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Tarski (1931, 1951):

Elementary algebra and geometry is decidable.
More generally, there is an algorithm for quan-
tifier elimination in the first order theory of the
reals.

Boolean formula F(x1,...,Xy) with atoms of
the kind f > 0, where f € R[xg,x1,...,Xu],

X; = (51,1 Tin,).

P(xq) := Q1x1Q2%x2 - Quxv F(x0,X1,...,Xv),
where Q; € {3,V}, Q; # Q;41.

Theorem 1. There is a quantifier-free formula
W (xg) such that W(xg) & P(xg) over R,
i.e., {xo € R"0| W(xq)} = {xg € R"0| d(xq)}.

Theorem remains true if R is replaced by any
real closed field R, e.qg., real algebraic numbers,
Puiseux series over R in an infinitesimal.



Theorem 2. If atoms f € Z[xg,X1,...,Xyv], then
there is an algorithm which eliminates quanti-
fiers from ®(xqg), i.e., for a given ®(xg) pro-
duces W(xq).

Corollary 3. The first order theory of the reals
is decidable, i.e., there is an algorithm which
for a given closed formula

Q1x1Q2x2 - QuxyF(xq1,...,%Xv)

decides whether it’s true or false.



Integer coefficients are mentioned here to be
able to handle the problem on a Turing ma-
chine. If we are less picky about the model
of computation, for example allow exact arith-
metic operations and comparisons in a real
closed field R, then Theorem 77 and Corol-
lary 7?7 are also true for formulae over R. In
what follows we will use exactly this approach.
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Let R be a real closed field.

Definition 4. A set X C R" is called
semialgebraic if X is representable in a form
X = {x € R"|F(x)}, where F(x) is a quantifier-
free formula.

Corollary 5. Let X = {xg € R™0|P(xq)}, where

P(x0) '= Q1x1Q2X2 - Quxp F (X0, X1,...,%Xv).
Then X is semialgebraic.



Examples:

e Feasibility of a system of polynomial equa-
tions and inequalities
(= is a semialgebraic set empty?)

e Representation of the closure (or interior,
or singular locus,
or tubular neighbourhood, etc.) of a semi-
algebraic set by a Boolean combination of
polynomial inequalities

e Polynomial optimization: find the set of
points of local minima of a polynomial
function on a semialgebraic set.



There is no need to explain to logicians the
usefulness of quantifier elimination. Instead I
list a few straightforward examples of how it
can be used in “ordinary” mathematics.

Semialgebraic set in all the examples initially
can be naturally represented by prenex formu-
lae with quantifiers (sometimes involving /6
language.
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Complexity:

Tarski's quantifier elimination algorithm:
“non-elementary” (can't be bounded from
above by any tower of exponentials of a finite
height).

Problem: construct an efficient algorithm

Possible approach: cylindrical (algebraic) cell
decomposition (mid-70s, Wiithrich, Collins)



Definition 6. Cylindrical cell is defined by in-
duction as follows.

1. Cylindrical O-cell in R™ is an isolated point.
Cyvlindrical 1-cell in R is an open interval
(a,b) C R.

2. For n > 2 and 0 < k£ < n a cylindrical
(k + 1)-cell B in R"™ is either a graph of
a continuous bounded function f: C — R,
where C'is a cylindrical a cylindrical (k+1)-
cell in R"~1, or else a set of the form

(@1, &n) € R"| (21, @n 1) € C

and f(x]_, .. ,xn—l) < Tp < g(x17 S 7xn—1)}7

where C is a cylindrical k-cell in R 1, and
f,g: C — R are continuous bounded func-
tions such that

flz1,...,2p—1) <g(x1,...,25-1)
for all points (z1,...,z,_1) € C.



Cyvlindrical cell decomposition is a very use-
ful tool when we study o-minimal structures.
Since T'll need this concept also in my other
lecture, let me give a definition. We first de-
fine a cylindrical cell. One can notice that any
cylindrical cell is homeomorphic to an open ball
of the matching dimension (semialgebraically
homeomorphic in the case of an arbitrary R).

We will give the definition only for the bounded
case.
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Definition 7. Cylindrical cell decomposition D
of a subset A C R"™ is defined by induction as
follows.

1. If n =1, then D is a finite family of pair-
wise disjoint cylindrical cells (i.e., isolated
points and intervals) whose union is A.

2. If n > 2, then D is a finite family of pair-
wise disjoint cylindrical cells in R™ whose
union is A and there is a cylindrical cell de-
composition D’ of n(A) such that n(C) is
its cell for each C € D, where 7 : R" —
R" 1 is the projection map onto the co-
ordinate subspace of z¢,...,x,_1. We say
that D’ is induced by D.

Definition 8. Let BC AC R"and D bea CCD
of A. Then D is compatible with B if for any
C € D we have either C C Bor CnNnB =0 (i.e.,
some subset D' C D is a CCD of B).



Example:



Theorem 9. (Collins, Wiithrich). If X C R" is
a semialgebraic set, then there is an algorithm
for computing CCD of R™ compatible with X.
Moreover, CCD is semialgebraic, i.e., each cell
is described by a system of polynomial equa-
tions and inequalities.

Technical tools: resultants and sub-resultants.

Compare with classical elimination theory
(van-der-Waerden, Modern Algebra) and
Chevalley's Theorem.

Corollary 10. There is an algorithm for quan-
tifier elimination.
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The corollary is almost obvious from the defini-
tion of the CCD. One reasons by induction on
quantifiers starting from ¢, and moving out-
ward. On each step we use the relation (de-
scribed in the definition) between the decom-
position of the space of all current variables
and the decomposition of the subspace of cur-
rent free variables.
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Complexity:

Let ®(xg) involve s atoms of the kind f > O,
where f € R[xq,...,xv], n:=ng+---+ny, and
deg(f) < d.

Then the complexity of constructing CCD and
the corresponding quantifier elimination has an
upper bound

(sd)O )",

Similar upper bound on the number of cells,
degrees and quantities of polynomials describ-
ing CCD and quantifier-free formula equivalent
to &P.

If coefficients of polynomials f are integer of
bit-sizes less than M, then the (Turing ma-
chine) complexity does not exceed

MO (5q)0 V)",

11



Davenport & Heintz (1988) (similar results by
Weispfenning (1988)) found a (parametric)
example of ® of degrees < 4, with two free
variables and

ny<2,...,npy <2

(i.e., each quantifier is responsible for at most
two variables) defining in R? a semialgebraic
set consisting of

n

22

isolated points.

= Any CCD for & can’'t contain lesser num-
ber of cells.

= Lower complexity bound for any
CCD-based algorithm is doubly exponential.

Fisher & Rabin (1974): lower bound for deci-
sion methods is exponential in the number of
quantifier alternations.
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Simplest case:

Jz € R(f(z) = 0),
where f € R[zx], deg(f) < d.

Sturm’s Theorem (1835):

Euclidean algorithm for the division of f by its
derivative f’.

Let g1 = f,g90o = f', and g3,...,9; be the se-
quence of the negatives of the remainders in
the Euclidean algorithm. For any x € R let
V(xz) be the number of sign changes in

gl(x)agQ(x)a J 7gt(x)'

Theorem 11. The number of distinct real
roots of f in [a,b] C R is

S(f, 1) ==V (a) = V(b).

Note:
sign(f(oo)) =sign(leading coefficient ag of f)
sign(f(—o00)) =sign(agz® at —1).
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Note that over an algebraically closed field the
answer is always ‘“Yes".

Sturm’s theorem provides an algorithm to de-
cide the existential formula over any real closed
field.

Now we want to generalize this algorithm to be
able to handle systems of many equations and
inequalities (in one variable, for time being).
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Ben-Or/Kozen/Reif algorithm (1986):

Definition 12. Let fq1,..., fi € R[x],

deg(f;) < d. Consistent sign assignment is a
string o = (o01,...,0,) Where o, € {>,<,=},
such that the system

f1010, ..., froi0
has a solution in R.

Input:

fi,--5 fi, € Rlz).

Output:

The list of all consistent sign assignments.

Prepare the input:

Make all f; squarefree and relatively prime.
Then sets of roots of polynomials f; are
disjoint, in particular any consistent sign

assignment has at most one —=. Moreover, we
can add a new polynomial f so that all con-
sistent assignments for f1,..., fi cCan be recon-

structed from all consistent assignments of <
and > for fq,..., fr at roots of f.
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Case k=0: f=0 Sturm’s Theorem.

Case k=1. f f1
C1:={z| f=0Af1 >0}

C1:={z| f=0Af1 <0}

Obviously, the total number of roots of f is

S(f, ) = |C1] + |C1l.
(Here and in the sequel S corresponds to the
interval [—oo0, 00].)

Lemma 13. S(f, f'f1) =|C1| - |Cy].

Sturm + Lemma =

(1 1><|g|>:<3<f,f’>>
1 —1) \|Cq] S(f, ' f1)
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Case k=2: f, f1, />
Co:={z|f =0A f >0}

Co:={z[f =0A f2 <0}

1 1 1 1 C1NCo
1 -1 1 -1 C1NCo
1 1 -1 -1 CiNCo
1 -1 -1 1 C1NCh
S(f, f)
S(f, f'f1)
S(f, f'f2)

S(f, f' f1f2)



In case k we get a matrix A, which is a tensor
product of k£ copies of A1 and is non-singular.
Its unique solution describes all consistent sign
assignments for f = 0O, f1,..., fr. Solving the
system by any standard method (e.g., Gaus-
sian elimination), we list all consistent assign-
ments. However this naive approach leads to
the complexity exponential in k.

Polynomial-time algorithm:

deg(f;) < d = the number of all roots in all f;
is O(kd) = the number of all consistent sign
assignments is O(kd).

“Divide-and-conquer’ then leads to complexity
polynomial in kd.
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PLAN.:

X = {xg € R™| ®(xqg)}, where
P(x0) = Q1x1Q2%X2 - Quxv F(X0,X1,.-.,Xv).

1. The algorithm eliminates quantifiers
by induction starting from (), outwards.

2. It's sufficient to consider just the case of
P(y) := I F(x,y),
where x € R", y € R™.

3. We will first construct an algorithm for the
decidability problem

IxF(x)

and then “parameterize” the algorithm
with vector y.

(3) = (2)— (1)

18



IxF(x), x € R", F(x) is a Boolean formula
with s atoms of the kind f %0, f € R[x],
* € {=,>,<,>,<}, deg(f) <d.

In case n = 1: Ben-Or/Kozen/Reif applied
to the set of all atomic polynomials. The list of
all consistent sign assignments allows to decide
whether JzF'(x) is true.

Arbitrary n: Similar strategy: list all
consistent sign assignments.

How: Find a finite set A C R"™ such that any
consistent assignment defines a system of
equations and strict inequalities having a solu-
tion in this set. Knowing A it's easy to find
the list of consistent assignments.
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Points from A are (isolated) solutions of sys-
tems of polynomials equations based on atoms
of F(x).

Solving systems of equations:

Let a system of polynomial equations have at
most finite number of solutions over algebraic
closure R.

Possible approaches:

e Grobner bases

e Effective Hilbert's Nullstellensatz

e u-resultants

We will use u-resultants.
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Homogeneous polynomials:
A polynomial in n variables is an expression:

DD T A -2 R

(71,-.-40n)
A polynomial is homogeneous or a form if
i1+ ---+ iy, =const for all (iq,...,in) Wwith
Examples:

Homogeneous: z2 + zy
Non-homogeneous: z2 —1

O is a root of any non-constant homogeneous

polynomial.

If x = (z1,...,2n) € R™ is a root of a homo-
geneous polynomial h, then for any a € R the

point ax = (ax1,...,axn) is also a root of h.

= If x # 0, then there is a straight line of
roots of h passing through 0 and x. We can

say that the line itself is a root of h.
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Projective space:

The space of all straight lines through the ori-
gin is called (n — 1)-dimensional projective
space P""1(R).

An element of PP~1(R), which is a line passing
through 0 and x = (x1,...,2zn) 7= 0, is denoted

by (ailixgi---Z:Cn).

Any polynomial h € R[x] can be homogenized:
Let deg(h) = d. Introduce a new variable zg
and a homogeneous polynomial

hom(h) := a?gh(:vl/wo,...,acn/ato).

If (x1,...,zn) iS a root of A, then
(1:xq1:---:xn) is a root of hom(h). If
(yo:y1:-- :yn) € PP"1(R) is a root of hom(h)

and yg # 0, then (y1/vo0,--.,yn/yo) is @ root of
h

Of course, hom(h) can have a root of the form
(O:2z1:---:2zp) which does not correspond in
this sense to any root of h, it's called a *“root
at infinity” .
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Similar relation is true for systems of polyno-
mial equations: homogenized system has not
less solutions than the original system.

Example:

original system: x1—xo=x1—2>o+1=0
homogenization: x7 —xo =x1 —xo + xg = 0.
Original is inconsistent, the homogenized has
a unique solution (0:1:1) (at infinity).
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u-resultant:

Consider a system of n homogeneous equa-
tions in n 4+ 1 variables: hy =-.- = h, = 0.

The system is always consistent in P*(R).
It can have either finite or infinite number of
solutions.

Introduce new variables ug,uq, ..., un.

Proposition 14. There is a homogeneous
polynomial Ry, . p,. € Rlug,...,un], called

u-resultant, such that Ry,  p, #Z 0 iff the

system has finite nhumber of solutions.

If Ry, h, 0, then

7 || (X Dug 4 -+ xun),
1<:<lr
where (X() ; ; X%i)), 1 <1¢<r are all solu-

tions in ]P’”(R) of the system.
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Assume that in IxF(x) formula F(x) is just a
system of inequalities

f120A---ANfs >0,
and that {x| F(x)} C R"™ is bounded.

Let deg(f;) < d for all 1 < 4 < s and D be
minimal even integer > sd + 1.

Introduce a new variable € and consider

g(e) = | (fi+€)—68+1 Z :c?

1<i< 1<j<n

Lemma 15. If the system f1 > 0A---N fs >0
IS consistent, then there is a solution which is
a limit of a solution of

0g(e) _ . _99(e) _ 4

as e — 0.
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We consider just the case of a system of in-
equalities to simplify the explanations. The
case of an arbitrary formula is slightly more
geometrically complicated, but very similar in
spirit.

If {x| F(x)} is not bounded, then it can be

reduced to the bounded cased by intersecting
this set with a ball of sufficiently large radius.
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Picture:
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Lemma 16. For all sufficiently small € > 0O, if

J120AN---Nfs20

is consistent, then the homogenization of

99(e) _ . _99(e) _

has a finite number of solutions.

Proof. Grobner basis or u-resultant techniques.

]

Denote the homogenization by

G1(e) =--- = Gn(e) = 0.

By Proposition, every solution of this system
IS a coefficient vector in a divisor of the
u-resultant Rq (o) . (o)
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The lemma of course means that the system it-
self also has a finite number of solutions, since
the homogenization always has more solutions.
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Represent Rg (o). a,(e) IN the form
RG1(e),...Gn(e) = Bme™ + > Rje’,
1>m
where m is the lowerst degree w.r.t. e.

Lemma 17.

H (77 ug + - +77( >Un>,

1<:<r
where (77( ) ---,"7n)) is the limit of
(XO ,...,Xn)) as e — 0.

Corollary 18.If f{ > 0A---ANfs>0is
consistent, then its solution is

€ R O ObY

where 77(7“) #= 0 and (77 ug+ -+ n(z)un)
is a divisor of Ry,.



If we were able to factorize R,, over R, then
the algorithm for consistency of
f1>0A---Afs >0 could be roughly as follows:

e Construct the u-resultant Rgl(g),._ﬂn(g);

e Find the lowest term R,, w.r.t. € in

BGy(e),..,Gn(e)

° Faqtorize Rm finding the limits
(S, ,n$?) (when & — 0);

e Check whether

@ /0P, 0§
satisfies f1 > 0A--- A fs > 0.

If yes, then this system is is consistent, else
it's inconsistent.
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Unfortunately, we are unable to factorize a

polynomial in general case. Even in special
cases, when effective multivariate factorization
algorithms are known, they are very involved.

Therefore, our scheme will be different.
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Consider in the affine space R*"t! the hyper-
surface

{(ug,...,un) € R"T Ry = 0}.

Since R,, factors into linear forms, the hy-
persurface is a union of hyperplanes passing
through O.

n(()i)uo—l—- : -—I—nq(f)un = 0O is the equation defining
hyperplane number ¢, 1 <1 < r;

= vector (né’),...,ng‘)) is orthogonal to the
hyperplane i; _
= vector (nc()z), .. ,m(f)) is collinear to the gra-

dient of R,, at a non-singular point x of the
hyperplane 1, i.e., to

(%(x), L %i:(x))

To find a finite set of non-singular points on
all hyperplanes, intersect {R,, = 0} with a
“generic” straight line in R™*1 defined with
coefficients from R (actually, from Z).
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Algorithm for deciding 3Ix F(x):

e Write the homogeneous system
G1(e) =--- = Gn(e) = 0.

e Construct u-resultant RGl(&.),”_,Gn(g)
(how — later).

e Find the lowest term R,, w.r.t. € in
Ra,(e),...Gnle):

e Find a generic straight line in the paramet-
ric form at 4+ 3, where o, 3 € R*t1, ¢t is a
single variable. The roots of the univariate
equation Ry, (at+3) = 0 correspond to the
points of intersection of the line with hy-
perplanes. If f1 > 0A---A fs > 0 is consis-
tent, then for a root ¢ of Rm(at+3) =0
the following point is its solution:

(at' +1)).

31



e Denoting

J
dRm/du (at +6),

yi(at + B) =
we get:

The system f1 > 0OA---Afs > 0 is consistent
iff there exists ¢ € R such that

Rm(at’' 4+ 3) = 0 and

filyr(at' +8) > 0N Ayp(at' +8)) >0
for all 1 <1 <s.

e Check consistency of the latter system of
univariate polynomials inequalities using
Ben-Or/Kozen/Reif.
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Technical details we left out:

e Computing u-resultant (polynomial of
degree (sd)O(m).

e Finding generic straight line in R T1.

° Case of vanish.ing gradient <«
ng')ug—lm ' '—|-nf,(7,7')un occurs in Ry, with power
>1 &
root ¢’ of Rym(at + B) = 0 is multiple.

e Case of an arbitrary Boolean formula as
F(x).

Complexity:

Straightforward calculation: (sd)©(m).
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Accomplished item (3) of the PLAN T1:
deciding IxF'(x).

Now, item (2): quantifier elimination in
Ix F'(x,y).

Main idea:

Consider variables y as parameters and try to
execute the decidability algorithm for a para-
metric formula (i.e., with variable coefficients).

Decidability algorithm uses only 4, x and com-
parisons over elements of R.

Arithmetic can be easily performed parametri-
cally, while comparisons require branching.

The parametric algorithm is represented by
algebraic decision tree.
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Picture:
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Input of the tree is y. Each vertex of the tree
IS associated with a polynomial in y, which is
the composition of arithmetic operations per-
formed along the branch leading from the root
to this vertex.

Upon a specialization of input y, the polyno-
mial at the root is evaluated, and the value is
compared to zero. Depending on the result of
comparison, one of the three branches is cho-
sen, thereby determining the next vertex and
the polynomial evaluation to be made, and so
on until a leaf is reached.

Each leaf is assigned the value “True” or
“False’” . All specializations of y, arriving at
a leaf marked *“True”, correspond to closed
formulae that are true. Similar with “False”.
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An elimination algorithm:

e Use the decision algorithm parametrically
to obtain a decision tree with the variable
input y.

e Determine all branches from the root to
leaves marked True.

e Take conjunction of the inequalities along
each such branch:

/\ hZ(Y)O-Zoa

rebranch
where o; € {<, >, =}.

X F(x,y) e A hi(y)o;0

branches 1€branch
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Difficulty:
Too many branches in the tree:

Height = complexity of decidability = (sd)©(")
= 36D?"™ pranches (leaves)

But:

Most branches are not followed by any spec-
ification of y, i.e., most leaves correspond to
Boolean formulae defining 0.

Because:
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Lemma 19. Let in the finite set g1,...,9, €
Rlx1,...,zn] all degrees deg(g;) < D. Then
the number of all consistent sign assignments
for this set is less than (kD)O().

Carefully examining the decidability algorithm
we see that the number of distinct polynomials
h; in the tree is essentially the same as in one
branch, i.e., (sd)®(™). From the complexity es-
timate we know that their degrees are (sd)©(™).
Then, by Lemma, the number of distinct # 0
sets associated with leaves is (sd)0("?).

=
Complexity of 4 elimination:

(sd)O(7")

Y elimination:
VXF(x) < -3Ix—F(x)
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General case (item (1) of the PLAN 1):

Q1x1Q2Xo - - Quxu F(x0,X1,...,Xv),

where x;, € R™, n:=ng+---+ ny.

Complexity:
O(v
Compare with CCD algorithm:

(sd)@ )"

Using finer technical tools one can construct
quantifier elimination algorithm having com-
plexity

(sd)HOSiSV O(n;)
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