
Memory
Physical Memory

If we can’t find a big enough free space, we can consider
compaction of memory using a technique called garbage
collection

The OS stops all running processes (i.e., stops scheduling
processes); shifts their code and data around to close up the
gaps; then lets the processes continue (i.e., starts scheduling
again)



Memory
Physical Memory

If we can’t find a big enough free space, we can consider
compaction of memory using a technique called garbage
collection

The OS stops all running processes (i.e., stops scheduling
processes); shifts their code and data around to close up the
gaps; then lets the processes continue (i.e., starts scheduling
again)



Memory
Physical Memory

kernel prog
and data

kernel prog
and data

7

2

3

4

7

2

7

GC



Memory
Physical Memory

GC is not often used in general-purpose OSs

• it is a very expensive (time consuming) operation to move
all those bytes around

• this takes a lot of time away from running of processes
• the pause while things are moved is bad for interactive and

real-time behaviour
• the erratic nature of when GCs are needed leads to

unpredictable behaviour from the OS
• given the right kind of hardware support, better solutions

completely avoiding the need for GC are possible



Memory
Physical Memory

GC is not often used in general-purpose OSs

• it is a very expensive (time consuming) operation to move
all those bytes around

• this takes a lot of time away from running of processes
• the pause while things are moved is bad for interactive and

real-time behaviour
• the erratic nature of when GCs are needed leads to

unpredictable behaviour from the OS
• given the right kind of hardware support, better solutions

completely avoiding the need for GC are possible



Memory
Physical Memory

GC is not often used in general-purpose OSs

• it is a very expensive (time consuming) operation to move
all those bytes around

• this takes a lot of time away from running of processes

• the pause while things are moved is bad for interactive and
real-time behaviour

• the erratic nature of when GCs are needed leads to
unpredictable behaviour from the OS

• given the right kind of hardware support, better solutions
completely avoiding the need for GC are possible



Memory
Physical Memory

GC is not often used in general-purpose OSs

• it is a very expensive (time consuming) operation to move
all those bytes around

• this takes a lot of time away from running of processes
• the pause while things are moved is bad for interactive and

real-time behaviour

• the erratic nature of when GCs are needed leads to
unpredictable behaviour from the OS

• given the right kind of hardware support, better solutions
completely avoiding the need for GC are possible



Memory
Physical Memory

GC is not often used in general-purpose OSs

• it is a very expensive (time consuming) operation to move
all those bytes around

• this takes a lot of time away from running of processes
• the pause while things are moved is bad for interactive and

real-time behaviour
• the erratic nature of when GCs are needed leads to

unpredictable behaviour from the OS

• given the right kind of hardware support, better solutions
completely avoiding the need for GC are possible



Memory
Physical Memory

GC is not often used in general-purpose OSs

• it is a very expensive (time consuming) operation to move
all those bytes around

• this takes a lot of time away from running of processes
• the pause while things are moved is bad for interactive and

real-time behaviour
• the erratic nature of when GCs are needed leads to

unpredictable behaviour from the OS
• given the right kind of hardware support, better solutions

completely avoiding the need for GC are possible



Memory
Physical Memory

GC is successfully used in user languages, e.g., Python,
Haskell, Java

There are ways of implementing GC to avoid the stop-and-copy
(ephemeral GC), or mitigating the overhead (generational GC)
but even so it is not popular for OSs

Exercise Reflect on whether it would be a good idea to
implement an OS in Java (Hint: nobody serious does so!)



Memory
Physical Memory

GC is successfully used in user languages, e.g., Python,
Haskell, Java

There are ways of implementing GC to avoid the stop-and-copy
(ephemeral GC), or mitigating the overhead (generational GC)
but even so it is not popular for OSs

Exercise Reflect on whether it would be a good idea to
implement an OS in Java (Hint: nobody serious does so!)



Memory
Physical Memory

GC is successfully used in user languages, e.g., Python,
Haskell, Java

There are ways of implementing GC to avoid the stop-and-copy
(ephemeral GC), or mitigating the overhead (generational GC)
but even so it is not popular for OSs

Exercise Reflect on whether it would be a good idea to
implement an OS in Java (Hint: nobody serious does so!)



Memory
Physical Memory

So what happens when we can’t find a suitable free space for a
new process (even if we have GC)?

We may choose not to admit the process in the first place

Another possibility is the option of killing existing processes: we
usually don’t want to and only if the new allocation is for a
process that is sufficiently important (recall OOM killers)

Better is to preempt memory: take it away from one process
and give it to another



Memory
Physical Memory

So what happens when we can’t find a suitable free space for a
new process (even if we have GC)?

We may choose not to admit the process in the first place

Another possibility is the option of killing existing processes: we
usually don’t want to and only if the new allocation is for a
process that is sufficiently important (recall OOM killers)

Better is to preempt memory: take it away from one process
and give it to another



Memory
Physical Memory

So what happens when we can’t find a suitable free space for a
new process (even if we have GC)?

We may choose not to admit the process in the first place

Another possibility is the option of killing existing processes: we
usually don’t want to and only if the new allocation is for a
process that is sufficiently important (recall OOM killers)

Better is to preempt memory: take it away from one process
and give it to another



Memory
Physical Memory

So what happens when we can’t find a suitable free space for a
new process (even if we have GC)?

We may choose not to admit the process in the first place

Another possibility is the option of killing existing processes: we
usually don’t want to and only if the new allocation is for a
process that is sufficiently important (recall OOM killers)

Better is to preempt memory: take it away from one process
and give it to another



Memory
Physical Memory

Remember that preemption takes a resource away from a
process and returns it later in the same state

For memory this means the bits in the memory when it is
returned are unchanged from what they were when it was taken
away

Even though that memory has been used by some other
process and written its own data or code into it



Memory
Physical Memory

Remember that preemption takes a resource away from a
process and returns it later in the same state

For memory this means the bits in the memory when it is
returned are unchanged from what they were when it was taken
away

Even though that memory has been used by some other
process and written its own data or code into it



Memory
Physical Memory

Remember that preemption takes a resource away from a
process and returns it later in the same state

For memory this means the bits in the memory when it is
returned are unchanged from what they were when it was taken
away

Even though that memory has been used by some other
process and written its own data or code into it



Memory
Physical Memory

We can preempt a process and copy the contents of the
memory it occupies to somewhere else: usually disk

Note that only the data need to be saved: the code is already
on disk in the file that contains the program

Copying to disk is a (relatively) very slow operation: even the
fastest disks are slow

Even solid state disks (SSDs)

So this kind of memory preemption has a large overhead

This is a tradeoff of speed (time spent copying to and from disk)
against process size (memory allocation)



Memory
Physical Memory

We can preempt a process and copy the contents of the
memory it occupies to somewhere else: usually disk

Note that only the data need to be saved: the code is already
on disk in the file that contains the program

Copying to disk is a (relatively) very slow operation: even the
fastest disks are slow

Even solid state disks (SSDs)

So this kind of memory preemption has a large overhead

This is a tradeoff of speed (time spent copying to and from disk)
against process size (memory allocation)



Memory
Physical Memory

We can preempt a process and copy the contents of the
memory it occupies to somewhere else: usually disk

Note that only the data need to be saved: the code is already
on disk in the file that contains the program

Copying to disk is a (relatively) very slow operation: even the
fastest disks are slow

Even solid state disks (SSDs)

So this kind of memory preemption has a large overhead

This is a tradeoff of speed (time spent copying to and from disk)
against process size (memory allocation)



Memory
Physical Memory

We can preempt a process and copy the contents of the
memory it occupies to somewhere else: usually disk

Note that only the data need to be saved: the code is already
on disk in the file that contains the program

Copying to disk is a (relatively) very slow operation: even the
fastest disks are slow

Even solid state disks (SSDs)

So this kind of memory preemption has a large overhead

This is a tradeoff of speed (time spent copying to and from disk)
against process size (memory allocation)



Memory
Physical Memory

We can preempt a process and copy the contents of the
memory it occupies to somewhere else: usually disk

Note that only the data need to be saved: the code is already
on disk in the file that contains the program

Copying to disk is a (relatively) very slow operation: even the
fastest disks are slow

Even solid state disks (SSDs)

So this kind of memory preemption has a large overhead

This is a tradeoff of speed (time spent copying to and from disk)
against process size (memory allocation)



Memory
Physical Memory

We can preempt a process and copy the contents of the
memory it occupies to somewhere else: usually disk

Note that only the data need to be saved: the code is already
on disk in the file that contains the program

Copying to disk is a (relatively) very slow operation: even the
fastest disks are slow

Even solid state disks (SSDs)

So this kind of memory preemption has a large overhead

This is a tradeoff of speed (time spent copying to and from disk)
against process size (memory allocation)



Memory
Physical Memory

Swapping

The simplest case is preemption of the memory of an entire
process

When a process makes a request for an allocation that the OS
cannot immediately satisfy the OS can try swapping

This is where one or more other processes are selected by the
OS and they are copied out to disk to make space

The best choice is usually a blocked process that couldn’t have
been run right now anyway



Memory
Physical Memory

Swapping

The simplest case is preemption of the memory of an entire
process

When a process makes a request for an allocation that the OS
cannot immediately satisfy the OS can try swapping

This is where one or more other processes are selected by the
OS and they are copied out to disk to make space

The best choice is usually a blocked process that couldn’t have
been run right now anyway



Memory
Physical Memory

Swapping

The simplest case is preemption of the memory of an entire
process

When a process makes a request for an allocation that the OS
cannot immediately satisfy the OS can try swapping

This is where one or more other processes are selected by the
OS and they are copied out to disk to make space

The best choice is usually a blocked process that couldn’t have
been run right now anyway



Memory
Physical Memory

Swapping

The simplest case is preemption of the memory of an entire
process

When a process makes a request for an allocation that the OS
cannot immediately satisfy the OS can try swapping

This is where one or more other processes are selected by the
OS and they are copied out to disk to make space

The best choice is usually a blocked process that couldn’t have
been run right now anyway



Memory
Physical Memory

Swapping

The simplest case is preemption of the memory of an entire
process

When a process makes a request for an allocation that the OS
cannot immediately satisfy the OS can try swapping

This is where one or more other processes are selected by the
OS and they are copied out to disk to make space

The best choice is usually a blocked process that couldn’t have
been run right now anyway



Memory
Physical Memory

When a swapped process is scheduled again it must be copied
back by the OS into memory first

Which might require swapping out something else to make
room

Data is retrieved from where it was saved, while code is copied
back from the original program file—this is why some OS’s
don’t like you deleting programs while they are running



Memory
Physical Memory

When a swapped process is scheduled again it must be copied
back by the OS into memory first

Which might require swapping out something else to make
room

Data is retrieved from where it was saved, while code is copied
back from the original program file—this is why some OS’s
don’t like you deleting programs while they are running



Memory
Physical Memory

When a swapped process is scheduled again it must be copied
back by the OS into memory first

Which might require swapping out something else to make
room

Data is retrieved from where it was saved, while code is copied
back from the original program file—this is why some OS’s
don’t like you deleting programs while they are running



Memory
Physical Memory

This differs from overlays in that it is the OS that does the
swapping, not the process doing it to itself

This makes it transparent to the process and the programmer
doesn’t have to think about it

. . . but they should as swapping is very time consuming, and
slows down the speed of execution of programs immensely

A good programmer will try to avoid the need for swapping by
requesting memory allocations carefully

Something that often is forgotten these days!



Memory
Physical Memory

This differs from overlays in that it is the OS that does the
swapping, not the process doing it to itself

This makes it transparent to the process and the programmer
doesn’t have to think about it

. . . but they should as swapping is very time consuming, and
slows down the speed of execution of programs immensely

A good programmer will try to avoid the need for swapping by
requesting memory allocations carefully

Something that often is forgotten these days!



Memory
Physical Memory

This differs from overlays in that it is the OS that does the
swapping, not the process doing it to itself

This makes it transparent to the process and the programmer
doesn’t have to think about it

. . . but they should as swapping is very time consuming, and
slows down the speed of execution of programs immensely

A good programmer will try to avoid the need for swapping by
requesting memory allocations carefully

Something that often is forgotten these days!



Memory
Physical Memory

This differs from overlays in that it is the OS that does the
swapping, not the process doing it to itself

This makes it transparent to the process and the programmer
doesn’t have to think about it

. . . but they should as swapping is very time consuming, and
slows down the speed of execution of programs immensely

A good programmer will try to avoid the need for swapping by
requesting memory allocations carefully

Something that often is forgotten these days!



Memory
Physical Memory

This differs from overlays in that it is the OS that does the
swapping, not the process doing it to itself

This makes it transparent to the process and the programmer
doesn’t have to think about it

. . . but they should as swapping is very time consuming, and
slows down the speed of execution of programs immensely

A good programmer will try to avoid the need for swapping by
requesting memory allocations carefully

Something that often is forgotten these days!



Memory
Physical Memory

The OS will take swapping into account when scheduling

There is a clear interaction of scheduling and swapping
processes: each will affect the other



Memory
Physical Memory

The OS will take swapping into account when scheduling

There is a clear interaction of scheduling and swapping
processes: each will affect the other



Memory
Physical Memory

Variants:

• Only one process ever in memory, swapped as a whole
when scheduled: simple, and used on very early systems

• Swapping of processes: only marginally harder, and fits
well with a partitioning system and fits well with scheduling

• Swapping parts of a process: not so easy as the OS has to
work harder to determine which parts of a process’s code
or data might not be needed in the near future



Memory
Physical Memory

Variants:

• Only one process ever in memory, swapped as a whole
when scheduled: simple, and used on very early systems

• Swapping of processes: only marginally harder, and fits
well with a partitioning system and fits well with scheduling

• Swapping parts of a process: not so easy as the OS has to
work harder to determine which parts of a process’s code
or data might not be needed in the near future



Memory
Physical Memory

Variants:

• Only one process ever in memory, swapped as a whole
when scheduled: simple, and used on very early systems

• Swapping of processes: only marginally harder, and fits
well with a partitioning system and fits well with scheduling

• Swapping parts of a process: not so easy as the OS has to
work harder to determine which parts of a process’s code
or data might not be needed in the near future



Memory
Physical Memory

Variants:

• Only one process ever in memory, swapped as a whole
when scheduled: simple, and used on very early systems

• Swapping of processes: only marginally harder, and fits
well with a partitioning system and fits well with scheduling

• Swapping parts of a process: not so easy as the OS has to
work harder to determine which parts of a process’s code
or data might not be needed in the near future



Memory
Virtual Memory

Paging

This is all augmented by the idea of paging

Paging is similar to swapping, but simpler in concept

And much harder in the hardware required

To describe paging we must first go back to pages



Memory
Virtual Memory

Paging

This is all augmented by the idea of paging

Paging is similar to swapping, but simpler in concept

And much harder in the hardware required

To describe paging we must first go back to pages



Memory
Virtual Memory

Paging

This is all augmented by the idea of paging

Paging is similar to swapping, but simpler in concept

And much harder in the hardware required

To describe paging we must first go back to pages



Memory
Virtual Memory

Paging

This is all augmented by the idea of paging

Paging is similar to swapping, but simpler in concept

And much harder in the hardware required

To describe paging we must first go back to pages



Memory
Virtual Memory

Paging

This is all augmented by the idea of paging

Paging is similar to swapping, but simpler in concept

And much harder in the hardware required

To describe paging we must first go back to pages



Memory
Virtual Memory

A big problem is memory fragmentation due to the irregular
sizes of processes/partitions

So to fix this we chop everything up into equally sized chunks

Recall (from memory protection) a page is just a contiguous
area of memory: e.g., 4096 bytes

Hardware is designed so copying pages in and out of memory
from disk is as efficient as possible



Memory
Virtual Memory

A big problem is memory fragmentation due to the irregular
sizes of processes/partitions

So to fix this we chop everything up into equally sized chunks

Recall (from memory protection) a page is just a contiguous
area of memory: e.g., 4096 bytes

Hardware is designed so copying pages in and out of memory
from disk is as efficient as possible



Memory
Virtual Memory

A big problem is memory fragmentation due to the irregular
sizes of processes/partitions

So to fix this we chop everything up into equally sized chunks

Recall (from memory protection) a page is just a contiguous
area of memory: e.g., 4096 bytes

Hardware is designed so copying pages in and out of memory
from disk is as efficient as possible



Memory
Virtual Memory

A big problem is memory fragmentation due to the irregular
sizes of processes/partitions

So to fix this we chop everything up into equally sized chunks

Recall (from memory protection) a page is just a contiguous
area of memory: e.g., 4096 bytes

Hardware is designed so copying pages in and out of memory
from disk is as efficient as possible



Memory
Virtual Memory

Next, we introduce virtual vs. physical addresses

A physical address is what we are used to, just a numbering of
the actual bytes in the system from 0 to n

A virtual address is a per-process fictional address

The user process sees only the virtual addresses: the system
will translate them on the fly into physical addresses



Memory
Virtual Memory

Next, we introduce virtual vs. physical addresses

A physical address is what we are used to, just a numbering of
the actual bytes in the system from 0 to n

A virtual address is a per-process fictional address

The user process sees only the virtual addresses: the system
will translate them on the fly into physical addresses



Memory
Virtual Memory

Next, we introduce virtual vs. physical addresses

A physical address is what we are used to, just a numbering of
the actual bytes in the system from 0 to n

A virtual address is a per-process fictional address

The user process sees only the virtual addresses: the system
will translate them on the fly into physical addresses



Memory
Virtual Memory

Next, we introduce virtual vs. physical addresses

A physical address is what we are used to, just a numbering of
the actual bytes in the system from 0 to n

A virtual address is a per-process fictional address

The user process sees only the virtual addresses: the system
will translate them on the fly into physical addresses



Memory
Virtual Memory

The OS has tables, one per process, called page tables, that
contains the virtual-physical address mappings for each page
in each process

For example, with a page size of 4096 bytes, address 12298 is
10 bytes from the start of page 3: 12298 = 3 × 4096 + 10

Under the entry for page 3 in the page table for this process we
might find the number 7, meaning physical page 7

So virtual address 12298 in this process refers to physical
byte 7 × 4096 + 10 = 28682



Memory
Virtual Memory

The OS has tables, one per process, called page tables, that
contains the virtual-physical address mappings for each page
in each process

For example, with a page size of 4096 bytes, address 12298 is
10 bytes from the start of page 3: 12298 = 3 × 4096 + 10

Under the entry for page 3 in the page table for this process we
might find the number 7, meaning physical page 7

So virtual address 12298 in this process refers to physical
byte 7 × 4096 + 10 = 28682



Memory
Virtual Memory

The OS has tables, one per process, called page tables, that
contains the virtual-physical address mappings for each page
in each process

For example, with a page size of 4096 bytes, address 12298 is
10 bytes from the start of page 3: 12298 = 3 × 4096 + 10

Under the entry for page 3 in the page table for this process we
might find the number 7, meaning physical page 7

So virtual address 12298 in this process refers to physical
byte 7 × 4096 + 10 = 28682



Memory
Virtual Memory

The OS has tables, one per process, called page tables, that
contains the virtual-physical address mappings for each page
in each process

For example, with a page size of 4096 bytes, address 12298 is
10 bytes from the start of page 3: 12298 = 3 × 4096 + 10

Under the entry for page 3 in the page table for this process we
might find the number 7, meaning physical page 7

So virtual address 12298 in this process refers to physical
byte 7 × 4096 + 10 = 28682



Memory
Virtual Memory

In another process, virtual page 3 could be mapped to physical
page 42

And then the same virtual address 12298 in this process
refers to physical byte 42 × 4096 + 10 = 172042

The same virtual address in different processes is mapped to
different physical addresses

We use pages, of course, to make this translation manageable



Memory
Virtual Memory

In another process, virtual page 3 could be mapped to physical
page 42

And then the same virtual address 12298 in this process
refers to physical byte 42 × 4096 + 10 = 172042

The same virtual address in different processes is mapped to
different physical addresses

We use pages, of course, to make this translation manageable



Memory
Virtual Memory

In another process, virtual page 3 could be mapped to physical
page 42

And then the same virtual address 12298 in this process
refers to physical byte 42 × 4096 + 10 = 172042

The same virtual address in different processes is mapped to
different physical addresses

We use pages, of course, to make this translation manageable



Memory
Virtual Memory

In another process, virtual page 3 could be mapped to physical
page 42

And then the same virtual address 12298 in this process
refers to physical byte 42 × 4096 + 10 = 172042

The same virtual address in different processes is mapped to
different physical addresses

We use pages, of course, to make this translation manageable



Memory
Virtual Memory

The table only contains entries for pages that are actually in
use by that process: this keeps the tables to a reasonable size

V page P page
3 7
4 9123
5 121

10 1232
etc.

Note: page tables contain page mappings, not pages

Note: though still called “tables”, in modern OSs they are likely
to be more sophisticated datastructures, such as trees



Memory
Virtual Memory

The table only contains entries for pages that are actually in
use by that process: this keeps the tables to a reasonable size

V page P page
3 7
4 9123
5 121

10 1232
etc.

Note: page tables contain page mappings, not pages

Note: though still called “tables”, in modern OSs they are likely
to be more sophisticated datastructures, such as trees



Memory
Virtual Memory

The table only contains entries for pages that are actually in
use by that process: this keeps the tables to a reasonable size

V page P page
3 7
4 9123
5 121

10 1232
etc.

Note: page tables contain page mappings, not pages

Note: though still called “tables”, in modern OSs they are likely
to be more sophisticated datastructures, such as trees



Memory
Virtual Memory

kernel prog
and data

virtualrealvirtual

process 1 process 2OS

Every process gets its own complete and separate address
space, mapped into the physical address space

Even for the same userid: this is usually what you want,
protection of one process from another



Memory
Virtual Memory

kernel prog
and data

virtualrealvirtual

process 1 process 2OS

Every process gets its own complete and separate address
space, mapped into the physical address space

Even for the same userid: this is usually what you want,
protection of one process from another



Memory
Virtual Memory

Where are these page tables?

In kernel memory, of course: and a link to the table is kept in
the process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In kernel memory, of course: and a link to the table is kept in
the process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In kernel memory, of course: and a link to the table is kept in
the process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In kernel memory, of course: and a link to the table is kept in
the process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read

• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In kernel memory, of course: and a link to the table is kept in
the process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write

• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In kernel memory, of course: and a link to the table is kept in
the process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

Where are these page tables?

In kernel memory, of course: and a link to the table is kept in
the process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

• every data read
• every data write
• every execute of an instruction

This is clearly not sensible as it would be very slow



Memory
Virtual Memory

So, to be practically useful, this is supported by a piece of
hardware called the translation lookaside buffer (TLB), part of
the memory management unit (MMU)

The TLB maintains its own copy of a few of the virtual-physical
mappings from the page table of the current process and can
translate very quickly between them



Memory
Virtual Memory

So, to be practically useful, this is supported by a piece of
hardware called the translation lookaside buffer (TLB), part of
the memory management unit (MMU)

The TLB maintains its own copy of a few of the virtual-physical
mappings from the page table of the current process and can
translate very quickly between them



Memory
Virtual Memory

To repeat that: the table in the TLB is a small subset of the
OS’s page table mappings of the current process

Only a small subset as TLB memory is very limited in size since
it is very expensive to make memory that runs fast enough to
make this mechanism practical: it contains perhaps just a few
dozens of the virtual to physical mappings

Note (again): the TLB contains copies of the page mappings,
not pages



Memory
Virtual Memory

To repeat that: the table in the TLB is a small subset of the
OS’s page table mappings of the current process

Only a small subset as TLB memory is very limited in size since
it is very expensive to make memory that runs fast enough to
make this mechanism practical: it contains perhaps just a few
dozens of the virtual to physical mappings

Note (again): the TLB contains copies of the page mappings,
not pages



Memory
Virtual Memory

To repeat that: the table in the TLB is a small subset of the
OS’s page table mappings of the current process

Only a small subset as TLB memory is very limited in size since
it is very expensive to make memory that runs fast enough to
make this mechanism practical: it contains perhaps just a few
dozens of the virtual to physical mappings

Note (again): the TLB contains copies of the page mappings,
not pages



Memory
Virtual Memory

The Intel Nehalem architecture has a 64 entry data TLB (and a
512 entry level 2 TLB); and a separate 64 entry instruction TLB

Note that 64 entries typically corresponds to an area of
64 × 4k page = 256k bytes, so while not huge, this isn’t so bad
as it might seem as first



Memory
Virtual Memory

The Intel Nehalem architecture has a 64 entry data TLB (and a
512 entry level 2 TLB); and a separate 64 entry instruction TLB

Note that 64 entries typically corresponds to an area of
64 × 4k page = 256k bytes, so while not huge, this isn’t so bad
as it might seem as first



Memory
Virtual Memory

process

process

page
table

page
table

CPU
address

interrupt

memory bus

address

TLB

MMU

m
em

o
ry

virtual physical

The MMU and TLB are often physically part of the CPU
package, for speed of access



Memory
Virtual Memory

When presented with an address from the CPU the TLB first
looks the virtual page up in its table. If it is there is—a TLB
hit—the memory access goes ahead at full speed using the
physical address computed from the real page index found
there

If there is a TLB miss then it has to work a bit harder

There are two popular techniques used



Memory
Virtual Memory

When presented with an address from the CPU the TLB first
looks the virtual page up in its table. If it is there is—a TLB
hit—the memory access goes ahead at full speed using the
physical address computed from the real page index found
there

If there is a TLB miss then it has to work a bit harder

There are two popular techniques used



Memory
Virtual Memory

When presented with an address from the CPU the TLB first
looks the virtual page up in its table. If it is there is—a TLB
hit—the memory access goes ahead at full speed using the
physical address computed from the real page index found
there

If there is a TLB miss then it has to work a bit harder

There are two popular techniques used



Memory
Virtual Memory

In a hardware managed TLB, the CPU/TLB itself stops what it
is doing and searches for the page number in the page table (in
memory) for the current process: this is called a page walk

If it finds it, it installs it in the TLB table and carries on with the
memory access

The OS is not involved in the page walk, it is purely hardware



Memory
Virtual Memory

In a hardware managed TLB, the CPU/TLB itself stops what it
is doing and searches for the page number in the page table (in
memory) for the current process: this is called a page walk

If it finds it, it installs it in the TLB table and carries on with the
memory access

The OS is not involved in the page walk, it is purely hardware



Memory
Virtual Memory

In a hardware managed TLB, the CPU/TLB itself stops what it
is doing and searches for the page number in the page table (in
memory) for the current process: this is called a page walk

If it finds it, it installs it in the TLB table and carries on with the
memory access

The OS is not involved in the page walk, it is purely hardware



Memory
Virtual Memory

The second technique, a software managed TLB, simply raises
a TLB miss interrupt on a TLB miss

The OS then takes over and has to do the page walk



Memory
Virtual Memory

The second technique, a software managed TLB, simply raises
a TLB miss interrupt on a TLB miss

The OS then takes over and has to do the page walk



Memory
Virtual Memory

This deals with the case of when the requested page has
already been allocated by the OS to the current process, so
there is an entry in the page table for the page walk to find

In either software or hardware case, if the requested virtual
page is not yet allocated by the OS to the process and so not in
its page table, the OS needs to allocate a page



Memory
Virtual Memory

This deals with the case of when the requested page has
already been allocated by the OS to the current process, so
there is an entry in the page table for the page walk to find

In either software or hardware case, if the requested virtual
page is not yet allocated by the OS to the process and so not in
its page table, the OS needs to allocate a page



Memory
Virtual Memory

A hardware managed TLB will now raise a page fault interrupt
to pass control to the OS

A software managed TLB is already running the OS, as the OS
is doing the page walk

The OS allocates a physical page, installs the new page
mapping into the page table for that process for that page and
writes the relevant page mapping into the TLB

(When the process is rescheduled) the memory access can
then proceed



Memory
Virtual Memory

A hardware managed TLB will now raise a page fault interrupt
to pass control to the OS

A software managed TLB is already running the OS, as the OS
is doing the page walk

The OS allocates a physical page, installs the new page
mapping into the page table for that process for that page and
writes the relevant page mapping into the TLB

(When the process is rescheduled) the memory access can
then proceed



Memory
Virtual Memory

A hardware managed TLB will now raise a page fault interrupt
to pass control to the OS

A software managed TLB is already running the OS, as the OS
is doing the page walk

The OS allocates a physical page, installs the new page
mapping into the page table for that process for that page and
writes the relevant page mapping into the TLB

(When the process is rescheduled) the memory access can
then proceed



Memory
Virtual Memory

A hardware managed TLB will now raise a page fault interrupt
to pass control to the OS

A software managed TLB is already running the OS, as the OS
is doing the page walk

The OS allocates a physical page, installs the new page
mapping into the page table for that process for that page and
writes the relevant page mapping into the TLB

(When the process is rescheduled) the memory access can
then proceed



Memory
Virtual Memory

Of course, the OS may choose not to allocate a page and it
could then send a segmentation violation signal to the process

x86 and ARM processors have hardware managed TLBs

SPARC and MIPS are software managed

Terminology warning: a TLB miss when the page is already
allocated and indexed in the page table is sometimes called a
minor or soft page fault; while a miss on an unallocated page is
a major or hard page fault



Memory
Virtual Memory

Of course, the OS may choose not to allocate a page and it
could then send a segmentation violation signal to the process

x86 and ARM processors have hardware managed TLBs

SPARC and MIPS are software managed

Terminology warning: a TLB miss when the page is already
allocated and indexed in the page table is sometimes called a
minor or soft page fault; while a miss on an unallocated page is
a major or hard page fault



Memory
Virtual Memory

Of course, the OS may choose not to allocate a page and it
could then send a segmentation violation signal to the process

x86 and ARM processors have hardware managed TLBs

SPARC and MIPS are software managed

Terminology warning: a TLB miss when the page is already
allocated and indexed in the page table is sometimes called a
minor or soft page fault; while a miss on an unallocated page is
a major or hard page fault



Memory
Virtual Memory

Of course, the OS may choose not to allocate a page and it
could then send a segmentation violation signal to the process

x86 and ARM processors have hardware managed TLBs

SPARC and MIPS are software managed

Terminology warning: a TLB miss when the page is already
allocated and indexed in the page table is sometimes called a
minor or soft page fault; while a miss on an unallocated page is
a major or hard page fault



Memory
Virtual Memory

Speed relies crucially on the TLB containing a good proportion
of the addresses currently being used: if a process writes wildly
all over memory we are guaranteed to get TLB misses and slow
memory access: lots of TLB misses and page walks or page
fault interrupts

Fortunately, most well-written programs behave sensibly and
tend to use the same addresses over and over, meaning lots of
TLB hits

After a while, the TLB settles down, caching the indices of the
pages the process is using, the working set



Memory
Virtual Memory

Speed relies crucially on the TLB containing a good proportion
of the addresses currently being used: if a process writes wildly
all over memory we are guaranteed to get TLB misses and slow
memory access: lots of TLB misses and page walks or page
fault interrupts

Fortunately, most well-written programs behave sensibly and
tend to use the same addresses over and over, meaning lots of
TLB hits

After a while, the TLB settles down, caching the indices of the
pages the process is using, the working set



Memory
Virtual Memory

Speed relies crucially on the TLB containing a good proportion
of the addresses currently being used: if a process writes wildly
all over memory we are guaranteed to get TLB misses and slow
memory access: lots of TLB misses and page walks or page
fault interrupts

Fortunately, most well-written programs behave sensibly and
tend to use the same addresses over and over, meaning lots of
TLB hits

After a while, the TLB settles down, caching the indices of the
pages the process is using, the working set



Memory
Virtual Memory

Note that a page fault can cost a lot of time

Register access 1 cycle
(L1 memory cache hit ≈ 2 cycles)
(L3 memory cache hit ≈ 50 cycles)
Main memory access ≈ 200 cycles
TLB miss (page in memory) ≈ 10,000 cycles
Page fault (page on disk) ≈ 1,000,000,000 cycles

These are very rough figures and are the combined overhead
of OS operations and memory architecture


