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A record is a fixed-size block of data, say 80 bytes

Records could only be read or written as a whole: this meant
implementation on the hardware of the time was easy
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• Timestamps. Dates and times this file was last accessed
and last modified

• Ownership. The userid of the owner of this file, for
protection purposes

• Size. How big the file is currently
• Type. Whether this is a plain file, or a directory, or some

other kind of special file
• Access permissions. Who can read or write or run this file

(if it is a program)
• Reference count. The number of names this file has
• Pointers to areas on the disk where the actual data lives
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A directory is essentially just a list of names of files and
subdirectories, together with their inode numbers

Name Inode
foo.c 23

ff.html 42
mydata 7

Originally just a table, these days clever datastructures are
used to manage the large numbers of names we use
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Info

42

disk

blocks

data

data

data

prog.c: 42

bar.c: 123

dup: 123

foo.c: 23
another:123

directory

inode

bar.c:99

foo.c:42

directory



Filesystems
Inodes

The inode contains a reference count : the number of names
the file/inode has

If the count drops to zero, the OS can remove the file

Deleting a file is a matter of

• Removing the name reference in the relevant directory
• Decrementing the reference count in the inode
• If the count reaches 0, the OS can free the inode and the

disk blocks it refers to



Filesystems
Inodes

The inode contains a reference count : the number of names
the file/inode has

If the count drops to zero, the OS can remove the file

Deleting a file is a matter of

• Removing the name reference in the relevant directory
• Decrementing the reference count in the inode
• If the count reaches 0, the OS can free the inode and the

disk blocks it refers to



Filesystems
Inodes

The inode contains a reference count : the number of names
the file/inode has

If the count drops to zero, the OS can remove the file

Deleting a file is a matter of

• Removing the name reference in the relevant directory
• Decrementing the reference count in the inode
• If the count reaches 0, the OS can free the inode and the

disk blocks it refers to



Filesystems
Inodes

The inode contains a reference count : the number of names
the file/inode has

If the count drops to zero, the OS can remove the file

Deleting a file is a matter of

• Removing the name reference in the relevant directory

• Decrementing the reference count in the inode
• If the count reaches 0, the OS can free the inode and the

disk blocks it refers to



Filesystems
Inodes

The inode contains a reference count : the number of names
the file/inode has

If the count drops to zero, the OS can remove the file

Deleting a file is a matter of

• Removing the name reference in the relevant directory
• Decrementing the reference count in the inode

• If the count reaches 0, the OS can free the inode and the
disk blocks it refers to



Filesystems
Inodes

The inode contains a reference count : the number of names
the file/inode has

If the count drops to zero, the OS can remove the file

Deleting a file is a matter of

• Removing the name reference in the relevant directory
• Decrementing the reference count in the inode
• If the count reaches 0, the OS can free the inode and the

disk blocks it refers to



Filesystems
Inodes

In fact, each time a program opens a file the OS increments the
count; and decrements it when the program closes the file
(possibly when the program exits)
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The file will only disappear when the program ends (dec)

No other process can see this file: there is no name in any
directory
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The data on the disk is in disk blocks, fixed size areas on the
disk, e.g., 512 or 1024 bytes

An inode contains block pointers, namely a list of the address
of the blocks for that file

Having a fixed size allows for easy and fast allocation and
deallocation

This is similar to pages in memory; but now physical location of
blocks is important as discs are mechanical devices

Whole numbers of blocks are always allocated to files

This can lead to wastage, e.g., a 1025 byte file might need two
blocks, but uses just over half of the space. Though there are
lot of tricks in real filesystems to avoid the worst of this
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Exercise Being of a fixed size an inode will only have room for
a fixed number of block pointers. This will limit the size of a file.
Read about indirect blocks

Exercise Read about soft links (similar to a Windows shortcut)
that allows an inode to refer to a name (not a file, but a name of
a file), and about the problems they solve
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When a program opens a file, the OS must find where on disk
the file lives

Say we are looking for the file prog.c with a cwd of /home/rjb

• The name is incomplete, so the OS prepends the cwd
giving /home/rjb/prog.c

• The OS reads the block containing the root directory off
disk and scans through it for the name home

• It finds it and gets the inode number for home
• It reads that inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name rjb
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• It scans the directory for the name rjb
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• It finds it and gets the inode number for rjb

• It reads that inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name prog.c

• It finds it and gets the inode number for prog.c
• It reads that inode off disk and finds it refers to a file
• It reads the blocks containing the file off disk

This must be done for every file opened

Caching can be used to great effect here: the kernel keeps
copies of the inodes and directories in memory, rather than
re-reading them every time
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There’s a great deal we haven’t covered here!

Exercise Have a look at a modern filesystem

Exercise Solid state disks (SSDs) are common these days.
What differences do they bring to the way filesystems should be
implemented?
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Other filesystems you might like to look at

• btrfs
• ext4
• FAT, VFAT
• FUSE
• GFS (Global

File System)
• Google File

System
• HFS+
• ISO 9660
• JFFS2

• Lustre
• NFS
• NTFS
• OCFS2
• procfs
• Reiser
• ReFS (Resilient

File System)
• UnionFS
• ZFS

Also see “List of file systems” on Wikipedia


