”

They are the same thing in memory

In Lisp there is a function named eq for this type of equality

(eq lab1 lab2) → ()
(eq lab1 lab1) → t

All objects are eq to themselves (except in Common Lisp. . .)

55 / 146

Equality

Another type of equality is “these two objects are the same
object”

They are the same thing in memory

In Lisp there is a function named eq for this type of equality

(eq lab1 lab2) → ()
(eq lab1 lab1) → t

All objects are eq to themselves (except in Common Lisp. . .)

56 / 146

Equality

Another type of equality is “these two objects are the same
object”

They are the same thing in memory

In Lisp there is a function named eq for this type of equality

(eq lab1 lab2) → ()
(eq lab1 lab1) → t

All objects are eq to themselves (except in Common Lisp. . .)

57 / 146

Equality

Another type of equality is “these two objects are the same
object”

They are the same thing in memory

In Lisp there is a function named eq for this type of equality

(eq lab1 lab2) → ()
(eq lab1 lab1) → t

All objects are eq to themselves (except in Common Lisp. . .)

58 / 146

Equality

Another type of equality is “these two objects are the same
object”

They are the same thing in memory

In Lisp there is a function named eq for this type of equality

(eq lab1 lab2) → ()
(eq lab1 lab1) → t

All objects are eq to themselves (except in Common Lisp. . .)

59 / 146

Equality

The equal test is roughly as follows. Given two objects a and b

1. if (eq a b) return t

2. if they are both symbols, return t if they are the same
symbol else ()

3. if they are both numbers, return t if they are numerically
equal (and same type) else ()

4. if they are both strings, return t if they contain the same
characters else ()

5. similarly for other datatypes
6. if they are both pairs, return t if both their cars are equal

and their cdrs are equal

7. Else return ()

60 / 146

Equality

The equal test is roughly as follows. Given two objects a and b

1. if (eq a b) return t

2. if they are both symbols, return t if they are the same
symbol else ()

3. if they are both numbers, return t if they are numerically
equal (and same type) else ()

4. if they are both strings, return t if they contain the same
characters else ()

5. similarly for other datatypes
6. if they are both pairs, return t if both their cars are equal

and their cdrs are equal

7. Else return ()

61 / 146

Equality

The equal test is roughly as follows. Given two objects a and b

1. if (eq a b) return t

2. if they are both symbols, return t if they are the same
symbol else ()

3. if they are both numbers, return t if they are numerically
equal (and same type) else ()

4. if they are both strings, return t if they contain the same
characters else ()

5. similarly for other datatypes
6. if they are both pairs, return t if both their cars are equal

and their cdrs are equal

7. Else return ()

62 / 146

Equality

The equal test is roughly as follows. Given two objects a and b

1. if (eq a b) return t

2. if they are both symbols, return t if they are the same
symbol else ()

3. if they are both numbers, return t if they are numerically
equal (and same type) else ()

4. if they are both strings, return t if they contain the same
characters else ()

5. similarly for other datatypes
6. if they are both pairs, return t if both their cars are equal

and their cdrs are equal

7. Else return ()

63 / 146

Equality

The equal test is roughly as follows. Given two objects a and b

1. if (eq a b) return t

2. if they are both symbols, return t if they are the same
symbol else ()

3. if they are both numbers, return t if they are numerically
equal (and same type) else ()

4. if they are both strings, return t if they contain the same
characters else ()

5. similarly for other datatypes
6. if they are both pairs, return t if both their cars are equal

and their cdrs are equal

7. Else return ()

64 / 146

Equality

The equal test is roughly as follows. Given two objects a and b

1. if (eq a b) return t

2. if they are both symbols, return t if they are the same
symbol else ()

3. if they are both numbers, return t if they are numerically
equal (and same type) else ()

4. if they are both strings, return t if they contain the same
characters else ()

5. similarly for other datatypes

6. if they are both pairs, return t if both their cars are equal
and their cdrs are equal

7. Else return ()

65 / 146

Equality

The equal test is roughly as follows. Given two objects a and b

1. if (eq a b) return t

2. if they are both symbols, return t if they are the same
symbol else ()

3. if they are both numbers, return t if they are numerically
equal (and same type) else ()

4. if they are both strings, return t if they contain the same
characters else ()

5. similarly for other datatypes
6. if they are both pairs, return t if both their cars are equal

and their cdrs are equal

7. Else return ()

66 / 146

Equality

The equal test is roughly as follows. Given two objects a and b

1. if (eq a b) return t

2. if they are both symbols, return t if they are the same
symbol else ()

3. if they are both numbers, return t if they are numerically
equal (and same type) else ()

4. if they are both strings, return t if they contain the same
characters else ()

5. similarly for other datatypes
6. if they are both pairs, return t if both their cars are equal

and their cdrs are equal

7. Else return ()

67 / 146

Equality

In brief, two pairs are equal if they are the same pair (eq), or
both

• their cars are equal

• and their cdrs are equal

68 / 146

Equality

equal is naturally recursive

eq is a fast memory pointer comparison

equal can take a long time on large datastructures

eq is like == in C

Whenever you need it, you have to code your own equal on
datastructures in C

Though strcmp is provided for strings

69 / 146

Equality

equal is naturally recursive

eq is a fast memory pointer comparison

equal can take a long time on large datastructures

eq is like == in C

Whenever you need it, you have to code your own equal on
datastructures in C

Though strcmp is provided for strings

70 / 146

Equality

equal is naturally recursive

eq is a fast memory pointer comparison

equal can take a long time on large datastructures

eq is like == in C

Whenever you need it, you have to code your own equal on
datastructures in C

Though strcmp is provided for strings

71 / 146

Equality

equal is naturally recursive

eq is a fast memory pointer comparison

equal can take a long time on large datastructures

eq is like == in C

Whenever you need it, you have to code your own equal on
datastructures in C

Though strcmp is provided for strings

72 / 146

Equality

equal is naturally recursive

eq is a fast memory pointer comparison

equal can take a long time on large datastructures

eq is like == in C

Whenever you need it, you have to code your own equal on
datastructures in C

Though strcmp is provided for strings

73 / 146

Equality

equal is naturally recursive

eq is a fast memory pointer comparison

equal can take a long time on large datastructures

eq is like == in C

Whenever you need it, you have to code your own equal on
datastructures in C

Though strcmp is provided for strings

74 / 146

Equality

And there’s more types of equality, mostly for numerical testing

• (eq 1 1.0) → () as expected
• (equal 1 1.0) → () as they are different types
• (= 1 1.0) → t for mathematically the same
• (eql 1 1.0) → () another equality introduced by

Common Lisp to fix a feature when they found some
implementations couldn’t guarantee that (eq 1 1) should
be t. So, (eql 1 1) is guaranteed true, but possibly
slower than eq. Use eql on numbers and characters in
Common Lisp

Some implementations had (eq 1023 1023) true but (eq
1024 1024) false

75 / 146

Equality

And there’s more types of equality, mostly for numerical testing

• (eq 1 1.0) → () as expected

• (equal 1 1.0) → () as they are different types
• (= 1 1.0) → t for mathematically the same
• (eql 1 1.0) → () another equality introduced by

Common Lisp to fix a feature when they found some
implementations couldn’t guarantee that (eq 1 1) should
be t. So, (eql 1 1) is guaranteed true, but possibly
slower than eq. Use eql on numbers and characters in
Common Lisp

Some implementations had (eq 1023 1023) true but (eq
1024 1024) false

76 / 146

Equality

And there’s more types of equality, mostly for numerical testing

• (eq 1 1.0) → () as expected
• (equal 1 1.0) → () as they are different types

• (= 1 1.0) → t for mathematically the same
• (eql 1 1.0) → () another equality introduced by

Common Lisp to fix a feature when they found some
implementations couldn’t guarantee that (eq 1 1) should
be t. So, (eql 1 1) is guaranteed true, but possibly
slower than eq. Use eql on numbers and characters in
Common Lisp

Some implementations had (eq 1023 1023) true but (eq
1024 1024) false

77 / 146

Equality

And there’s more types of equality, mostly for numerical testing

• (eq 1 1.0) → () as expected
• (equal 1 1.0) → () as they are different types
• (= 1 1.0) → t for mathematically the same

• (eql 1 1.0) → () another equality introduced by
Common Lisp to fix a feature when they found some
implementations couldn’t guarantee that (eq 1 1) should
be t. So, (eql 1 1) is guaranteed true, but possibly
slower than eq. Use eql on numbers and characters in
Common Lisp

Some implementations had (eq 1023 1023) true but (eq
1024 1024) false

78 / 146

Equality

And there’s more types of equality, mostly for numerical testing

• (eq 1 1.0) → () as expected
• (equal 1 1.0) → () as they are different types
• (= 1 1.0) → t for mathematically the same
• (eql 1 1.0) → () another equality introduced by

Common Lisp to fix a feature when they found some
implementations couldn’t guarantee that (eq 1 1) should
be t. So, (eql 1 1) is guaranteed true, but possibly
slower than eq. Use eql on numbers and characters in
Common Lisp

Some implementations had (eq 1023 1023) true but (eq
1024 1024) false

79 / 146

Equality

And there’s more types of equality, mostly for numerical testing

• (eq 1 1.0) → () as expected
• (equal 1 1.0) → () as they are different types
• (= 1 1.0) → t for mathematically the same
• (eql 1 1.0) → () another equality introduced by

Common Lisp to fix a feature when they found some
implementations couldn’t guarantee that (eq 1 1) should
be t. So, (eql 1 1) is guaranteed true, but possibly
slower than eq. Use eql on numbers and characters in
Common Lisp

Some implementations had (eq 1023 1023) true but (eq
1024 1024) false

80 / 146

Equality

Note: in the examples above we used

(let ((lab1 (list ’a ’b)

(lab2 (list ’a ’b))) ...)

rather than

(let ((lab1 ’(a b))

(lab2 ’(a b))) ...)

This is because the lists ’(a b) are constant and the Lisp
interpreter or compiler might spot they are the same and only
allocate once and share it

So (eq ’(a b) ’(a b)) could be either t or ()

81 / 146

Equality

Note: in the examples above we used

(let ((lab1 (list ’a ’b)

(lab2 (list ’a ’b))) ...)

rather than

(let ((lab1 ’(a b))

(lab2 ’(a b))) ...)

This is because the lists ’(a b) are constant and the Lisp
interpreter or compiler might spot they are the same and only
allocate once and share it

So (eq ’(a b) ’(a b)) could be either t or ()

82 / 146

Equality

Note: in the examples above we used

(let ((lab1 (list ’a ’b)

(lab2 (list ’a ’b))) ...)

rather than

(let ((lab1 ’(a b))

(lab2 ’(a b))) ...)

This is because the lists ’(a b) are constant and the Lisp
interpreter or compiler might spot they are the same and only
allocate once and share it

So (eq ’(a b) ’(a b)) could be either t or ()

83 / 146

Equality

Exercise. What might you get from

(eq ’cat ’cat)

(eq "cat" "cat")

Exercise. Try

(eq ’(a b) ’(a b))

on a few Lisps

84 / 146

Equality
Aside: Equality in Mathematics

In various branches of Mathematics you have to define your
own equality

For example, in arithmetic, we have the standard 1 + 1 = 2 kind
of equality

For others, we need to define what we want to be an equality
and prove it has the properties we expect from an equality

We generally want:

• X equals X ; reflexivity
• if X equals Y then Y equals X ; symmetry
• if X equals Y and Y equals Z then X equals Z ; transitivity

85 / 146

Equality
Aside: Equality in Mathematics

In various branches of Mathematics you have to define your
own equality

For example, in arithmetic, we have the standard 1 + 1 = 2 kind
of equality

For others, we need to define what we want to be an equality
and prove it has the properties we expect from an equality

We generally want:

• X equals X ; reflexivity
• if X equals Y then Y equals X ; symmetry
• if X equals Y and Y equals Z then X equals Z ; transitivity

86 / 146

Equality
Aside: Equality in Mathematics

In various branches of Mathematics you have to define your
own equality

For example, in arithmetic, we have the standard 1 + 1 = 2 kind
of equality

For others, we need to define what we want to be an equality
and prove it has the properties we expect from an equality

We generally want:

• X equals X ; reflexivity
• if X equals Y then Y equals X ; symmetry
• if X equals Y and Y equals Z then X equals Z ; transitivity

87 / 146

Equality
Aside: Equality in Mathematics

In various branches of Mathematics you have to define your
own equality

For example, in arithmetic, we have the standard 1 + 1 = 2 kind
of equality

For others, we need to define what we want to be an equality
and prove it has the properties we expect from an equality

We generally want:

• X equals X ; reflexivity
• if X equals Y then Y equals X ; symmetry
• if X equals Y and Y equals Z then X equals Z ; transitivity

88 / 146

Equality
Aside: Equality in Mathematics

We also want

• if M equals N and X [M/N] is what we get when we replace
all occurrences of M by N in X , then X equals X [M/N]

This is substitionality, or substitution of equals by equals

In arithmetic, we can replace 1 + 1 by 2 wherever we see it in
an expression, and not affect the value of the expression

89 / 146

Equality
Aside: Equality in Mathematics

We also want

• if M equals N and X [M/N] is what we get when we replace
all occurrences of M by N in X , then X equals X [M/N]

This is substitionality, or substitution of equals by equals

In arithmetic, we can replace 1 + 1 by 2 wherever we see it in
an expression, and not affect the value of the expression

90 / 146

Equality
Aside: Equality in Mathematics

We also want

• if M equals N and X [M/N] is what we get when we replace
all occurrences of M by N in X , then X equals X [M/N]

This is substitionality, or substitution of equals by equals

In arithmetic, we can replace 1 + 1 by 2 wherever we see it in
an expression, and not affect the value of the expression

91 / 146

Equality
Aside: Equality in Mathematics

In other areas, e.g., Lambda calculus, a model of computation,
1 + 1 and 2 are different, as it takes a step of computation to
get from one to the other

They say “1 + 1 reduces to 2”, but maintain they are not “equal”

In summary: “equal” is a tricky and subtle concept

Exercise. Convince yourself that Lisp equal is an equality is
the above sense (reflexive, symmetric, transitive, substitutional)

92 / 146

Equality
Aside: Equality in Mathematics

In other areas, e.g., Lambda calculus, a model of computation,
1 + 1 and 2 are different, as it takes a step of computation to
get from one to the other

They say “1 + 1 reduces to 2”, but maintain they are not “equal”

In summary: “equal” is a tricky and subtle concept

Exercise. Convince yourself that Lisp equal is an equality is
the above sense (reflexive, symmetric, transitive, substitutional)

93 / 146

Equality
Aside: Equality in Mathematics

In other areas, e.g., Lambda calculus, a model of computation,
1 + 1 and 2 are different, as it takes a step of computation to
get from one to the other

They say “1 + 1 reduces to 2”, but maintain they are not “equal”

In summary: “equal” is a tricky and subtle concept

Exercise. Convince yourself that Lisp equal is an equality is
the above sense (reflexive, symmetric, transitive, substitutional)

94 / 146

Equality
Aside: Equality in Mathematics

In other areas, e.g., Lambda calculus, a model of computation,
1 + 1 and 2 are different, as it takes a step of computation to
get from one to the other

They say “1 + 1 reduces to 2”, but maintain they are not “equal”

In summary: “equal” is a tricky and subtle concept

Exercise. Convince yourself that Lisp equal is an equality is
the above sense (reflexive, symmetric, transitive, substitutional)

95 / 146

Equality
Aside: Equality in Mathematics

Exercise. And what about
(eq l (cons (car l) (cdr l)))
and
(equal l (cons (car l) (cdr l)))
for a list l?

Exercise. A related concept is shallow copy vs. deep copy.
Read about this

96 / 146

Equality

Skip to the end. . .

97 / 146

The following was not covered in lectures

It is not examinable, but is worth reading
nevertheless!

98 / 146

Equality
Recursion

Lisp is at its most powerful when we think recursively

(defun factorial (n)

(if (< n 2)

n

(* n (factorial (- n 1)))))

99 / 146

Equality
Recursion

Lisp is at its most powerful when we think recursively

(defun factorial (n)

(if (< n 2)

n

(* n (factorial (- n 1)))))

100 / 146

Equality
Recursion

What happens when we try

(defun loop (n)

(print n)

(loop (+ n 1)))

This should loop “forever”

In many languages and compilers this would loop for a while
and then crash

This is because each function call takes some stack space and
the machine eventually runs out of memory

101 / 146

Equality
Recursion

What happens when we try

(defun loop (n)

(print n)

(loop (+ n 1)))

This should loop “forever”

In many languages and compilers this would loop for a while
and then crash

This is because each function call takes some stack space and
the machine eventually runs out of memory

102 / 146

Equality
Recursion

What happens when we try

(defun loop (n)

(print n)

(loop (+ n 1)))

This should loop “forever”

In many languages and compilers this would loop for a while
and then crash

This is because each function call takes some stack space and
the machine eventually runs out of memory

103 / 146

Equality
Recursion

What happens when we try

(defun loop (n)

(print n)

(loop (+ n 1)))

This should loop “forever”

In many languages and compilers this would loop for a while
and then crash

This is because each function call takes some stack space and
the machine eventually runs out of memory

104 / 146

Equality
Tail Recursion

Except Lisp, of course

Or, rather, the good Lisps

A good Lisp notices that you do not need to save the current
function invocation on the stack as you never need to come
back

So it replaces the function call by a simple jump back to the
start of the function loop

(defun loop (n)

(print n)

increment n

goto top

105 / 146

Equality
Tail Recursion

Except Lisp, of course

Or, rather, the good Lisps

A good Lisp notices that you do not need to save the current
function invocation on the stack as you never need to come
back

So it replaces the function call by a simple jump back to the
start of the function loop

(defun loop (n)

(print n)

increment n

goto top

106 / 146

Equality
Tail Recursion

Except Lisp, of course

Or, rather, the good Lisps

A good Lisp notices that you do not need to save the current
function invocation on the stack as you never need to come
back

So it replaces the function call by a simple jump back to the
start of the function loop

(defun loop (n)

(print n)

increment n

goto top

107 / 146

Equality
Tail Recursion

Except Lisp, of course

Or, rather, the good Lisps

A good Lisp notices that you do not need to save the current
function invocation on the stack as you never need to come
back

So it replaces the function call by a simple jump back to the
start of the function loop

(defun loop (n)

(print n)

increment n

goto top

108 / 146

Equality
Tail Recursion

Except Lisp, of course

Or, rather, the good Lisps

A good Lisp notices that you do not need to save the current
function invocation on the stack as you never need to come
back

So it replaces the function call by a simple jump back to the
start of the function loop

(defun loop (n)

(print n)

increment n

goto top

109 / 146

Equality
Tail Recursion

This can, and does, run forever

The act of replacing a function call by a jump is called
introducing a tail call, and by extension we have tail recursion

This is done at the end (tail) of a function when the compiler
can deduce you don’t ever need to return to that function

Good compilers can spot tail calls and do this optimisation

110 / 146

Equality
Tail Recursion

This can, and does, run forever

The act of replacing a function call by a jump is called
introducing a tail call, and by extension we have tail recursion

This is done at the end (tail) of a function when the compiler
can deduce you don’t ever need to return to that function

Good compilers can spot tail calls and do this optimisation

111 / 146

Equality
Tail Recursion

This can, and does, run forever

The act of replacing a function call by a jump is called
introducing a tail call, and by extension we have tail recursion

This is done at the end (tail) of a function when the compiler
can deduce you don’t ever need to return to that function

Good compilers can spot tail calls and do this optimisation

112 / 146

Equality
Tail Recursion

This can, and does, run forever

The act of replacing a function call by a jump is called
introducing a tail call, and by extension we have tail recursion

This is done at the end (tail) of a function when the compiler
can deduce you don’t ever need to return to that function

Good compilers can spot tail calls and do this optimisation

113 / 146

Equality
Tail Recursion

...

...

(defun foo (n)
 ...
 (bar n))

(defun bar (m)
 ...)

(foo a)

save place

save place
in foo

in main

to main
returns directly

114 / 146

Equality
Tail Recursion

...

...

(defun foo (n)
 ...
 (bar n))

(defun bar (m)
 ...)

(foo a)

save place

save place
in foo

in main

to main
returns directly

115 / 146

Equality
Tail Recursion

...

...

(defun foo (n)
 ...
 (bar n))

(defun bar (m)
 ...)

(foo a)

save place

save place
in foo

in main

to main
returns directly

116 / 146

Equality
Tail Recursion

...

...

(defun foo (n)
 ...
 (bar n))

(defun bar (m)
 ...)

(foo a)

save place

save place
in foo

in main

to main

return goes
to foo

returns directly

117 / 146

Equality
Tail Recursion

...

...

(defun foo (n)
 ...
 (bar n))

(defun bar (m)
 ...)

(foo a)

save place

save place
in foo

in main

to main

return goes
to foo

returns directly

to main
immediately
return goes

118 / 146

Equality
Tail Recursion

...

...

(defun foo (n)
 ...
 (bar n))

(defun bar (m)
 ...)

(foo a)

save place

save place
in foo

in main

to maindon’t
returns directly

119 / 146

Equality
Tail Recursion

...

...

(defun foo (n)
 ...
 (bar n))

(defun bar (m)
 ...)

(foo a)

save place

save place
in foo

in main

to maindon’t
returns directly

120 / 146

Equality
Tail Recursion

This simple observation allows us to have arbitrary loops, but to
write them naturally recursively

(defun foo (n)
 ...

 (foo (+ n 1)))

don’t save
place in foo

The compiler does clever stuff behind our backs, but compilers
are always doing that

121 / 146

Equality
Tail Recursion

This simple observation allows us to have arbitrary loops, but to
write them naturally recursively

(defun foo (n)
 ...
 (foo (+ n 1)))

don’t save
place in foo

The compiler does clever stuff behind our backs, but compilers
are always doing that

122 / 146

Equality
Tail Recursion

This simple observation allows us to have arbitrary loops, but to
write them naturally recursively

(defun foo (n)
 ...
 (foo (+ n 1)))

don’t save
place in foo

The compiler does clever stuff behind our backs, but compilers
are always doing that

123 / 146

Equality
Tail Recursion

(defun loop2 (n)

(loop2 (+ n 1))

(print n))

is not tail recursive, as we need to save where we are before
the recursive call to loop2 to come back and do the print

The call to loop2 is not in the tail position

In reality, we don’t actually come back ever

This one would run until it ran out of stack space unless we
have a really clever compiler

124 / 146

Equality
Tail Recursion

(defun loop2 (n)

(loop2 (+ n 1))

(print n))

is not tail recursive, as we need to save where we are before
the recursive call to loop2 to come back and do the print

The call to loop2 is not in the tail position

In reality, we don’t actually come back ever

This one would run until it ran out of stack space unless we
have a really clever compiler

125 / 146

Equality
Tail Recursion

(defun loop2 (n)

(loop2 (+ n 1))

(print n))

is not tail recursive, as we need to save where we are before
the recursive call to loop2 to come back and do the print

The call to loop2 is not in the tail position

In reality, we don’t actually come back ever

This one would run until it ran out of stack space unless we
have a really clever compiler

126 / 146

Equality
Tail Recursion

(defun loop2 (n)

(loop2 (+ n 1))

(print n))

is not tail recursive, as we need to save where we are before
the recursive call to loop2 to come back and do the print

The call to loop2 is not in the tail position

In reality, we don’t actually come back ever

This one would run until it ran out of stack space unless we
have a really clever compiler

127 / 146

Equality
Tail Recursion

(defun foo (n)

(print n)

(bar (+ n 1)))

(defun bar (m)

(print m)

(foo (+ m 1)))

are mutually tail recursive: the compiler can replace the
function call to bar by a jump to bar; similarly the other way
round

This, too, will run forever (if the compiler spots it)

128 / 146

Equality
Tail Recursion

(defun foo (n)

(print n)

(bar (+ n 1)))

(defun bar (m)

(print m)

(foo (+ m 1)))

are mutually tail recursive: the compiler can replace the
function call to bar by a jump to bar; similarly the other way
round

This, too, will run forever (if the compiler spots it)

129 / 146

Equality
Tail Recursion

Tail recursion is supported in some modern C compilers

It’s been in most Lisps since the 1960s

Admittedly, the functional nature makes it easier to analyse and
spot tail recursion in Lisp than in a procedural language like C

EuLisp (Euscheme): yes. Clisp: interpreted, no; compiled, yes.
Scheme: always, since defined in the language specification,
Clojure: no, allegedly because Java doesn’t but this is not a
valid implication

130 / 146

Equality
Tail Recursion

Tail recursion is supported in some modern C compilers

It’s been in most Lisps since the 1960s

Admittedly, the functional nature makes it easier to analyse and
spot tail recursion in Lisp than in a procedural language like C

EuLisp (Euscheme): yes. Clisp: interpreted, no; compiled, yes.
Scheme: always, since defined in the language specification,
Clojure: no, allegedly because Java doesn’t but this is not a
valid implication

131 / 146

Equality
Tail Recursion

Tail recursion is supported in some modern C compilers

It’s been in most Lisps since the 1960s

Admittedly, the functional nature makes it easier to analyse and
spot tail recursion in Lisp than in a procedural language like C

EuLisp (Euscheme): yes. Clisp: interpreted, no; compiled, yes.
Scheme: always, since defined in the language specification,
Clojure: no, allegedly because Java doesn’t but this is not a
valid implication

132 / 146

Equality
Tail Recursion

Tail recursion is supported in some modern C compilers

It’s been in most Lisps since the 1960s

Admittedly, the functional nature makes it easier to analyse and
spot tail recursion in Lisp than in a procedural language like C

EuLisp (Euscheme): yes. Clisp: interpreted, no; compiled, yes.
Scheme: always, since defined in the language specification,
Clojure: no, allegedly because Java doesn’t but this is not a
valid implication

133 / 146

Equality
Tail Recursion

Loops in other languages are replaced by tail recursive calls in
the functional style

for (i = 0; i < 10; i++) {

do something

}

becomes

(defun loopy (i)

(when (< i 10)

do something

(loopy (+ i 1))))

(loopy 0)

134 / 146

Equality
Tail Recursion

Or even

(labels ((loopy (i)

(when (< i 10)

do something

(loopy (+ i 1)))))

(loopy 0))

This looks clumsy, but we are trying to force a procedural style
(iteration) in Lisp

There are better ways to do something to a sequence of objects

But note within the body of the function loopy the variable i is
never updated; the variable i does not vary

135 / 146

Equality
Tail Recursion

Or even

(labels ((loopy (i)

(when (< i 10)

do something

(loopy (+ i 1)))))

(loopy 0))

This looks clumsy, but we are trying to force a procedural style
(iteration) in Lisp

There are better ways to do something to a sequence of objects

But note within the body of the function loopy the variable i is
never updated; the variable i does not vary

136 / 146

Equality
Tail Recursion

Or even

(labels ((loopy (i)

(when (< i 10)

do something

(loopy (+ i 1)))))

(loopy 0))

This looks clumsy, but we are trying to force a procedural style
(iteration) in Lisp

There are better ways to do something to a sequence of objects

But note within the body of the function loopy the variable i is
never updated; the variable i does not vary

137 / 146

Equality
Tail Recursion

Or even

(labels ((loopy (i)

(when (< i 10)

do something

(loopy (+ i 1)))))

(loopy 0))

This looks clumsy, but we are trying to force a procedural style
(iteration) in Lisp

There are better ways to do something to a sequence of objects

But note within the body of the function loopy the variable i is
never updated; the variable i does not vary

138 / 146

Equality
Tail Recursion

It would be quite easy to add a “for” form to Lisp (and some
Lisps do) that implements

(for init test inc body1 body2 ...)

as

(labels ((loopy ()

(when test

body1 body2 ...

inc

(loopy))))

init

(loopy))

But that’s not a route we shall follow

139 / 146

Equality
Tail Recursion

Many functions can, with some effort, be converted to tail
recursive style

(defun factorial (n)

(if (< n 2) 1 (* n (factorial (- n 1)))))

is not tail recursive

140 / 146

Equality
Tail Recursion

Many functions can, with some effort, be converted to tail
recursive style

(defun factorial (n)

(if (< n 2) 1 (* n (factorial (- n 1)))))

is not tail recursive

141 / 146

Equality
Tail Recursion

(defun fact (n)

(factaux n 1))

(defun factaux (n sofar)

(if (< n 2)

sofar

(factaux (- n 1) (* n sofar))))

is tail recursive

Whether it is worth it is a question you must address in each
circumstance

142 / 146

Equality
Tail Recursion

(defun fact (n)

(factaux n 1))

(defun factaux (n sofar)

(if (< n 2)

sofar

(factaux (- n 1) (* n sofar))))

is tail recursive

Whether it is worth it is a question you must address in each
circumstance

143 / 146

Equality
Tail Recursion

Note: tail recursion is something done by the compiler, but the
programmer should be aware it exists to make good use of it

Also, it can make debugging a little harder: the backtrace at an
error will not contain the record of the intermediate functions
that were tail optimised

The loss is worth the gain, though

144 / 146

Equality
Tail Recursion

Note: tail recursion is something done by the compiler, but the
programmer should be aware it exists to make good use of it

Also, it can make debugging a little harder: the backtrace at an
error will not contain the record of the intermediate functions
that were tail optimised

The loss is worth the gain, though

145 / 146

Equality
Tail Recursion

Note: tail recursion is something done by the compiler, but the
programmer should be aware it exists to make good use of it

Also, it can make debugging a little harder: the backtrace at an
error will not contain the record of the intermediate functions
that were tail optimised

The loss is worth the gain, though

146 / 146

