
1. (a) Consider the following system of linear equations:

X + 2Y − 3Z = 1

2X + Y + Z = 2

−2X + 2Z = 3.

Rewrite this system in the matrix-vector form A (X,Y, Z)T = b, and decide whether
matrix A is invertible. [5]

Solution.  1 2 −3
2 1 1
−2 0 2

 X
Y
Z

 =

 1
2
3

 .

The direct computation gives detA = −16, hence A is invertible.

(b) Solve the system of linear equations in (a) by

(i) inverting its matrix A; [5]

Solution. First compute adjugate matrix:

A∗ =

 2 −4 5
−6 −4 −7
2 −4 −3

 .

Dividing elements of A∗ by detA = −16 we obtain the inverse matrix:

A−1 =

 −2/16 4/16 −5/16
6/16 4/16 7/16
−2/16 4/16 3/16

 .

Finally, multiplying A−1 by (1, 2, 3)T , we obtain the solution vector
(−9/16, 35/16, 15/16).

(ii) using Cramer’s rule; [5]

Solution. By direct computation, we get detAX = 9, detAY = −35,
and detAZ = −15. Dividing by detA = −16, we obtain solutions: X =
−9/16, Y = 35/16, Z = 15/16.

(iii) using Gaussian elimination. [5]
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Solution. Taking the extended matrix to row echelon form: 1 2 −3 1
2 1 1 2
−2 0 2 3

 ⇒

 1 2 −3 1
2 1 1 2
0 4 −4 5

 ⇒

 1 2 −3 1
0 3 7 0
0 −4 −4 5

 ⇒

 1 2 −3 1
0 −3 7 0
0 0 16/3 5


From the last row we get Z = 15/16. Using this, from the second row we get
Y = 35/16. Finally, knowing Y and Z, from the first row we get X = −9/16.
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2. (a) Each of the following questions asks whether or not there exists a pair of straight
lines with a certain property. If so, give an example, defining each line by a system
of two linear equations. If not, prove that no such lines exist.

(i) Do there exist two distinct straight lines ℓ and m in R3 for which there is no
plane in R3 that contains both?

(ii) Do there exist two distinct straight lines ℓ and m in R3 for which there is
exactly one plane in R3 that contains both?

(iii) Do there exist two distinct straight lines ℓ and m in R3 for which there are
infinitely many distinct planes in R3 that contain both?

[3]

Solution.

(i) Yes. Example: ℓ is defined by y = 0, z = 0 while m is defined by x = 0, z = 1.
There is a unique plane containing ℓ and the point x = 0, y = 0, z = 1 on m.
This plane does not contain the whole m.

(ii) Yes. Example: ℓ is defined by y = 0, z = 0 while m is defined by x = 0, z = 0.
The plane P containing ℓ and m is defined by the equation z = 0. Any plane Q
containing ℓ and m and different from P , would intersect P by a single straight
line, moreover P ∩Q = ℓ and P ∩Q = m, which is a contradiction.

(iii) No. The proof in (ii) demonstrates that there can’t be even two such planes.

(b) Consider the following system of linear equations.

2x1 + x2 − 2x3 + 3x4 = 1

−x1 − x2 + 2x3 − 3x4 = 2

x3 − x4 = 3.

(i) Using Gaussian elimination, decide whether the system has at least one solution.
If it does, represent the general solution as an affine map from one vector space
to another, in matrix/vector form. Using the map find one specific solution of
the system. Show your working. [5]
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Solution. Reduce the matrix of the system of equations to row echelon form: 2 1 −2 3 1
−1 −1 2 −3 2
0 0 1 −1 3

 ⇒

 2 1 −2 3 1
0 −1/2 1 −3/2 5/2
0 0 1 −1 3

 .

Since there are no rows consisting of all zeroes except the rightmost non-zero
element, the system of equations does have a solution. The original system of
equations has the same set of solutions as

2x1 + x2 − 2x3 + 3x4 = 1

−1

2
x2 + x3 −

3

2
x4 =

5

2
x3 − x4 = 3.

In the last equation, expressing x4 via x3, we get x4 = x3 − 3. Substituting the
latter expression into the second equation, we get x3 = 4−x2. Finally, from the
first equation, x1 = 3. Collecting these results together, we get:

x1 = 3, x3 = 4− x2, x4 = 1− x2.

It follows that the general solution can be represented as the following affine
map:  x1

x3
x4

 =

 0
−1
−1

(
x2

)
+

 3
4
1

 .

(ii) Is the affine map that you have constructed surjective? Is it injective? Justify
your answers. [5]

Solution. The map has the domain R1 (equipped with coordinate x2) and the
range R3 (equipped with coordinates x1, x3, x4). It is not surjective since there
are vectors (points) in R3 without pre-images in R1, for example (0, 0, 0). This
map is injective since values of x3 are different for different values of x2.

(c) Find all eigenvectors of the matrix

A =

(
1 3
3 1

)
.

Solution. The characteristic polynomial of A is

det

(
1− λ 3
3 1− λ

)
= (1− λ)2 − 9 = (λ+ 2)(λ− 4).

It follows that there are two eigenvalues, λ = −2 and λ = 4.
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Consider λ = −2. Then eigenvectors (x, y) are non-zero solutions of(
3 3
3 3

)(
x
y

)
=

(
0
0

)
,

i.e., vectors of the kind (a,−a) for all non-zero real numbers a.

Similar consideration of λ = 4 gives us eigenvectors of the kind (a, a) for all non-zero
real numbers a. [4]

(d) Give an example of a (2× 2)-matrix having no eigenvalues among real numbers.

Solution. One has to construct a matrix such that its characteristic polynomial
has no real zeroes. For example, (

0 1
−1 0

)
is such a matrix because its characteristic polynomial is λ2 + 1. [3]
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3. (a) (i) Describe the set A ⊂ R of all points at which the function f(x) = |x − 1| is
continuous. [3]

Solution Function f(x) is continuous at every point x ∈ R, thus A = R.

(ii) Describe the set B ⊂ R of all points at which the function f(x) = |x − 1| is
differentiable. [3]

Solution Function f(x) is not differentiable only at x = 1, thus B = R\{1}.
(b) Give an example of a function f : R → R which is differentiable at x0 = 0 but not

doubly differentiable at x0 = 0. [3]

Solution.

f(x) =

{
−x2 if x ≤ 0

x2 if x > 0
.

(c) (i) Describe the necessary and sufficient condition on k under which the geometric
series

∞∑
n=0

kn,

where k > 0 and k ̸= 1, converges. Prove that this condition is necessary and
sufficient. [4]

Solution. The series converges if k < 1 and diverges otherwise. Proof is
bookwork.

(ii) Describe (without proof) the necessary and sufficient condition on k under
which the series

∞∑
n=1

1

nk
,

where k > 0, converges. [3]

Solution. Bookwork: the series converges if k > 1 and diverges otherwise.

(iii) Write down the first four terms of the Taylor series for loge(x) at x0 = 1. [4]

Solution.

(x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 + · · ·
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