Computer systems architectures
CM12002
Russell Bradford
2023/24
1. Memory
Physical Memory
If we can’t find a big enough free space, we can consider compaction of memory using a technique called garbage collection
The OS stops all running processes (i.e., stops scheduling processes); shifts their code and data around to close up the gaps; then lets the processes continue (i.e., starts scheduling again)
2. Memory
Physical Memory
[image: Pics/gc.svg]
3. Memory
Physical Memory
GC is not often used in general-purpose OSs
· it is a very expensive (time consuming) operation to move all those bytes around
· this takes a lot of time away from running of processes
· the pause while things are moved is bad for interactive and real-time behaviour
· the erratic nature of when GCs are needed leads to unpredictable behaviour from the OS
· given the right kind of hardware support, better solutions completely avoiding the need for GC are possible
4. Memory
Physical Memory
GC is successfully used in user languages, e.g., Python, Haskell, Java
There are ways of implementing GC to avoid the stop-and-copy (ephemeral GC), or mitigating the overhead (generational GC) but even so it is not popular for OSs
Exercise Reflect on whether it would be a good idea to implement an OS in Java (Hint: nobody serious does so!)
5. Memory
Physical Memory
So what happens when we can’t find a suitable free space for a new process (even if we have GC)?
We may choose not to admit the process in the first place
Another possibility is the option of killing existing processes: we usually don’t want to and only if the new allocation is for a process that is sufficiently important (recall OOM killers)
Better is to preempt memory: take it away from one process and give it to another
6. Memory
Physical Memory
Remember that preemption takes a resource away from a process and returns it later in the same state
For memory this means the bits in the memory when it is returned are unchanged from what they were when it was taken away
Even though that memory has been used by some other process and written its own data or code into it
7. Memory
Physical Memory
We can preempt a process and copy the contents of the memory it occupies to somewhere else: usually disk
Note that only the data need to be saved: the code is already on disk in the file that contains the program
Copying to disk is a (relatively) very slow operation: even the fastest disks are slow
Even solid state disks (SSDs)
So this kind of memory preemption has a large overhead
This is a tradeoff of speed (time spent copying to and from disk) against process size (memory allocation)
8. Memory
Physical Memory
Swapping
The simplest case is preemption of the memory of an entire process
When a process makes a request for an allocation that the OS cannot immediately satisfy the OS can try swapping
This is where one or more other processes are selected by the OS and they are copied out to disk to make space
The best choice is usually a blocked process that couldn’t have been run right now anyway
9. Memory
Physical Memory
When a swapped process is scheduled again it must be copied back by the OS into memory first
Which might require swapping out something else to make room
Data is retrieved from where it was saved, while code is copied back from the original program file—this is why some OS’s don’t like you deleting programs while they are running
10. Memory
Physical Memory
This differs from overlays in that it is the OS that does the swapping, not the process doing it to itself
This makes it transparent to the process and the programmer doesn’t have to think about it
…but they should as swapping is very time consuming, and slows down the speed of execution of programs immensely
A good programmer will try to avoid the need for swapping by requesting memory allocations carefully
Something that often is forgotten these days!
11. Memory
Physical Memory
The OS will take swapping into account when scheduling
There is a clear interaction of scheduling and swapping processes: each will affect the other
12. Memory
Physical Memory
Variants:
· Only one process ever in memory, swapped as a whole when scheduled: simple, and used on very early systems
· Swapping of processes: only marginally harder, and fits well with a partitioning system and fits well with scheduling
· Swapping parts of a process: not so easy as the OS has to work harder to determine which parts of a process’s code or data might not be needed in the near future
13. Memory
Virtual Memory
Paging
This is all augmented by the idea of paging
Paging is similar to swapping, but simpler in concept
And much harder in the hardware required
To describe paging we must first go back to pages
14. Memory
Virtual Memory
A big problem is memory fragmentation due to the irregular sizes of processes/partitions
So to fix this we chop everything up into equally sized chunks
Recall (from memory protection) a page is just a contiguous area of memory: e.g., 4096 bytes
Hardware is designed so copying pages in and out of memory from disk is as efficient as possible
15. Memory
Virtual Memory
Next, we introduce virtual vs. physical addresses
A physical address is what we are used to, just a numbering of the actual bytes in the system from 0 to
A virtual address is a per-process fictional address
The user process sees only the virtual addresses: the system will translate them on the fly into physical addresses
16. Memory
Virtual Memory
The OS has tables, one per process, called page tables, that contains the virtual-physical address mappings for each page in each process
For example, with a page size of 4096 bytes, address 12298 is 10 bytes from the start of page 3:
Under the entry for page 3 in the page table for this process we might find the number 7, meaning physical page 7
So virtual address 12298 in this process refers to physical byte
17. Memory
Virtual Memory
In another process, virtual page 3 could be mapped to physical page 42
And then the same virtual address 12298 in this process refers to physical byte
The same virtual address in different processes is mapped to different physical addresses
We use pages, of course, to make this translation manageable
18. Memory
Virtual Memory
The table only contains entries for pages that are actually in use by that process: this keeps the tables to a reasonable size
	V page
	P page

	3
	7

	4
	9123

	5
	121

	10
	1232

	etc.

Note: page tables contain page mappings, not pages
Note: though still called “tables”, in modern OSs they are likely to be more sophisticated datastructures, such as trees
19. Memory
Virtual Memory
[image: Pics/vrmem.svg]
Every process gets its own complete and separate address space, mapped into the physical address space
Even for the same userid: this is usually what you want, protection of one process from another
20. Memory
Virtual Memory
Where are these page tables?
In kernel memory, of course: and a link to the table is kept in the process’s PCB
But it sounds like, on every memory access, we have to do (a) a memory read of a page table to find the V to R mapping and then (b) a calculation to get the physical memory location and then (c) a memory access to the physical address we wanted
· every data read
· every data write
· every execute of an instruction
This is clearly not sensible as it would be very slow
21. Memory
Virtual Memory
So, to be practically useful, this is supported by a piece of hardware called the translation lookaside buffer (TLB), part of the memory management unit (MMU)
The TLB maintains its own copy of a few of the virtual-physical mappings from the page table of the current process and can translate very quickly between them
22. Memory
Virtual Memory
To repeat that: the table in the TLB is a small subset of the OS’s page table mappings of the current process
Only a small subset as TLB memory is very limited in size since it is very expensive to make memory that runs fast enough to make this mechanism practical: it contains perhaps just a few dozens of the virtual to physical mappings
Note (again): the TLB contains copies of the page mappings, not pages
23. Memory
Virtual Memory
The Intel Nehalem architecture has a 64 entry data TLB (and a 512 entry level 2 TLB); and a separate 64 entry instruction TLB
Note that 64 entries typically corresponds to an area of bytes, so while not huge, this isn’t so bad as it might seem as first
24. Memory
Virtual Memory
[image: Pics/tlb.svg]
The MMU and TLB are often physically part of the CPU package, for speed of access
25. Memory
Virtual Memory
When presented with an address from the CPU the TLB first looks the virtual page up in its table. If it is there is—a TLB hit—the memory access goes ahead at full speed using the physical address computed from the real page index found there
If there is a TLB miss then it has to work a bit harder
There are two popular techniques used
26. Memory
Virtual Memory
In a hardware managed TLB, the CPU/TLB itself stops what it is doing and searches for the page number in the page table (in memory) for the current process: this is called a page walk
If it finds it, it installs it in the TLB table and carries on with the memory access
The OS is not involved in the page walk, it is purely hardware
27. Memory
Virtual Memory
The second technique, a software managed TLB, simply raises a TLB miss interrupt on a TLB miss
The OS then takes over and has to do the page walk
28. Memory
Virtual Memory
This deals with the case of when the requested page has already been allocated by the OS to the current process, so there is an entry in the page table for the page walk to find
In either software or hardware case, if the requested virtual page is not yet allocated by the OS to the process and so not in its page table, the OS needs to allocate a page
29. Memory
Virtual Memory
A hardware managed TLB will now raise a page fault interrupt to pass control to the OS
A software managed TLB is already running the OS, as the OS is doing the page walk
The OS allocates a physical page, installs the new page mapping into the page table for that process for that page and writes the relevant page mapping into the TLB
(When the process is rescheduled) the memory access can then proceed
30. Memory
Virtual Memory
Of course, the OS may choose not to allocate a page and it could then send a segmentation violation signal to the process
x86 and ARM processors have hardware managed TLBs
SPARC and MIPS are software managed
Terminology warning: a TLB miss when the page is already allocated and indexed in the page table is sometimes called a minor or soft page fault; while a miss on an unallocated page is a major or hard page fault
31. Memory
Virtual Memory
Speed relies crucially on the TLB containing a good proportion of the addresses currently being used: if a process writes wildly all over memory we are guaranteed to get TLB misses and slow memory access: lots of TLB misses and page walks or page fault interrupts
Fortunately, most well-written programs behave sensibly and tend to use the same addresses over and over, meaning lots of TLB hits
After a while, the TLB settles down, caching the indices of the pages the process is using, the working set
32. Memory
Virtual Memory
Note that a page fault can cost a lot of time
	Register access
	1 cycle

	(L1 memory cache hit
	 cycles)

	(L3 memory cache hit
	 cycles)

	Main memory access
	 cycles

	TLB miss (page in memory)
	 cycles

	Page fault (page on disk)
	 cycles

These are very rough figures and are the combined overhead of OS operations and memory architecture
rId22.svg

	

 kernel prog

 and data

 kernel prog

 and data

 7

 2

 3

 4

 7

 2

 7

 GC

rId25.png

rId60.svg

	

	

	

	

	

	

	

 kernel prog

 and data

 virtual

 real

 virtual

 process 1

 process 2

 OS

rId63.png

rId74.svg

	

	

	

	

 process

 process

 page

 table

 page

 table

 CPU

 address

 interrupt

 memory bus

 address

 TLB

 MMU

 memory

 virtual

 physical

rId77.png
li
[é%

i

i

i
i

