
FORMULA AND SHAPE

NICOLAI VOROBJOV

1. Introduction

This lecture is about relations between formulae and shapes. Naturally, about
shapes defined by formulae, but also about shapes of formulae.

Traditionally, since ancient times, mathematics consisted of two major parts:
arithmetic (the study of numbers) and geometry (the study of figures). As time
went on, new notions have been introduced and new subjects appeared within
mathematics. Nevertheless, the fundamental duality between a formula and a shape,
between algebraic manipulations and geometric imagination still is the heart of
mathematics.

Mathematical thinking about spacial forms always includes rigorous (formal)
reasoning. On the other hand, one can acquire intuition necessary to work with
abstract algebraic or analytic objects only through visual concepts of some kind.

Probably the most important idea, linking geometry to algebra, is Cartesian
coordinates.

The idea of René Descartes (Lat. Cartesius) and Pierre Fermat

was to associate a point in the plane with a pair of numbers, its coordinates, ac-
cording to the picture:
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Note that this point is the only one in the plane satisfying the system of equations
X − A = Y − B = 0. Generally, how can we represent a geometric object in the
computer? Or just describe it accurately to a colleague? One very precise way of
doing it would be to define the object by a formula. For example, the following
curve

is defined by the equation(
X2 + Y 2 − 25

)(
|X − 2|+ |X + 2| − 4 + (Y + 3)2

)(
X2 + |Y − 1|+ |Y + 2| − 3

)
(1.1)

(
(X + 3)2 +

(Y − 3/2)2

2
− 1

)(
(X − 3)2 + (Y − 2)2 − 1

)
= 0.

A bit later I’ll specify more precisely what I mean by a formula. Formulae in our
sense define only “tame” geometric objects, for example they can’t define a fractal:
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(these are defined by dynamical systems).
The method of coordinates allows to use the geometric intuition on the sets of

solutions of equations. The result of this approach for algebraic equations, coordi-
nates being complex numbers, is one of the central areas of modern mathematics –
algebraic geometry.

In this lecture I want to discuss the following fundamental principle connecting
algebra and topology:

A geometric object described by a “simple” formula should
have a “simple shape’.

Thus, we have to learn how to measure complexities of formulae and complexities
of geometric objects.

2. Complexity of a formula

Let us start with formulae. We will consider the ones built from multivariate
polynomials.

Let X1, X2, . . . , Xn be some distinct letters (symbols). A polynomial in variables
X1, . . . , Xn is any expression one can construct from variables and numbers using
only additions, subtractions and multiplications.

For example, X2 + 2Y 2 − 7XY + X − 25 is a polynomial in two variables, any
polynomial in one variable can be written in the form

(2.1) adX
d + ad−1X

d−1 + · · ·+ a1X + a0,

where some of coefficients ai can be equal to zero.
(When I was a student, I knew a girl, an archeologist, who said she was com-

pletely lost in maths because she could never understand what is X.)
Notice that the left-hand side of the expression (1.1) is not a polynomial since it

contains, additionally, symbols | · | of absolute value.
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What is natural to take as a complexity measure of a polynomial? Computer
Science approach will be to take the number of symbols in the expression, but
mathematically it does not lead to anything interesting.

Degree. A classical measure is the degree of a polynomial. Every polynomial, for
example

(2.2) X3Y 5Z11 − 2X2Z8 + 3Y 7 + 100,

is the sum of terms with non-zero coefficients, called monomials. The degree of a
polynomial is the maximal number of multiplications needed to compute a mono-
mial.

In one variable, a polynomial of the kind (2.1) has degree d. Clearly, d is re-
lated to the “length” of the expression, if most of the summands have non-zero
coefficients.

On the other hand,

X100 − 1

is obviously a “simple” expression. This prompts another complexity measure:

Number of monomials. Now, X100 − 1 has complexity two, and (2.2) also has
a small complexity (four) comparing to its degree.

A polynomial considered with this complexity measure is called fewnomial.
On the other hand,

(X + 1)100

is obviously a “simple” expression. It is equal to

X100 + 100X99 + 4950X98 + · · ·+ 100X + 1

(Newton’s binomial), so the number of monomials is large. This prompts yet an-
other complexity measure:

Additive complexity. This is the minimal number of additions or subtractions
needed to compute the polynomial, using any number of multiplications. Thus, the
additive complexity of

(X + 1)100

is just 1. A version of this measure is when we allow also an unlimited number of
divisions. Then the additive complexity of the polynomial

X100 +X99 +X98 + · · ·+X + 1

is small since this expression is equal to

X101 − 1
X − 1

being the sum of a geometric progression.
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3. Complexity of shape: Bezout and Khovanskii

In the case when a formula describes a finite set of points in an Euclidean space,
the complexity of this set is easy to define: it’s just the number of these points. Let
us first consider the set defined by a single polynomial equation in one variable:

adX
d + ad−1X

d−1 + · · ·+ a1X + a0 = 0.

In terms of the degree measure, by the Fundamental Theorem of Algebra, the
number of distinct complex numbers satisfying this equation is at most d. It follows
that the number of real numbers satisfying the equation (number of distinct points
on the straight line) is also at most d.

Let the polynomial F have m monomials (of course, m ≤ d+ 1). Descartes rule
implies that the number of positive real solutions of the equation F = 0 is less than
m (Descartes rule itself is slightly more complicated). Replacing X by −X and
adding 0, we see that the number of all solutions is at most 2m+ 1.

Now let us consider a finite set of points in the n-dimensional space, defined
by a system of equations. If we measure the complexity of a formula in terms of
the degree, then the fundamental principle above can be made quantitative due to
Bezout Theorem.

It implies that
the number of real solutions of a generic system (conjunction) of
n polynomial equations of degrees d1, d2, . . . , dn respectively, in n
variables, does not exceed the product

D = d1d2 · · · dn.

It is easy to find an example of such system with the number of real solutions
exactly D, so the bound is tight. It is not difficult to deduce from Bezout that if
the formula is now any system of k polynomial equations, and maybe inequalities,
and if the number of solutions is finite, then this number does not exceed

d(2d− 1)n−1, where d = max{d1, . . . , dk}.
Unlike the degree complexity measure, the analogy of the Bezout Theorem for

fewnomials is a relatively recent result (1970s) and is due to Askold Khovanskii.
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An unusual thing about Khovanskii is that he is a prince (knyaz’) of the most
ancient Russian noble family. More ancient and “noble” that Romanovy, the tzar
family that ruled Russia for more than 300 years before 1917 revolution, and with
whom Khovanskiis had fallen out during the Moscow Uprising in the second half
of XVII century. These events are known in history as Khovanshchina, and are
behind the famous opera of the same name by Modest Mussorgskii.

You would recall that the opera ends up with mass suicide of prince Khovan-
skii’s followers. Askold’s colleagues sometimes affectionately refer to the theory of
fewnomials as to Khovanshchina.

Khovanskii’s Theorem:

the number of real solutions with all positive coordinates of a generic
system of n polynomial equations in n variables, having m different
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monomials in all polynomials does not exceed

2m(m−1)(n+ 1)m.

In particular, this estimate does not depend on degrees of polynomials. Unlike the
bound from Bezout Theorem, it is not sharp. Some improvements were achieved
recently by Bihan and Sottile.

Actually, Khovanskii proved much more than this: an upper bound on the num-
ber of solutions for real analytic functions satisfying triangular systems of partial
differential equations with polynomial coefficients (Pfaffian functions). This class of
functions includes iterations of exponentials, trigonometric functions in appropriate
domains. Fewnomials are a very special case.

An upper bound in terms of the additive complexity can be easily obtained by
introducing a new variable for every addition operation and thus reducing the
problem to Khovanskii’s Theorem. I leave it as an exercise :)

Before Khovanskii, the existence of a good upper bound in terms of the additive
complexity was a famous open problem in computer science. That is because upper
bounds in mathematics become lower bounds in computer science: if the number of
solutions is bounded from above via the number of additions needed to compute a
polynomial, then this number of additions is bounded from below by the number of
solutions. If there is many solutions then the task of computing the polynomial is
hard. Theoretical computer science is very much concerned by proving that various
things are hard to compute.

4. Over complex numbers

You’ve probably noticed that the fundamental principle does not quite work for
equations over complex numbers, for example

X100 − 1 = 0

has exactly 100 different complex numbers as solutions:

1−1
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Over complex numbers we need to use another measure of the complexity of a
polynomial: the volume of its Newton polyhedron. What is that?

Consider for example the polynomial

X3Y 3 + 2X2Y −XY 2 + 5X4 − 3Y 2 + 1,

and for each monomial XiY j draw a point with coordinates (i, j) in the plane (red
points in the picture):

4

2

3

3210

1

Then take the convex hull of this set of points, i.e., the smallest convex set
containing all these points. (You can imagine that red points are pegs sticking out
of the screen, stretch a rubber band around the pegs, and the let it go. The band
will become the boundary of the convex hull.) This convex hull is called Newton
polyhedron.

Kushnirenko’s theorem:
the number of complex 6= 0 solutions of a generic system of n poly-
nomial equations in n variables, having the same Newton polyhe-
dron, does not exceed the volume of this polyhedron multiplied by
n! = 1 · 2 · 3 · · · (n− 1) · n.

Example 1. A single equation X100 − 1 = 0. Newton polyhedron in this case
is just a segment of a straight line, and its volume is its length, and n = 1. We get
the same result as in Fundamental Theorem of Algebra.
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Example 2. A system of equations

X2 + Y 3 − 1 = X2 − Y 3 + 2 = 0

obviously has six complex solutions. Exercise: prove it, and find them all! (Hint:
introduce new unknowns U = X2 and V = Y 3.)

The common Newton polygon here looks like this (in red):

2

3

The volume in 2D is called area. The area of the polygon is equal to 3. Hence,
by Kushnirenko’s Theorem the number of solutions is indeed 3× 2! = 3× 2 = 6.

If polynomials have different Newton polyhedra, then in the theorem one should
take their mixed volume.

Khovanskii found a common generalization of his theorem on fewnomials and
Kushnirenko’s Theorem. To get a flavor of this generalization, observe that in the
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case of equation
Xd − 1 = 0,

for solutions X which satisfy the restriction α0 ≤ argX ≤ α0 +α, where α is small,
the Descartes bound takes place, while with the growth of d the solutions become
uniformly distributed by arguments.

5. Complexity of higher-dimensional shapes

So far our geometric objects (sets) consisted of finite number of points, and this
number is a natural measure of their complexity. But what is natural to take as
complexity of the sets like this:

(This is a work of Anatolii Fomenko, a renown topologist, artist, and a highly
controversial figure in modern Russian culture.)

Or something simpler, like this:
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Various approaches are possible.
One way is to stick a straight line through the set in such a way that the number

of intersection points is finite and maximal:

��
��
��
��

This number is called the degree of the set. In the similar way the degree can
be defined for the Fomenko’s picture above. Intuitively, the degree can serve as a
complexity measure for a set.

Of course, in general, a set has to be intersected with the linear space of comple-
mentary to the set’s dimension. For example, if the set is a curve in 3-dimensional
space, it should be intersected with a plane.

In any case, when the set is defined by a system of equations, the intersection
points are also defined by a bit larger system of equations. But that is very conve-
nient, because we already know how to estimate the number of isolated solutions
of systems of equations.
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Thus, by Bezout’s Theorem, if the set consists of points satisfying a system of
k polynomial equations of degrees d1, d2, . . . , dk, in n variables (k ≤ n) then the
degree (i.e., the complexity) of this set is at most D = d1 · d2 · · · dk.

We notice, however, that the degree may not capture the intuitive complexity in
full:

no straight line through this picture is able to cross all components of the set. So
the degree complexity of this set is the same as the complexity of

which is not right.
This happens because the degree is really an algebraic complexity measure and

behaves awkwardly over real numbers. To make it adequate, we should take the
degree of the complexification of the set, but this is a different story.
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I am more interested in complexity measures that are topological invariants. In
topology two geometric objects are considered equivalent if one can be obtained
from another by continuous transformations, without cutting or pasting. This
vague description can be formalized in essentially different ways, the one useful for
us is homotopy equivalence.

Examples of homotopy equivalent sets are:

(Solid cup, solid ball, and a point.)
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Or another triple:

Complexities within both groups are the same. Clearly, the complexity of the
second triple is larger.

This complexity is called the sum of Betti numbers. Betti numbers and the whole
subject of algebraic topology, to which they belong, were invented by Henri Poincaré
who referred to some ideas of Enrico Betti.
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The exact definition of Betti numbers is quite complicated. As its consequence,
with a given topological space, a sequence of vector spaces, called homology groups,
is associated:

0

1

2

n

(Here numbered arrows are called functors.)
The dimension of nth vector space Hn is called nth Betti number. The sequence

of Betti numbers is the same for homotopy equivalent spaces, for example, it is
dimH0 = 1, dimH1 = 1, dimH2 = 0 for

and for

The sum of all Betti numbers can serve as a measure of complexity of a given set.
The following observation is crucial for estimating the sum of Betti numbers in

terms of the complexity of the defining formula, and also may explain why this
measure is natural. It is called Morse Theory by the name of its inventor Marston
Morse.
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Suppose that a surface is smooth (does not have sharp “angles”), and compact
(does not stretch to infinity).

For example:

Let us move the horizontal plane from far above down. Indicate by red the
points where the plane touches the surface, but not cuts through the surface (i.e.,
is tangent), while moving. These points are called critical points. In this example
there is a finite number of them (four). We might have been unlucky if the surface
was oriented symmetrically with respect to the vertical line, then the set of critical
points would be infinite (the union of two circles). But clearly we can always rotate
of surface slightly, so that the number of critical points is finite, they all lie on
different levels, and moreover the surface has a non-zero curvature (whatever that
means) at each of these points.
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According to Morse Theory, the sum of Betti numbers does not exceed the
number of critical points. (In our example these two numbers coincide.) Thus, the
number of critical points can be considered as a complexity measure of the surface.
It is consistent with geometric intuition: every connected component, every “hole”,
produces at least one critical point.

Notice that the set of critical points coincides with the set of all solutions of
a system of equations. (If the surface in the example is defined by the equation
F = 0, then this system is

F =
∂F

∂X1
=

∂F

∂X2
= 0.)

But that is very convenient, because we already know how to estimate the num-
ber of isolated solutions of systems of equations.

Thus, if the set consists of points satisfying a polynomial equation of degree d
in n variables, then the sum of Betti numbers (i.e., the complexity) of this set is at
most

d(d− 1)n−1.

Fomenko’s vision of a smooth surface:
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Passing to general (not necessarily smooth) sets of arbitrary dimensions defined
by systems of equations is a difficult problem, which is a natural extension of
Hilbert’s 16th problem. It was first solved in late 1940s by Ivan Petrovskii and his
student at the time, Olga Oleinik.

Petrovskii was an absolutely remarkable man. He served as Rector (in our termi-
nology – VC) of the Moscow University (a gigantic institution even then), member
of the Central Committee, of the Supreme Soviet, at the same time being one of
the wold’s leading mathematicians. People say he was also a decent man, at those
troubled times.

The problem was also independently solved in 1960s by John Milnor and by
René Thom, the 20th century greatest topologists.
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My contribution to the subject is a further generalization of Petrovskii-Oleinik-
Thom-Milnor bounds to sets defined by more general formulae than just conjunction
of equations and inequalities. One way of generalizing such formulae is to consider
unions of these sets, images under maps, e.g., projections, and complements to im-
ages. In the language of logic it means that we consider sets defined by formulae
with quantifiers. Another type of generalization appears when we pass from poly-
nomials to more general functions, like above mentioned Pfaffian (which include
fewnomials), definable in o-minimal structures. Some results in this direction were
obtained by Basu, Pollack, Roy, and Zell. With my American colleague Andrei
Gabrielov, we managed to advance further.

I don’t have neither time nor popularization skills to discuss these results, instead
I’ll show you two last pictures by Fomenko which, I feel, capture the mood of the
technique we invented.
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