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Ideology of the fewnomial theory

Geometric objects defined in Rn by “simple” formulae should
have a “simple” topology.

Example

Polynomial equation f ≡ adX d + · · ·+ a1X + a0 = 0 has at
most d real solutions.
d is small⇒ number of the connected components of the
set defined by the equation is small.
Let the polynomial f have m monomials (terms with 6= 0
coeficients).
Descartes’ rule⇒ The number of positive solutions of
f = 0 is less than m⇒ the number of all solutions is
≤ 2m + 1.

The theory of fewnomials is a far-reaching generalization of this
example.
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Complexities

Geometric objects defined in Rn by “simple” formulae should
have a “simple” topology.

Aim: to find quantitative versions of this principle.

Two ingredients:
complexity of a formula
topological complexity of a geometric object.
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Complexity of a polynomial

n-variate polynomial

f ≡
∑

(i1,...,in)

ai1,...,inX i1
1 · · ·X

in
n

with every ai1,...,in ∈ R.

What is natural to call its complexity?
n will always be a part of the complexity measure (n, ·), what
else?
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Complexity of a polynomial

Degree d = max(i1,...,in)(i1 + · · ·+ in).
But X 100 − 1.
Number of monomials m. Fewnomials.
But (X − 1)100.
Additive complexity: a number a such that an expression
representing f can be constructed using at most a
additions and subtractions, and an unlimited number of
multiplications (version: multiplications and divisions).
(X 101 − 1)/(X − 1) = X 100 + · · ·+ 1
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Bezout theorem

Polynomials f1, . . . , fn ∈ C[X1, . . . ,Xn] of degrees d1, . . . ,dn
respectively.
A solution x of f1 = · · · = fn = 0 is non-singular if

det
(
∂fi
∂Xj

) ∣∣∣∣
x
6= 0

Theorem
The number of non-singular solutions in Cn of f1 = · · · = fn = 0
is at most d1 · · · dn.

Corollary

Same for f1, . . . , fn ∈ R[X1, . . . ,Xn] and solutions in Rn.
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Khovanskii’s theorem for fewnomials

“Bezout theorem” for fewnomials.

Polynomials f1, . . . , fn ∈ R[X1, . . . ,Xn].
Let m be the number of different monomials in all polynomials.

Theorem
The number of non-singular solutions of f1 = · · · = fn = 0 in the
positive octant of Rn is at most 2m(m−1)(n + 1)m.

Better bounds by Bihan and Sottile.

Exercise
Deduce an upper bound for the number of non-singular
solutions in terms of the additive complexity.
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Pfaffian functions

Khovanskii actually proved a bound for much more general
functions fi than polynomials, Pfaffian functions.

Pfaffian functions are real analytic functions satisfying
triangular systems of first order partial differential equations
with polynomial coefficients.
Include polynomials, algebraic, elementary transcendental
functions and their compositions (in appropriate domains).

Example
Exponential polynomial

eef1(X1,...,Xn)+ef2(X1,...,Xn)

− ef3(X1,...,Xn) + f4(X1, . . . ,Xn),

with polynomials fi , is a Pfaffian function in Rn.
Natural complexity measure.
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Khovanskii’s theorem for Pfaffian functions

Natural complexity measure for systems of differential
equations induces the complexity on Pfaffian functions.

Khovanskii’s theorem is true for systems of equations
f1 = · · · = fn = 0, where fi are Pfaffian functions having
common domain.

Example
How to prove the bound for fewnomials.
Coordinate change: Xi → eYi .
In the polynomial each monomial X i1

1 · · ·X
in
n will be replaced by

ei1Y1+···+inYn .
Then apply Khovanskii’s theorem to the resulting system of
Pfaffian functions in Rn.
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First order formulae

Sets defined in Rn by systems of polynomial equations (i.e.,
intersections of sets of the kind {f = 0} with f ∈ R[X1, . . . ,Xn])
are called real algebraic.

Sets in Rn defined by Boolean combinations of equations and
inequalities (i.e., arbitrary unions, intersections and
complements of sets of the kind {f = 0}, {f > 0}) are called
semialgebraic.
Similar: semi-Pfaffian sets
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Tarski’s theorem

Theorem
Sets in Rn defined by formulae of the first order theory of R
(i.e., projections on Rn of semialgebraic sets in Rn+k for some
k ≥ 0) are exactly semialgebraic sets.

This is wrong for semi-Pfaffian sets!
Hence, for projections of semi-Pfaffian sets we have to use a
new term, sub-Pfaffian sets.
The family of all sub-Pfaffian sets in Rn is closed under Boolean
operations.

Complexity naturally extends from polynomials (or Pfaffian
functions) to first order formulae involving these functions.
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Complexity naturally extends from polynomials (or Pfaffian
functions) to first order formulae involving these functions.
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Tameness of definable sets

The topology of definable sets in Rn (semialgebraic,
semi-Pfaffian, sub-Pfaffian) is “tame”.

No “pathological” objects, like

{Y = sin(1/X )} ∩ {X > 0} ⊂ R2.

Closure in Rn of definable is definable.
Connected is path-connected.
Finite triangulation.
Finite smooth stratification.
Finite number of topological types in a definable family.
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Complexity of a definable set

A natural measure for the complexity of a topological space
S ⊂ Rn is the sequence of ranks of it’s homology groups

bi(S) = rank Hi(S,Q) (Betti numbers),

or the sum of ranks

b∗(S) =
∑

i bi(S) (total Betti number).

Because of tameness, it does not matter which homology
theory is used.
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Effective fewnomial theory

Quantitative version of

Definable sets in Rn defined by “simple” formulae should have a
“simple” topology.

Aim: obtain tight (enough) upper bound on the complexity of
definable sets as an explicit function of the complexity of the
defining formulae.

EXAMPLE: Thom–Milnor upper bound on b∗ for real algebraic
sets defined by polynomials or by fewnomials.
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Thom-Milnor bound

Let S = {f1 = · · · = fk = 0} ⊂ Rn be an algebraic set,
fi ∈ R[X1, . . . ,Xn], deg fi ≤ d , the number of different
monomials in all fi is m (ignoring differences in 6= 0
coefficients!).

Theorem

b∗(S) ≤ d(2d − 1)n−1.
If S ⊂ Rn

+, then b∗(S) ≤ 2(n+m)(n+m−1)/2+1(2n + 1)n+m+1.

(Note that for fi = (Xi − 1) · · · (Xi − d) and k = n, b∗(S) = dn).

Sketch of Milnor’s proof.
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Compact nonsingular hypersurface

S = {f1 = · · · = fk = 0} ⊂ Rn

If k = n and all points in S are nonsingular, then Theorem
immediately follows from Bezout and Khovanskii.

Let S be a compact nonsingular hypersurface: S = {f = 0} with
(∂f/∂X1, . . . , ∂f/∂Xn)(x) 6= 0 for every x ∈ S.

Morse Theory

Consider π : S → R, the projection of S on the coordinate Xn.
Critical points of π: tangent points x on S of the sweeping
hyperplane Xn = const (i.e., (∂f/∂X1, . . . , ∂f/∂Xn−1)(x) = 0.)
A critical point x is non-degenerate if Gaussian curvature of S
at x is 6= 0 (i.e., the Hessian 6= 0).
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Compact nonsingular hypersurface

Rotating S if needed, we can assume that all critical points of π
are non-degenerate and all critical values are distinct.

According to Morse Theory, b∗(S) ≤ number of all critical
points, provided all are non-degenerate.

Set of all critical points is {f = ∂f/∂X1 = · · · = ∂f/∂Xn−1 = 0}.

Theorem now follows from Bezout or Khovanskii respectively.
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Arbitrary algebraic set

Let S = {f1 = · · · = fk = 0}.
For R ∈ R, R > 0 large enough, S ∩ {X 2

1 + · · ·+ X 2
n ≤ R} is

homotopy equivalent to S, and is compact.
f ≡ f 2

1 + · · ·+ f 2
k + ε(X 2

1 + · · ·+ X 2
n − R)

Lemma

For all sufficiently small ε > 0 the sets S ∩ {X 2
1 + · · ·+ X 2

n ≤ R}
and {f ≤ 0} are homotopy equivalent.

Thus, it’s sufficient to bound b∗({f ≤ 0}).
So far we can bound b∗({f = 0}) = b∗({∂{f ≤ 0}}), since
{f = 0} is a compact nonsingular hypersurface (check!).

Lemma

b∗({f ≤ 0}) ≤ 1
2b∗({f = 0}).

Thom-Milnor bound follows.
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General definable sets

Sets S definable by systems of inequalities or unions of sets
defined by systems of inequalities, or projections of such sets.

In general, sets in Rn satisfying formulae of the kind

∀X (1)∃X (2)∀X (3) · · · ∃X (s)F (X ,X (1), . . . ,X (s)),

where X (i) = (Xi1, . . . ,Xisi ), X = (X1, . . . ,Xn), and F is a
Boolean combination of equations and inequalities.

Some serious advances were made in “fewnomial principle”
with relation to sets definable by such formulae.
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Prospects

Probably very hard open problems:

Upper bounds on triangulations of definable sets.
Upper bounds on smooth stratifications.

More accessible questions:

Global upper bounds for fewnomials.
Upper bounds for for sets described by definable functions
with axiomatic concept of complexity.
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