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ldeology of the fewnomial theory

Geometric objects defined in R” by “simple” formulae should
have a “simple” topology.
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@ Polynomial equation f = a4X% + --- 4+ a1 X + ay = 0 has at
most d real solutions.

Nicolai Vorobjov Fewnomials and tame topology



ldeology of the fewnomial theory

Geometric objects defined in R” by “simple” formulae should
have a “simple” topology.

@ Polynomial equation f = a4X% + --- 4+ a1 X + ay = 0 has at
most d real solutions.

Nicolai Vorobjov Fewnomials and tame topology



ldeology of the fewnomial theory

Geometric objects defined in R” by “simple” formulae should
have a “simple” topology.

Example

@ Polynomial equation f = a4X% + --- 4+ a1 X + ay = 0 has at
most d real solutions.
d is small = number of the connected components of the
set defined by the equation is small.
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have a “simple” topology.

Example

@ Polynomial equation f = a4X% + --- 4+ a1 X + ay = 0 has at
most d real solutions.
d is small = number of the connected components of the

set defined by the equation is small.
@ Let the polynomial f have m monomials (terms with = 0
coeficients).
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ldeology of the fewnomial theory

Geometric objects defined in R” by “simple” formulae should
have a “simple” topology.

Example

@ Polynomial equation f = a4X% + --- 4+ a1 X + ay = 0 has at
most d real solutions.
d is small = number of the connected components of the
set defined by the equation is small.

@ Let the polynomial f have m monomials (terms with = 0
coeficients).
Descartes’ rule = The number of positive solutions of
f =0 is less than m =- the number of all solutions is
<2m-+1.
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ldeology of the fewnomial theory

Geometric objects defined in R” by “simple” formulae should
have a “simple” topology.

Example

@ Polynomial equation f = a4X% + --- 4+ a1 X + ay = 0 has at
most d real solutions.
d is small = number of the connected components of the
set defined by the equation is small.

@ Let the polynomial f have m monomials (terms with = 0
coeficients).
Descartes’ rule = The number of positive solutions of
f =0 is less than m =- the number of all solutions is
<2m-+1.

The theory of fewnomials is a far-reaching generalization of this
example.
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Complexities

Geometric objects defined in R” by “simple” formulae should
have a “simple” topology.

Nicolai Vorobjov Fewnomials and tame topology



Complexities

Geometric objects defined in R” by “simple” formulae should
have a “simple” topology.

Aim: to find quantitative versions of this principle.

Nicolai Vorobjov Fewnomials and tame topology



Complexities

Geometric objects defined in R” by “simple” formulae should
have a “simple” topology.

Aim: to find quantitative versions of this principle.

Two ingredients:
@ complexity of a formula

Nicolai Vorobjov Fewnomials and tame topology



Complexities

Geometric objects defined in R” by “simple” formulae should
have a “simple” topology.

Aim: to find quantitative versions of this principle.

Two ingredients:
@ complexity of a formula
@ topological complexity of a geometric object.
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Complexity of a polynomial

n-variate polynomial

with every a;
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Complexity of a polynomial

n-variate polynomial
_ . oyl iy
f= Z y,...in Xy - X
(i1--,1n)

with every a;

77777

What is natural to call its complexity?
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Complexity of a polynomial

n-variate polynomial

with every a;

77777

What is natural to call its complexity?
n will always be a part of the complexity measure (n, -), what
else?
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Complexity of a polynomial

@ Degree d = max;, i) (i + -+ in).

Nicolai Vorobjov Fewnomials and tame topology



Complexity of a polynomial

@ Degree d = max;, i) (i + -+ in).

Nicolai Vorobjov Fewnomials and tame topology



Complexity of a polynomial

@ Degree d = max;, i) (i + -+ in).
But X190 — 1.
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Complexity of a polynomial

@ Degree d = max;, . iy(it + -+ in).
But X100 — 1,
@ Number of monomials m. Fewnomials.
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@ Degree d = max;, i) (i + -+ in).
But X190 — 1.

@ Number of monomials m. Fewnomials.
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Complexity of a polynomial

@ Degree d = max;, i) (i + -+ in).
But X190 — 1.

@ Number of monomials m. Fewnomials.
But (X — 1)1,

@ Additive complexity: a number a such that an expression
representing f can be constructed using at most a
additions and subtractions, and an unlimited number of
multiplications (version: multiplications and divisions).
(X101 —1)/(X— 1) :X1OO_|_.“_|_1
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Bezout theorem

Polynomials fi, ..., f, € C[Xj,..., X,] of degrees di, ..., d;
respectively.
A solution x of f; = --- = f, = 0 is non-singular if

of;
det (8)(,) #0

X
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Bezout theorem

Polynomials fi, ..., f, € C[Xj,..., X,] of degrees di, ..., d;
respectively.
A solution x of f; = --- = f, = 0 is non-singular if

of;
o (%)

£0

X

The number of non-singular solutions in C" of f; = - - -
is at most d - - - dp.
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Bezout theorem

Polynomials fi, ..., f, € C[Xj,..., X,] of degrees di, ..., d;
respectively.
A solution x of f; = --- = f, = 0 is non-singular if

of;
o (%)

£0

X

The number of non-singular solutions in C" of f; = - - -
is at most d - - - dp.

Same for fy, ..., f, € R[Xq,..., Xp] and solutions in R".

Nicolai Vorobjov Fewnomials and tame topology



Khovanskii’s theorem for fewnomials

“Bezout theorem” for fewnomials.
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Khovanskii’s theorem for fewnomials

“Bezout theorem” for fewnomials.

Polynomials fi, ..., f, € R[Xy,..., Xy].
Let m be the number of different monomials in all polynomials.

The number of non-singular solutions of fy = --- = f, = 0 in the
positive octant of R™ is at most 2™M=1)(n + 1)™.
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Khovanskii’s theorem for fewnomials

“Bezout theorem” for fewnomials.

Polynomials fi, ..., f, € R[Xy,..., Xy].
Let m be the number of different monomials in all polynomials.

The number of non-singular solutions of fy = --- = f, = 0 in the
positive octant of R™ is at most 2™M=1)(n + 1)™.

Better bounds by Bihan and Sottile.
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Khovanskii’s theorem for fewnomials

“Bezout theorem” for fewnomials.

Polynomials fi, ..., f, € R[Xy,..., Xy].
Let m be the number of different monomials in all polynomials.

The number of non-singular solutions of fy = --- = f, = 0 in the
positive octant of R™ is at most 2™M=1)(n + 1)™.

Better bounds by Bihan and Sottile.

Deduce an upper bound for the number of non-singular
solutions in terms of the additive complexity.
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Pfaffian functions

Khovanskii actually proved a bound for much more general
functions f; than polynomials, Pfaffian functions.
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with polynomial coefficients.
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Include polynomials, algebraic, elementary transcendental
functions and their compositions (in appropriate domains).
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Khovanskii actually proved a bound for much more general
functions f; than polynomials, Pfaffian functions.

Pfaffian functions are real analytic functions satisfying
triangular systems of first order partial differential equations
with polynomial coefficients.

Include polynomials, algebraic, elementary transcendental
functions and their compositions (in appropriate domains).

Exponential polynomial

with polynomials f;, is a Pfaffian function in R”.
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Include polynomials, algebraic, elementary transcendental
functions and their compositions (in appropriate domains).
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Pfaffian functions

Khovanskii actually proved a bound for much more general
functions f; than polynomials, Pfaffian functions.

Pfaffian functions are real analytic functions satisfying
triangular systems of first order partial differential equations
with polynomial coefficients.

Include polynomials, algebraic, elementary transcendental
functions and their compositions (in appropriate domains).

Exponential polynomial

with polynomials f;, is a Pfaffian function in R”.
Natural complexity measure.
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Khovanskii’s theorem for Pfaffian functions

Natural complexity measure for systems of differential
equations induces the complexity on Pfaffian functions.
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Khovanskii’s theorem for Pfaffian functions

Natural complexity measure for systems of differential
equations induces the complexity on Pfaffian functions.

Khovanskii’s theorem is true for systems of equations
fy =--- = f, = 0, where f; are Pfaffian functions having
common domain.
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Khovanskii’s theorem for Pfaffian functions

Natural complexity measure for systems of differential
equations induces the complexity on Pfaffian functions.

Khovanskii’s theorem is true for systems of equations
fy =--- = f, = 0, where f; are Pfaffian functions having
common domain.

Example
How to prove the bound for fewnomials.
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Natural complexity measure for systems of differential
equations induces the complexity on Pfaffian functions.

Khovanskii’s theorem is true for systems of equations
fy =--- = f, = 0, where f; are Pfaffian functions having
common domain.

Example

How to prove the bound for fewnomials.
Coordinate change: X; — e"i.
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Khovanskii’s theorem for Pfaffian functions

Natural complexity measure for systems of differential
equations induces the complexity on Pfaffian functions.

Khovanskii’s theorem is true for systems of equations
fy =--- = f, = 0, where f; are Pfaffian functions having
common domain.

Example

How to prove the bound for fewnomials.
Coordinate change: X; — e"i.

In the polynomial each monomial X1’1 - X/» will be replaced by
it Yit+tinYn

Nicolai Vorobjov Fewnomials and tame topology



Khovanskii’s theorem for Pfaffian functions

Natural complexity measure for systems of differential
equations induces the complexity on Pfaffian functions.

Khovanskii’s theorem is true for systems of equations
fy =--- = f, = 0, where f; are Pfaffian functions having
common domain.

Example

How to prove the bound for fewnomials.

Coordinate change: X; — e. , ‘

In the polynomial each monomial X1’1 - X/» will be replaced by
it Yit+tinYn

Then apply Khovanskii’'s theorem to the resulting system of
Pfaffian functions in R”".
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First order formulae

Sets defined in R" by systems of polynomial equations (i.e.,
intersections of sets of the kind {f = 0} with f € R[X{,..., Xp])
are called real algebraic.
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First order formulae

Sets defined in R" by systems of polynomial equations (i.e.,
intersections of sets of the kind {f = 0} with f € R[X{,..., Xp])
are called real algebraic.

Sets in R” defined by Boolean combinations of equations and
inequalities (i.e., arbitrary unions, intersections and
complements of sets of the kind {f = 0}, {f > 0}) are called
semialgebraic.
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First order formulae

Sets defined in R" by systems of polynomial equations (i.e.,
intersections of sets of the kind {f = 0} with f € R[X{,..., Xp])
are called real algebraic.

Sets in R” defined by Boolean combinations of equations and
inequalities (i.e., arbitrary unions, intersections and
complements of sets of the kind {f = 0}, {f > 0}) are called
semialgebraic.

Similar: semi-Pfaffian sets
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Tarski’s theorem

Sets in R" defined by formulae of the first order theory of R
(i.e., projections on R" of semialgebraic sets in R"t¥ for some
k > 0) are exactly semialgebraic sets.
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Tarski’s theorem

Sets in R" defined by formulae of the first order theory of R
(i.e., projections on R" of semialgebraic sets in R"t¥ for some
k > 0) are exactly semialgebraic sets.

This is wrong for semi-Pfaffian sets!

Nicolai Vorobjov Fewnomials and tame topology



Tarski’s theorem
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k > 0) are exactly semialgebraic sets.

This is wrong for semi-Pfaffian sets!
Hence, for projections of semi-Pfaffian sets we have to use a
new term, sub-Pfaffian sets.
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Tarski’s theorem

Sets in R" defined by formulae of the first order theory of R
(i.e., projections on R" of semialgebraic sets in R"t¥ for some
k > 0) are exactly semialgebraic sets.

This is wrong for semi-Pfaffian sets!

Hence, for projections of semi-Pfaffian sets we have to use a
new term, sub-Pfaffian sets.

The family of all sub-Pfaffian sets in R” is closed under Boolean
operations.
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Tarski’s theorem

Sets in R" defined by formulae of the first order theory of R
(i.e., projections on R" of semialgebraic sets in R"t¥ for some
k > 0) are exactly semialgebraic sets.

This is wrong for semi-Pfaffian sets!

Hence, for projections of semi-Pfaffian sets we have to use a
new term, sub-Pfaffian sets.

The family of all sub-Pfaffian sets in R” is closed under Boolean
operations.

Complexity naturally extends from polynomials (or Pfaffian
functions) to first order formulae involving these functions.
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Tameness of definable sets

The topology of definable sets in R" (semialgebraic,
semi-Pfaffian, sub-Pfaffian) is “tame”.
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Tameness of definable sets

The topology of definable sets in R" (semialgebraic,
semi-Pfaffian, sub-Pfaffian) is “tame”.

@ No “pathological” objects, like

{Y =sin(1/X)} n{X > 0} c R
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The topology of definable sets in R" (semialgebraic,
semi-Pfaffian, sub-Pfaffian) is “tame”.

@ No “pathological” objects, like

{Y =sin(1/X)} n{X > 0} c R

Closure in R” of definable is definable.
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Tameness of definable sets

The topology of definable sets in R" (semialgebraic,
semi-Pfaffian, sub-Pfaffian) is “tame”.

@ No “pathological” objects, like

{Y =sin(1/X)} n{X > 0} c R

Closure in R” of definable is definable.
Connected is path-connected.
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Tameness of definable sets

The topology of definable sets in R" (semialgebraic,
semi-Pfaffian, sub-Pfaffian) is “tame”.

@ No “pathological” objects, like

{Y =sin(1/X)} n{X > 0} c R

Closure in R” of definable is definable.
Connected is path-connected.

@ Finite triangulation.
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Tameness of definable sets

The topology of definable sets in R" (semialgebraic,
semi-Pfaffian, sub-Pfaffian) is “tame”.

@ No “pathological” objects, like

{Y =sin(1/X)} n{X > 0} c R

Closure in R” of definable is definable.
Connected is path-connected.

@ Finite triangulation.
@ Finite smooth stratification.
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Tameness of definable sets

The topology of definable sets in R" (semialgebraic,
semi-Pfaffian, sub-Pfaffian) is “tame”.

@ No “pathological” objects, like

{Y =sin(1/X)} n{X > 0} c R

Closure in R” of definable is definable.
Connected is path-connected.

@ Finite triangulation.
@ Finite smooth stratification.
@ Finite number of topological types in a definable family.
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Complexity of a definable set

A natural measure for the complexity of a topological space
S c R"is the sequence of ranks of it's homology groups
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Complexity of a definable set

A natural measure for the complexity of a topological space
S c R"is the sequence of ranks of it's homology groups

b;(S) = rank H;(S, Q) (Betti numbers),
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Complexity of a definable set

A natural measure for the complexity of a topological space
S c R"is the sequence of ranks of it's homology groups

b;(S) = rank H;(S, Q) (Betti numbers),
or the sum of ranks
b.(S) = >, bi(S) (total Betti number).
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Complexity of a definable set

A natural measure for the complexity of a topological space
S c R"is the sequence of ranks of it's homology groups

b;(S) = rank H;(S, Q) (Betti numbers),
or the sum of ranks
b.(S) = >, bi(S) (total Betti number).

Because of tameness, it does not matter which homology
theory is used.
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Effective fewnomial theory

Quantitative version of
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Effective fewnomial theory

Quantitative version of

Definable sets in R" defined by “simple” formulae should have a
“simple” topology.
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Effective fewnomial theory

Quantitative version of

Definable sets in R" defined by “simple” formulae should have a
“simple” topology.

Aim: obtain tight (enough) upper bound on the complexity of
definable sets as an explicit function of the complexity of the
defining formulae.
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Effective fewnomial theory

Quantitative version of

Definable sets in R" defined by “simple” formulae should have a
“simple” topology.

Aim: obtain tight (enough) upper bound on the complexity of
definable sets as an explicit function of the complexity of the
defining formulae.

EXAMPLE: Thom-Milnor upper bound on b.. for real algebraic
sets defined by polynomials or by fewnomials.
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Thom-Milnor bound

Let S={fy =--- = fr = 0} C R” be an algebraic set,
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Thom-Milnor bound

Let S={fy =--- = fr = 0} C R” be an algebraic set,
fi e R[Xy,...,Xp], deg f;i < d, the number of different
monomials in all f; is m (ignoring differences in # 0
coefficients!).
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Thom-Milnor bound

Let S={fy =--- = fr = 0} C R” be an algebraic set,
fi e R[Xy,...,Xp], deg f;i < d, the number of different
monomials in all f; is m (ignoring differences in # 0
coefficients!).

Theorem
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Thom-Milnor bound

Let S={fy =--- = fr = 0} C R” be an algebraic set,
fi e R[Xy,...,Xp], deg f;i < d, the number of different
monomials in all f; is m (ignoring differences in # 0
coefficients!).

Theorem
@ b.(S) <d(2d - 1)”—1.
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Thom-Milnor bound

Let S={fy =--- = fr = 0} C R” be an algebraic set,
fi e R[Xy,...,Xp], deg f;i < d, the number of different
monomials in all f; is m (ignoring differences in # 0
coefficients!).

Theorem
@ b.(S) <d(2d - 1)”—1.
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Thom-Milnor bound

Let S={fy =--- = fr = 0} C R” be an algebraic set,
fi e R[Xy,...,Xp], deg f;i < d, the number of different
monomials in all f; is m (ignoring differences in # 0
coefficients!).

@ b.(S)<d2d-1)"".
@ IfS C R, thenb,(S) < 2(mm(n+m=1)/2+1(2p 4 q)r+m+1,
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Thom-Milnor bound

Let S={fy =--- = fr = 0} C R” be an algebraic set,
fi e R[Xy,...,Xp], deg f;i < d, the number of different
monomials in all f; is m (ignoring differences in # 0
coefficients!).

@ b.(S)<d2d-1)"".
@ IfS C R, thenb,(S) < 2(mm(n+m=1)/2+1(2p 4 q)r+m+1,
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Thom-Milnor bound

Let S={fy =--- = fr = 0} C R” be an algebraic set,
fi e R[Xy,...,Xp], deg f;i < d, the number of different
monomials in all f; is m (ignoring differences in # 0
coefficients!).

@ b.(S)<d2d-1)"".
@ IfS C R, thenb,(S) < 2(mm(n+m=1)/2+1(2p 4 q)r+m+1,

(Note that for f; = (X; — 1) --- (X; — d) and k = n, b.(S) = d").
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Thom-Milnor bound

Let S={fy =--- = fr = 0} C R” be an algebraic set,
fi e R[Xy,...,Xp], deg f;i < d, the number of different
monomials in all f; is m (ignoring differences in # 0
coefficients!).

@ b.(S)<d2d-1)"".
@ IfS C R, thenb,(S) < 2(mm(n+m=1)/2+1(2p 4 q)r+m+1,

(Note that for f; = (X; — 1) --- (X; — d) and k = n, b.(S) = d").

Sketch of Milnor’s proof.
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Compact nonsingular hypersurface
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Compact nonsingular hypersurface

If Kk = nand all points in S are nonsingular, then Theorem
immediately follows from Bezout and Khovanskii.
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Compact nonsingular hypersurface

If Kk = nand all points in S are nonsingular, then Theorem
immediately follows from Bezout and Khovanskii.

Let S be a compact nonsingular hypersurface: S = {f = 0} with
(0f/0Xq,...,0f/0Xn)(X) # O for every x € S.
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Compact nonsingular hypersurface

If Kk = nand all points in S are nonsingular, then Theorem
immediately follows from Bezout and Khovanskii.

Let S be a compact nonsingular hypersurface: S = {f = 0} with
(0f/0Xq,...,0f/0Xn)(X) # O for every x € S.
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Compact nonsingular hypersurface

If Kk = nand all points in S are nonsingular, then Theorem
immediately follows from Bezout and Khovanskii.

Let S be a compact nonsingular hypersurface: S = {f = 0} with
(0f/0Xq,...,0f/0Xn)(X) # O for every x € S.

Morse Theory

Consider 7 : S — R, the projection of S on the coordinate X,.
Critical points of 7r: tangent points x on S of the sweeping
hyperplane X, = const (i.e., (0f/0Xy,...,0f/0X,_1)(X) = 0.)
A critical point x is non- degenerate if Gaussian curvature of S
at xis # 0 (i.e., the Hessian # 0).
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Compact nonsingular hypersurface

Rotating S if needed, we can assume that all critical points of 7
are non-degenerate and all critical values are distinct.
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Compact nonsingular hypersurface

Rotating S if needed, we can assume that all critical points of 7
are non-degenerate and all critical values are distinct.

According to Morse Theory, b,(S) < number of all critical
points, provided all are non-degenerate.

Set of all critical points is {f = 0f/0Xy = --- = 0f/0X,—1 = O}.
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Compact nonsingular hypersurface

Rotating S if needed, we can assume that all critical points of 7
are non-degenerate and all critical values are distinct.

According to Morse Theory, b,(S) < number of all critical
points, provided all are non-degenerate.

Set of all critical points is {f = 0f/0Xy = --- = 0f/0X,—1 = O}.

Theorem now follows from Bezout or Khovanskii respectively.
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Arbitrary algebraic set

LetS={fi = = f, =0l
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Arbitrary algebraic set

LetS={fj =---=1f =0}.
For R€ R, R > 0 large enough, SN{X2 +--- + X2 < R} is
homotopy equivalent to S, and is compact.
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{f = 0} is a compact nonsingular hypersurface (check!).
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Nicolai Vorobjov Fewnomials and tame topology



Arbitrary algebraic set

LetS={fj =---=1f =0}.

For R€ R, R > 0 large enough, SN{X2 +--- + X2 < R} is
homotopy equivalent to S, and is compact.
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Arbitrary algebraic set

LetS={fj =---=1f =0}.

For R€ R, R > 0 large enough, SN{X2 +--- + X2 < R} is
homotopy equivalent to S, and is compact.

f=f+ +f+eX+-- - +X2-R)

For all sufficiently small > 0 the sets SN {X? + - + X3 < R}
and {f < 0} are homotopy equivalent.

Thus, it's sufficient to bound b..({f < 0}).
So far we can bound b,.({f = 0}) = b, ({9{f < 0}}), since
{f = 0} is a compact nonsingular hypersurface (check!).

b.({f < 0}) < 3b.({f =0}).

Thom-Milnor bound follows.
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General definable sets

Sets S definable by systems of inequalities or unions of sets
defined by systems of inequalities, or projections of such sets.

Nicolai Vorobjov Fewnomials and tame topology



General definable sets

Sets S definable by systems of inequalities or unions of sets
defined by systems of inequalities, or projections of such sets.

In general, sets in R” satisfying formulae of the kind

vX(M3ax@yx®...axE Fx, xM . x6),

Nicolai Vorobjov Fewnomials and tame topology



General definable sets

Sets S definable by systems of inequalities or unions of sets
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In general, sets in R” satisfying formulae of the kind
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where X() = (X1,..., Xis,), X = (X1,...,Xn),and F is a
Boolean combination of equations and inequalities.
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General definable sets

Sets S definable by systems of inequalities or unions of sets
defined by systems of inequalities, or projections of such sets.

In general, sets in R” satisfying formulae of the kind
vX(M3ax@yx®...axE Fx, xM . x6),

where X() = (X1,..., Xis,), X = (X1,...,Xn),and F is a
Boolean combination of equations and inequalities.

Some serious advances were made in “fewnomial principle”
with relation to sets definable by such formulae.
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Probably very hard open problems:
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Probably very hard open problems:

@ Upper bounds on triangulations of definable sets.
@ Upper bounds on smooth stratifications.

More accessible questions:

@ Global upper bounds for fewnomials.

@ Upper bounds for for sets described by definable functions
with axiomatic concept of complexity.
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