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Idea of coordinates:

Descartes and Fermat
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X − A = Y − B = 0
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(
X 2+Y 2−25

)(
|X−2|+|X+2|−4+(Y+3)2)(X 2+|Y−1|+|Y+2|−3

)(
(X + 3)2 +

(Y − 3/2)2

2
− 1

)(
(X − 3)2 + (Y − 2)2 − 1

)
= 0.
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Formulae define only “tame” geometric objects, for example
they can’t define a fractal:
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Fundamental Principle:

A geometric object described by a “simple”
formula should have a “simple shape”.
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Complexity of a formula

Formulae built from multivariate polynomials.

Symbols X1, X2, . . . , Xn.

A polynomial in variables X1, . . . , Xn is any expression one can
construct from variables and numbers using only additions,
subtractions and multiplications.

Examples:
X 2 + 2Y 2 − 7XY + X − 25
adX d + ad−1X d−1 + · · ·+ a1X + a0

Not a polynomial:(
X 2+Y 2−25

)(
|X−2|+|X+2|−4+(Y+3)2)(X 2+|Y−1|+|Y+2|−3

)(
(X + 3)2 +

(Y − 3/2)2

2
− 1

)(
(X − 3)2 + (Y − 2)2 − 1

)
= 0.
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Complexity measure of a polynomial?

Degree.
Every polynomial, e.g.,

X 3Y 5Z 11 − 2X 2Z 8 + 3Y 7 + 100,

is the sum of terms with non-zero coefficients, called
monomials.

The degree of a polynomial is the maximal number of
multiplications needed to compute a monomial.

Polynomial

adX d + ad−1X d−1 + · · ·+ a1X + a0

has degree d .
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BUT:
X 100 − 1

is obviously a “simple” expression.

Number of monomials.

X 100 − 1

has complexity 2,

aX 3Y 5Z 11 − bX 2Z 8 + cY 7 + 100

has complexity 4 — small comparing to its degree.

A polynomial considered with this complexity measure is called
fewnomial.
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BUT:
(X + 1)100

is obviously a “simple” expression.
It is equal to

X 100 + 100X 99 + 4950X 98 + · · ·+ 100X + 1

(Newton’s binomial), so the number of monomials is large.

Additive complexity.
This is the minimal number of additions or subtractions needed
to compute the polynomial, using any number of multiplications.

Additive complexity of
(X + 1)100

is just 1.
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When we allow also an unlimited number of divisions, then the
additive complexity of the polynomial

X 100 + X 99 + X 98 + · · ·+ X + 1

is small since this expression is equal to

X 101 − 1
X − 1

being the sum of a geometric progression.
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Complexity of Shape

When a formula describes a finite set of points in an Euclidean
space, the complexity of this set is easy to define: it’s just the
number of points.

adX d + ad−1X d−1 + · · ·+ a1X + a0 = 0

Degree measure:
By the Fundamental Theorem of Algebra, the number of distinct
complex numbers satisfying this equation is ≤ d .

Then the number of real numbers satisfying the equation
(number of distinct points on the straight line) is also ≤ d .
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Number of monomials:
Let a univariate polynomial F have m monomials.

Descartes rule implies that the number of positive real solutions
of the equation F = 0 is less than m.

Replacing X by −X and adding 0, we see that the number of all
solutions is at most 2m + 1.
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Finite set of points in the n-dimensional space, defined by a
system of equations.

Degree measure:
Fundamental principle becomes Bezout Theorem:

Bezout

The number of real solutions of a generic system
(conjunction) of n polynomial equations of degrees
d1, d2, . . . , dn respectively, in n variables, does not
exceed the product d1d2 · · · dn.
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The Bezout bound is tight.

Bezout Theorem implies that if the formula is any system of k
polynomial equations, and maybe inequalities, and if the
number of solutions is finite, then this number does not exceed

d(2d − 1)n−1, where d = max{d1, . . . , dk}.

Number of monomials:

Recent result of 1970s due to Askold Khovanskii.
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Family insignia of Prince Khovanskii
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Khovanshchina (Mariinskii, St. Petersburg)
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Khovanskii’s Theorem
The number of real solutions with all positive
coordinates of a generic system of n polynomial
equations in n variables, having m different monomials
in all polynomials does not exceed 2m(m−1)(n + 1)m.

Estimate does not depend on degrees of polynomials.
Is not tight. Recent improvements by Bihan and Sottile.

Khovanskii proved much more than this: an upper bound on the
number of solutions for real analytic functions satisfying
triangular systems of partial differential equations with
polynomial coefficients (Pfaffian functions).

Includes iterations of exponentials, trigonometric functions in
appropriate domains. Fewnomials are a very special case.
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Additive complexity:

Exercise :) Introduce a new variable for every
addition/subtraction operation, and reduce to Khovanskii’s
Theorem.

Before Khovanskii, the existence of a good upper bound in
terms of the additive complexity was a famous open problem in
computer science.

Upper bounds in mathematics ⇔ Lower bounds in computer
science
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Over Complex Numbers

The fundamental principle does not quite work for equations
over complex numbers, for example

X 100 − 1 = 0

has exactly 100 different complex numbers as solutions:

1−1
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Another measure of the complexity of a polynomial: the volume
of its Newton polyhedron.
For example,

X 3Y 3 + 2X 2Y − XY 2 + 5X 4 − 3Y 2 + 1

For each monomial X iY j draw a point with coordinates (i , j) in
the plane.
Convex hull of all points is called Newton polyhedron.

4

2

3

3210

1
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Kushnirenko’s theorem:
The number of complex 6= 0 solutions of a generic
system of n polynomial equations in n variables,
having the same Newton polyhedron, does not exceed
the volume of this polyhedron multiplied by
n! = 1 · 2 · 3 · · · (n − 1) · n.

Example 1. X 100 − 1 = 0. Newton polyhedron is a segment
of a straight line, and its volume is its length, and n = 1.

Same result as in Fundamental Theorem of Algebra.

0 100
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Example 2. X 2 + Y 3 − 1 = X 2 − Y 3 + 2 = 0
has six complex solutions.

Exercise: prove it, and find them all!
(Hint: introduce new unknowns U = X 2 and V = Y 3.)

2

3

Area of Newton polygon is 3. Hence, number of solutions is 6.
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If polynomials have different Newton polyhedra, then in
Kushnirenko’s Theorem one should take their mixed volume.

Khovanskii found a common generalization of his theorem on
fewnomials and Kushnirenko’s Theorem.
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Higher Dimensions

by Anatolii Fomenko
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Homotopy Equivalence
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Homotopy Equivalence
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Complexity is called the sum of Betti numbers.

Poincaré and Betti
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Homology Groups

0

1

2

n
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The dimension of nth vector space Hn is called nth Betti number.

The sequence of Betti numbers is the same for homotopy
equivalent spaces, for example, it is
dim H0 = 1, dim H1 = 1, dim H2 = 0 for

and for
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Morse Theory

Marston Morse
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Rotate the surface slightly, so that the number of critical points
is finite, they all lie on different levels, and moreover the surface
has a non-zero curvature at each of these points.
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According to Morse Theory, the sum of Betti numbers does not
exceed the number of critical points.
The number of critical points can be considered as a complexity
measure of the surface.

The set of critical points coincides with the set of all solutions of
a system of equations.
(If the surface in the example is defined by the equation F = 0,
then this system is

F =
∂F
∂X1

=
∂F
∂X2

= 0.)

If the set consists of points satisfying a polynomial equation of
degree d in n variables, then the sum of Betti numbers (i.e., the
complexity) of this set is at most

d(d − 1)n−1.
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Fomenko’s vision of a smooth surface:
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Passing to general (not necessarily smooth) sets of arbitrary
dimensions defined by systems of equations is a difficult
problem, a natural extension of Hilbert’s 16th problem.

Petrovskii and Oleinik

Used by Vitushkin and Kolmogorov in their solution of analytic
version of Hilbert’s 13th problem.
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Hilbert
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Milnor and Thom
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Further generalization of Petrovskii-Oleinik-Thom-Milnor
bounds to sets defined by more general formulae than just
conjunction of equations and inequalities.

Unions, images under maps (projections), complements to
images: first order formulae with quantifiers.
From polynomials to more general functions, Pfaffian
(including fewnomials), definable on o-minimal structures.

Basu, Pollack, Roy, Zell...

Gabrielov, Vorobjov
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THE END
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