
Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

But if the page has been swapped out (“paged out”), then its
contents need to be read back from disk: thus a large cost in
this case

When the TLB is full and the process want to access a different
page, one entry in the TLB needs to be removed: but which?

Note there are two separate issues here:

• which entry in the TLB to remove when the TLB table is full
• which page in physical memory to swap out when physical

memory is full

Exercise Read about some of the algorithms to choose which
TLB entry to remove



Memory
Virtual Memory: Paging

But if the page has been swapped out (“paged out”), then its
contents need to be read back from disk: thus a large cost in
this case

When the TLB is full and the process want to access a different
page, one entry in the TLB needs to be removed: but which?

Note there are two separate issues here:

• which entry in the TLB to remove when the TLB table is full
• which page in physical memory to swap out when physical

memory is full

Exercise Read about some of the algorithms to choose which
TLB entry to remove



Memory
Virtual Memory: Paging

But if the page has been swapped out (“paged out”), then its
contents need to be read back from disk: thus a large cost in
this case

When the TLB is full and the process want to access a different
page, one entry in the TLB needs to be removed: but which?

Note there are two separate issues here:

• which entry in the TLB to remove when the TLB table is full
• which page in physical memory to swap out when physical

memory is full

Exercise Read about some of the algorithms to choose which
TLB entry to remove



Memory
Virtual Memory: Paging

But if the page has been swapped out (“paged out”), then its
contents need to be read back from disk: thus a large cost in
this case

When the TLB is full and the process want to access a different
page, one entry in the TLB needs to be removed: but which?

Note there are two separate issues here:

• which entry in the TLB to remove when the TLB table is full
• which page in physical memory to swap out when physical

memory is full

Exercise Read about some of the algorithms to choose which
TLB entry to remove



Memory
Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues



Memory
Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues



Memory
Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues



Memory
Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues



Memory
Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues



Memory
Virtual Memory

A single large datastructure (e.g., a vector, which you normally
think of as a contiguous region of memory) in your process
might actually be spread, in chunks, all over the place in
physical memory

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

80 81 82 83 400 401 402 403 2000 2001 2002 2003

v[0] v[1] v[2] v[3] v[4] v[5] v[6] v[7] v[8] v[9] v[10] v[11]

programmer’s view

process’s view
virtual

kernel’s view
physical

TLB

loader
compiler/



Memory
Virtual Memory

Similarly for code: a chunk of code spanning multiple pages
may well be distributed all over physical memory

Code or data might be contiguous in the virtual address space,
but definitely not contiguous in the physical address space



Memory
Virtual Memory

Similarly for code: a chunk of code spanning multiple pages
may well be distributed all over physical memory

Code or data might be contiguous in the virtual address space,
but definitely not contiguous in the physical address space



Memory
Virtual Memory

OSs often use lazy page allocation: don’t allocate anything
until the process actually accesses a page, so physical memory
is only actually allocated on a page fault when we know we
really need it

If process requests 10GB and only uses 1GB, this is not a
problem: only 1Gb will be mapped in the page table

And the process’s virtual size can easily be bigger than the
physical memory size, either through unmapped or swapped
pages



Memory
Virtual Memory

OSs often use lazy page allocation: don’t allocate anything
until the process actually accesses a page, so physical memory
is only actually allocated on a page fault when we know we
really need it

If process requests 10GB and only uses 1GB, this is not a
problem: only 1Gb will be mapped in the page table

And the process’s virtual size can easily be bigger than the
physical memory size, either through unmapped or swapped
pages



Memory
Virtual Memory

OSs often use lazy page allocation: don’t allocate anything
until the process actually accesses a page, so physical memory
is only actually allocated on a page fault when we know we
really need it

If process requests 10GB and only uses 1GB, this is not a
problem: only 1Gb will be mapped in the page table

And the process’s virtual size can easily be bigger than the
physical memory size, either through unmapped or swapped
pages



Memory
Virtual Memory

The cost is kept low though the use of the TLB, but remember a
page fault is relatively expensive

And swapping is orders of magnitude slower still: we want to
avoid swapping if at all possible

This is something in the hands of the programmer: don’t use
memory stupidly!



Memory
Virtual Memory

The cost is kept low though the use of the TLB, but remember a
page fault is relatively expensive

And swapping is orders of magnitude slower still: we want to
avoid swapping if at all possible

This is something in the hands of the programmer: don’t use
memory stupidly!



Memory
Virtual Memory

The cost is kept low though the use of the TLB, but remember a
page fault is relatively expensive

And swapping is orders of magnitude slower still: we want to
avoid swapping if at all possible

This is something in the hands of the programmer: don’t use
memory stupidly!



Memory
Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes

Then segments (certain large areas) of memory

Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place



Memory
Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes

Then segments (certain large areas) of memory

Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place



Memory
Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes

Then segments (certain large areas) of memory

Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place



Memory
Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes

Then segments (certain large areas) of memory

Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place



Memory
Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes

Then segments (certain large areas) of memory

Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place



Memory
Virtual Memory

Exercise. Think about the difference between vectors and
linked lists in terms of virtual memory and TLBs

Exercise to think about: the page tables in memory can grow so
large they need to be swapped themselves. . .



Memory
Virtual Memory

Exercise. Think about the difference between vectors and
linked lists in terms of virtual memory and TLBs

Exercise to think about: the page tables in memory can grow so
large they need to be swapped themselves. . .



Memory
Virtual Memory

Examples. A “Hello world” program in C, Java, Python and Perl

C Java Python Perl

Resident size KB 430 16500 4300 1850
Minor Fault 150 3800 1200 530
Major Fault 0 0 0 0
Context switch 2 150 8 4

In Linux 3.11.10; 8GB memory

Numbers are approximate and vary on runs due to scheduling



Memory
Virtual Memory

Shared Memory

And now shared memory is very easy: just let the TLB do the
mapping of virtual pages from different processes to the same
physical pages

And also the use of virtual memory can let us share code
between processes

There are many libraries of code to do mundane things like
read or writing to files, formatted printing, drawing on the
screen and so on

If 10 processes are in memory, each of them using the library
read function, does that mean there are 10 copies of the code
for read scattered about in memory?



Memory
Virtual Memory

Shared Memory

And now shared memory is very easy: just let the TLB do the
mapping of virtual pages from different processes to the same
physical pages

And also the use of virtual memory can let us share code
between processes

There are many libraries of code to do mundane things like
read or writing to files, formatted printing, drawing on the
screen and so on

If 10 processes are in memory, each of them using the library
read function, does that mean there are 10 copies of the code
for read scattered about in memory?



Memory
Virtual Memory

Shared Memory

And now shared memory is very easy: just let the TLB do the
mapping of virtual pages from different processes to the same
physical pages

And also the use of virtual memory can let us share code
between processes

There are many libraries of code to do mundane things like
read or writing to files, formatted printing, drawing on the
screen and so on

If 10 processes are in memory, each of them using the library
read function, does that mean there are 10 copies of the code
for read scattered about in memory?



Memory
Virtual Memory

Shared Memory

And now shared memory is very easy: just let the TLB do the
mapping of virtual pages from different processes to the same
physical pages

And also the use of virtual memory can let us share code
between processes

There are many libraries of code to do mundane things like
read or writing to files, formatted printing, drawing on the
screen and so on

If 10 processes are in memory, each of them using the library
read function, does that mean there are 10 copies of the code
for read scattered about in memory?



Memory
Virtual Memory

Shared Memory

And now shared memory is very easy: just let the TLB do the
mapping of virtual pages from different processes to the same
physical pages

And also the use of virtual memory can let us share code
between processes

There are many libraries of code to do mundane things like
read or writing to files, formatted printing, drawing on the
screen and so on

If 10 processes are in memory, each of them using the library
read function, does that mean there are 10 copies of the code
for read scattered about in memory?



Memory
Virtual Memory

kernel prog
and data

virtualrealvirtual

process 1 process 2OS

library
shared

Shared Libraries



Memory
Virtual Memory

Now the OS can load the code for read just once and direct all
other processes to use that single copy

This reduces memory usage, reduces pages faults and has
other beneficial properties (see caching)

Exercise Read about how virtual memory and copy on write
allows processes to share data, too



Memory
Virtual Memory

Now the OS can load the code for read just once and direct all
other processes to use that single copy

This reduces memory usage, reduces pages faults and has
other beneficial properties (see caching)

Exercise Read about how virtual memory and copy on write
allows processes to share data, too



Memory
Virtual Memory

Now the OS can load the code for read just once and direct all
other processes to use that single copy

This reduces memory usage, reduces pages faults and has
other beneficial properties (see caching)

Exercise Read about how virtual memory and copy on write
allows processes to share data, too



Memory
Virtual Memory

Exercise Read about how virtual memory can be used to map
memory accesses into access of peripherals, like sound cards,
disk and network cards

kernel prog
and data

realvirtual

process 1 OS

library
shared

disk

sound
card

Memory map



Filesystems

We now turn to files and filesystems

Current technology has main memory being limited in size (a
few gigabytes) and volatile: the values disappear when you
remove the power

To be able to manipulate more data and to make it persistent
we turn to larger, but slower, devices like disks

And to organise everything we need filesystems



Filesystems

We now turn to files and filesystems

Current technology has main memory being limited in size (a
few gigabytes) and volatile: the values disappear when you
remove the power

To be able to manipulate more data and to make it persistent
we turn to larger, but slower, devices like disks

And to organise everything we need filesystems



Filesystems

We now turn to files and filesystems

Current technology has main memory being limited in size (a
few gigabytes) and volatile: the values disappear when you
remove the power

To be able to manipulate more data and to make it persistent
we turn to larger, but slower, devices like disks

And to organise everything we need filesystems



Filesystems

We now turn to files and filesystems

Current technology has main memory being limited in size (a
few gigabytes) and volatile: the values disappear when you
remove the power

To be able to manipulate more data and to make it persistent
we turn to larger, but slower, devices like disks

And to organise everything we need filesystems



Filesystems

Note: not all applications want to use filesystems, in particular
enterprise databases like to have direct access to disks
themselves in order to optimise access for their very specific
needs

Some people have experimented with making ordinary
applications use DB-like access, mostly to a resounding failure

In general, a filesystem is what people want: a simple, efficient
way of accessing their data



Filesystems

Note: not all applications want to use filesystems, in particular
enterprise databases like to have direct access to disks
themselves in order to optimise access for their very specific
needs

Some people have experimented with making ordinary
applications use DB-like access, mostly to a resounding failure

In general, a filesystem is what people want: a simple, efficient
way of accessing their data



Filesystems

Note: not all applications want to use filesystems, in particular
enterprise databases like to have direct access to disks
themselves in order to optimise access for their very specific
needs

Some people have experimented with making ordinary
applications use DB-like access, mostly to a resounding failure

In general, a filesystem is what people want: a simple, efficient
way of accessing their data



Filesystems

Another note: a filesystem is just an organisation of data, and
doesn’t need to be associated with disks

Filesystems can be found whenever we have large amounts of
data that needs organising

USB keys, iPods, phones, . . .

It’s even occasionally useful to have a filesystem in memory,
again as an organisational mechanism



Filesystems

Another note: a filesystem is just an organisation of data, and
doesn’t need to be associated with disks

Filesystems can be found whenever we have large amounts of
data that needs organising

USB keys, iPods, phones, . . .

It’s even occasionally useful to have a filesystem in memory,
again as an organisational mechanism



Filesystems

Another note: a filesystem is just an organisation of data, and
doesn’t need to be associated with disks

Filesystems can be found whenever we have large amounts of
data that needs organising

USB keys, iPods, phones, . . .

It’s even occasionally useful to have a filesystem in memory,
again as an organisational mechanism



Filesystems

Another note: a filesystem is just an organisation of data, and
doesn’t need to be associated with disks

Filesystems can be found whenever we have large amounts of
data that needs organising

USB keys, iPods, phones, . . .

It’s even occasionally useful to have a filesystem in memory,
again as an organisational mechanism



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write a file

Exercise. Compare with using virtual memory to do the same



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write a file

Exercise. Compare with using virtual memory to do the same



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write a file

Exercise. Compare with using virtual memory to do the same



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write a file

Exercise. Compare with using virtual memory to do the same



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write a file

Exercise. Compare with using virtual memory to do the same



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write a file

Exercise. Compare with using virtual memory to do the same



Filesystems

But, for now, we shall think of files in the traditional sense

A file is simply a named chunk of data stored somehow on a
disk

Humans like easy names like prog.c, so there needs to be a
mechanism to convert names to the place on disk where the
data is stored

And when we have thousands or millions of files, meaning
thousands or millions of names, we need some way of
organising the names (even before we have thought of
organising the data itself!)



Filesystems

But, for now, we shall think of files in the traditional sense

A file is simply a named chunk of data stored somehow on a
disk

Humans like easy names like prog.c, so there needs to be a
mechanism to convert names to the place on disk where the
data is stored

And when we have thousands or millions of files, meaning
thousands or millions of names, we need some way of
organising the names (even before we have thought of
organising the data itself!)



Filesystems

But, for now, we shall think of files in the traditional sense

A file is simply a named chunk of data stored somehow on a
disk

Humans like easy names like prog.c, so there needs to be a
mechanism to convert names to the place on disk where the
data is stored

And when we have thousands or millions of files, meaning
thousands or millions of names, we need some way of
organising the names (even before we have thought of
organising the data itself!)



Filesystems

But, for now, we shall think of files in the traditional sense

A file is simply a named chunk of data stored somehow on a
disk

Humans like easy names like prog.c, so there needs to be a
mechanism to convert names to the place on disk where the
data is stored

And when we have thousands or millions of files, meaning
thousands or millions of names, we need some way of
organising the names (even before we have thought of
organising the data itself!)



Filesystems
Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog.c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same file to have
multiple filenames



Filesystems
Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog.c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same file to have
multiple filenames



Filesystems
Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog.c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same file to have
multiple filenames



Filesystems
Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog.c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same file to have
multiple filenames



Filesystems
Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog.c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same file to have
multiple filenames



Filesystems
Names

For the philosophers:

It is possible to have a thing without a name (so how can we
refer to it?)

It is possible to have a name without a thing it refers to

It is possible for names to have names

Exercise: read the introduction to the poem “Haddocks’ Eyes”,
in “Through the Looking-Glass” by Lewis Carroll and explain the
relevance

And explain the use of quotes ’“’ in the above



Filesystems
Names

For the philosophers:

It is possible to have a thing without a name (so how can we
refer to it?)

It is possible to have a name without a thing it refers to

It is possible for names to have names

Exercise: read the introduction to the poem “Haddocks’ Eyes”,
in “Through the Looking-Glass” by Lewis Carroll and explain the
relevance

And explain the use of quotes ’“’ in the above



Filesystems
Names

For the philosophers:

It is possible to have a thing without a name (so how can we
refer to it?)

It is possible to have a name without a thing it refers to

It is possible for names to have names

Exercise: read the introduction to the poem “Haddocks’ Eyes”,
in “Through the Looking-Glass” by Lewis Carroll and explain the
relevance

And explain the use of quotes ’“’ in the above



Filesystems
Names

So names need to be organised; this is usually (but not always)
done as a simple hierarchy

Rather than simply presenting all filenames to the user (a flat
filesystem), we gather together related files and put them into a
directory. Also called a folder

A directory is just a collection of (names of) files, but it allows
us to simplify our thought processes

And (names of) directories can be collected in other directories
and so on until we get to the top of the hierarchy, the root



Filesystems
Names

So names need to be organised; this is usually (but not always)
done as a simple hierarchy

Rather than simply presenting all filenames to the user (a flat
filesystem), we gather together related files and put them into a
directory. Also called a folder

A directory is just a collection of (names of) files, but it allows
us to simplify our thought processes

And (names of) directories can be collected in other directories
and so on until we get to the top of the hierarchy, the root



Filesystems
Names

So names need to be organised; this is usually (but not always)
done as a simple hierarchy

Rather than simply presenting all filenames to the user (a flat
filesystem), we gather together related files and put them into a
directory. Also called a folder

A directory is just a collection of (names of) files, but it allows
us to simplify our thought processes

And (names of) directories can be collected in other directories
and so on until we get to the top of the hierarchy, the root



Filesystems
Names

So names need to be organised; this is usually (but not always)
done as a simple hierarchy

Rather than simply presenting all filenames to the user (a flat
filesystem), we gather together related files and put them into a
directory. Also called a folder

A directory is just a collection of (names of) files, but it allows
us to simplify our thought processes

And (names of) directories can be collected in other directories
and so on until we get to the top of the hierarchy, the root



Filesystems
Names

root

Files can appear at all levels



Filesystems
Names

root

But always within a directory



Filesystems
Names

root

In some systems, a file can be in more than one directory



Filesystems
Names

root

Generally, directories can only be within exactly one directory,
for implementation reasons



Filesystems
Names

root

Directories can be empty



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The directory hierarchy forms a directed acyclic graphs (DAG)

This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop; and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation



Filesystems
Names

The directory hierarchy forms a directed acyclic graphs (DAG)

This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop; and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation



Filesystems
Names

The directory hierarchy forms a directed acyclic graphs (DAG)

This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop; and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation



Filesystems
Names

The directory hierarchy forms a directed acyclic graphs (DAG)

This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop; and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation



Filesystems
Names

The directory hierarchy forms a directed acyclic graphs (DAG)

This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop; and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation



Filesystems
Names

To make referring to files even easier, each process has a
current working directory (cwd)

This is just a prefix, stored in the PCB for each process, so that
whenever the process asks for a file by an incomplete filename
(not starting with a /), the kernel glues the cwd prefix on to the
given name and uses that full name instead

So, with a cwd of /u/cs/1/cs1abc a process that asks for file
prog.c gets file /u/cs/1/cs1abc/prog.c

With a cwd of /u/cs/1/cs1def a process that asks for file
prog.c gets file /u/cs/1/cs1def/prog.c



Filesystems
Names

To make referring to files even easier, each process has a
current working directory (cwd)

This is just a prefix, stored in the PCB for each process, so that
whenever the process asks for a file by an incomplete filename
(not starting with a /), the kernel glues the cwd prefix on to the
given name and uses that full name instead

So, with a cwd of /u/cs/1/cs1abc a process that asks for file
prog.c gets file /u/cs/1/cs1abc/prog.c

With a cwd of /u/cs/1/cs1def a process that asks for file
prog.c gets file /u/cs/1/cs1def/prog.c



Filesystems
Names

To make referring to files even easier, each process has a
current working directory (cwd)

This is just a prefix, stored in the PCB for each process, so that
whenever the process asks for a file by an incomplete filename
(not starting with a /), the kernel glues the cwd prefix on to the
given name and uses that full name instead

So, with a cwd of /u/cs/1/cs1abc a process that asks for file
prog.c gets file /u/cs/1/cs1abc/prog.c

With a cwd of /u/cs/1/cs1def a process that asks for file
prog.c gets file /u/cs/1/cs1def/prog.c



Filesystems
Names

To make referring to files even easier, each process has a
current working directory (cwd)

This is just a prefix, stored in the PCB for each process, so that
whenever the process asks for a file by an incomplete filename
(not starting with a /), the kernel glues the cwd prefix on to the
given name and uses that full name instead

So, with a cwd of /u/cs/1/cs1abc a process that asks for file
prog.c gets file /u/cs/1/cs1abc/prog.c

With a cwd of /u/cs/1/cs1def a process that asks for file
prog.c gets file /u/cs/1/cs1def/prog.c



Filesystems
Names

This is how different processes can refer to the same name
prog.c but get different files

The cwd is a convenience for the programmer and may be
changed as often as you like (cd, chdir)



Filesystems
Names

This is how different processes can refer to the same name
prog.c but get different files

The cwd is a convenience for the programmer and may be
changed as often as you like (cd, chdir)


