Computer systems architectures
CM12002
Russell Bradford
2023/24
1. History
Back to another problem: a badly written (or malicious) program can bring the whole system down
If a program never hands control back to the OS (we’ll call the monitor the operating system from now on), the OS never gets to run and schedule another program
If a program goes into an infinite loop the whole computer is jammed
This cooperative approach needs something extra
2. History
Interrupts can be used to solve the problem of runaway programs
A hardware clock or timer can be set to send interrupts regularly after an appropriate period of time has elapsed
When the interrupt is taken, the interrupt service routine jumps to the OS and so it can decide what to do next, including:
· resume running the interrupted program
· kill (no longer run and remove resources from) the program if it has used up its allotted resources (e.g., CPU time)
· switch to running some other program
Similarly, interrupts from peripherals like terminals or disks pass control to the OS
3. History
This kind of approach is called preemptive scheduling and enables timesharing
Timesharing is where several programs share the available CPU time and so appear to be running simultaneously (to the user)
And usually in a fairly transparent manner to the programs
Always mediated by the OS, of course
4. History
The same interrupt mechanism allowed the use of terminals, where users could now interact directly with the computer, not just via job submission
A program can sit and wait (i.e., not be scheduled to run by the OS) until the user hits a key on the terminal
When a key is hit, an interrupt happens, the OS takes over, schedules and runs the appropriate program to deal with the keystroke
5. History
Thus the waiting program uses no CPU resources until they are needed
Of course, while we say “the program is waiting”, it is important to realised that it’s not “waiting”: the program is not even running
So interrupts like this are another way of bridging the gap between slow humans and fast computers
My PC is running at about 150 interrupts per second (timers and other stuff)
6. History
<+(0)->The OS probably won’t choose a different program to run on every interrupt
<+(0)->It will make decisions (see later) based on what the various programs need
<+(0)->A compute-intensive program might get a large slice of time
<+(0)->This means the OS will continue to schedule the same program over many timer interrupts
7. History
<+(0)->An interactive program — one that spends most of its life waiting for a user to do something — doesn’t need much CPU, so the OS would only give it a small slice of time
<+(0)->Meaning it will deschedule the program after a few (possibly just one) timer interrupt
<+(0)->We shall return to scheduling later
8. History
Next: the programs and OS all live in the same computer memory: we need some way of protecting programs and the OS from each other
This has to be done by hardware support as it needs to be fast and unobtrusive: every memory access needs to be checked
So it has to be hardware supported and not just software
We shall start by looking at general hardware protection mechanisms
9. History
Certain operations, like accessing tape or a printer, must be reserved for use by the OS and not be accessible by a random user program
So in the hardware (CPU) machine instructions are divided into two (or more) classes
· Unprivileged operations. Like arithmetic operations, loads, stores, jumps and so on. Any program can execute these
· Privileged operations. Like access peripherals, reboot the machine. Only certain privileged programs can run these
And the processor hardware can run in two (or more) modes
· Unprivileged. Normal computation, called user mode
· Privileged. For systems operation, called kernel mode
10. History
Modern processor architectures can have more levels of privilege, but for the most part it is rare that more than two levels are used in commodity computers
For example, the Intel x86 architecture has four rings. Ring 0 can execute any instruction, while Ring 3 is for user mode. Rings 1 and 2 are rarely used these days
OS/2 used Ring 2
The latest Intel and AMD architectures added a Ring  (for OS virtualisation)
11. History
Exercise And it doesn’t stop there. Read about rings  and 
Exercise The ARM architecture has 3 levels. Read about this
12. History
Note that privilege is a state of the processor, not the program, but we tend to say “a privileged program” rather than “a program running with the CPU in privileged mode”
If an unprivileged program (i.e., a program running in an unprivileged mode) tries to execute a privileged operation the hardware causes an interrupt (also called a system trap) and sets the processor to privileged mode. The interrupt service routine then jumps to the OS
The OS is now running (in privileged mode) and can then decide what to do
For example, the OS may decide to disallow the operation, and kill the program (i.e., not run it any more)
13. History
The system starts in kernel (privileged) mode
1. The OS decides which process to schedule
1. It uses a special jump-and-drop-privilege instruction to start running the program
1. The program runs user mode (unprivileged)
1. The program finishes or decides it needs a system resource
1. The program executes a special “call OS” (or syscall) instruction that jumps to the OS
1. This enables privileged mode, so the OS regains control, with privilege
1. The OS decides what to do next
14. History
Of course, even if the program does not do a syscall, a timer interrupt will come along at some point, anyway
The syscall instruction always jumps to the same place in the OS. So the program cannot use it to gain privilege for itself and run its own code privileged
This to-ing and fro-ing between modes ensures that the OS is running in privileged mode and the user program is running in unprivileged mode
And the user program can never manage to get into privileged mode as every transition to privileged mode is tied by the hardware to a jump to the OS
15. History
(100,50) (0,0)(40,10)Hardware (0,10)(40,10)OS (45,15)(0,0)[l]Kernel/Privileged mode (5,20)(30,10)System libraries (0,30)(20,10)GUI (45,35)(0,0)[l]User/Unprivileged mode (0,20)(0,1)20(0,40)(1,0)20 (20,40)(0,-1)10 (0,40)(40,10)Applications (0,40)(0,1)10 (0,50)(1,0)40 (40,50)(0,-1)30 (45,20)(1,0)25

 
There is a strict divide between kernel (OS) code and user code, controlled by the hardware
16. History
Unless there are bugs in the kernel code
Or you don’t maintain the proper separation between OS and everything else: revisit the diagrams from earlier
Incidentally, the system libraries usually include a bunch of “nice” interfaces to the syscalls: wrapping them to make using them easier
E.g., the “open file” syscall might need certain values (file name, etc.) to be placed in certain CPU registers; and the “open file” code to be placed in a register before the syscall
The open system library function simply hides these details from the programmer
17. History
The result of all this messing with modes is certain operations like loading programs, or accessing hardware like a printer, are only available to the OS
If an unprivileged program tries to access the printer directly, that again trips an interrupt and the OS takes over anyway
Forcing access to hardware via the OS also provides protection and management for other system resources, like access to files or the network
In kernel mode, everything is possible
In user mode, only “safe” things are possible
18. History
Preemption and protection appeared in OSs for large mainframe computers and Unix for minicomputers in the late 1960s
When microcomputers (IBM PC) arrived in the early 1980s much of OS knowledge was thrown away and DOS (Disk Operating System) was non-preemptive, single process and no protection
This was because the earliest PC hardware did not support such things (no rings)
19. History
Support was rapidly added in later PC hardware, but DOS and, later, Windows 3.1 took no advantage of it: the lack of protection meaning a single bad program could mess up the OS and crash the entire computer
Windows NT was the first true OS from Microsoft (mid 1990s) for PCs, possibly as much as a decade after other OSs (such as Unix derivatives) were providing preemption and protection on the same hardware
Incidentally, Microsoft’s need for backwards compatability with these early systems is a major reason why they have so many problems with security
20. History
Back to memory protection: this must stop a program from writing and/or reading the memory used by another program or by the OS
The OS must be allowed to read and write any part of memory
Again, there must be hardware support to do this to make it fast
There is a table of flags in a special piece of hardware: the  memory management unit (MMU). These flags say whether the  currently running (user mode) program can read or write a given area of memory
21. History
[image: Pics/mmu.svg]
One bit to say if an area is readable; another to say if it is writable by the current program
It is often useful to separate ability to read from ability to write
22. History
Setting these flags in the MMU is a privileged operation, of course
And if an unprivileged program tries to read or write to an area of memory for which it does not have the required permission (say some other program’s or the OS’s memory) the MMU raises an interrupt and the OS takes control again
It would not be feasible to have control like this on a byte-by-byte level, so memory is divided into blocks called pages
A page is just a contiguous area of memory: 4096 bytes is popular on modern machines, though current hardware can support 4MB pages
23. History
A page is marked as read/writable as a whole: this makes this technique practical
Exercise How many flags (bits) are needed to cover 2GB? How many bytes of flags does that correspond to?
Note that there is a set of flags for each program, and are part of the program’s state that must be saved and restored when that program is re-scheduled
There is usually also an executable flag: can you execute code from this memory address?
24. History
Every read or write to memory is checked by the MMU before it is allowed: this means the hardware that does this check has to be very fast
We shall not be going into this in depth here, because in modern machines this is enhanced by the notion of virtual memory
This we shall cover later, but it builds on the ideas above and provides a much more flexible method of protection
25. History
But for now: the OS sets the MMU flags to say which pages of memory are accessible for the current program
And every memory access is checked
An interrupt is raised if the program tries to read or write memory that is not allocated to it
26. History
So what is the current state of OSs with regard to preemption and memory protection?
In current large OSs we have:
· Windows. Preemptive multitasking from Windows NT (1996) onwards. Previously (Windows 95 etc.) was little more than a monitor with a pretty interface on top
· Linux. A Unix re-implementation. Preemptive multitasking from inception (1991). (Recall that Unix had preemption from early 1970s)
· MacOS. MacOS X is a Unix derivative (BSD), from 1999 onwards. Earlier systems (MacOS 9 and earlier) were completely different, with no preemption, only cooperative
27. History
· Solaris. A Unix derivative (System V). Preemptive multitasking from inception (1992), an extensive rewrite of the earlier SunOS (1983), another Unix variant (BSD)
· OS/2. Initially from Microsoft and IBM (1997), then just IBM as Microsoft went off to do its own thing. Intended to be the followup to DOS. Multitasking when the hardware could support it: OS/2 2.0 (1992) could run multiple copies of DOS/Windows simultaneously. Previously used a lot in bank ATMs (until IBM ended support in 2006). OS/2 3.0 became Windows NT
28. History
And thousands of others: but the major players in the PC market are either derived from Windows NT, or from Unix
In contrast, in the embedded market are things are much more mixed, with both preemptive and cooperative OSs, as required by the application
All PC-level OSs have MMU protection (and more); while embedded systems have it if required, otherwise not (so not to have the cost of the MMU hardware)
rId40.svg
 
 

 

 

 

 
 
	 


 

 

 
 
	 


 

 

 
 
	 


 

 

 
 
	 


 

 

 

 CPU

 address

 MMU

 interrupt

 memory bus

 
 memory

 address




rId43.png




