

Cutting a Ball in Two

Nicolai Vorobjov

University of Bath

18 November 2010

Decomposition of definable sets into topological cells.

Definable (in o-minimal structure), e.g., semialgebraic or subanalytic.

Topological n -cell = homeomorphic image of a standard n -ball,
 $\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 < 1\}$ or $(-1, 1)^n$.

An n -cell B^n is *regular* if $(\overline{B^n}, B^n)$ is homeomorphic (as a pair) to the standard pair $([-1, 1], (-1, 1))$.

Figure: Example of non-regular cell

Decomposition of definable sets into topological cells.

Definable (in o-minimal structure), e.g., semialgebraic or subanalytic.

Topological n -cell = homeomorphic image of a standard n -ball,

$\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 < 1\}$ or $(-1, 1)^n$.

An n -cell B^n is *regular* if $(\overline{B^n}, B^n)$ is homeomorphic (as a pair) to the standard pair $([-1, 1], (-1, 1))$.

Figure: Example of non-regular cell

Decomposition of definable sets into topological cells.

Definable (in o-minimal structure), e.g., semialgebraic or subanalytic.

Topological n -cell = homeomorphic image of a standard n -ball,

$\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 < 1\}$ or $(-1, 1)^n$.

An n -cell B^n is *regular* if $(\overline{B^n}, B^n)$ is homeomorphic (as a pair) to the standard pair $([-1, 1], (-1, 1))$.

Figure: Example of non-regular cell

Decomposition of definable sets into topological cells.

Definable (in o-minimal structure), e.g., semialgebraic or subanalytic.

Topological n -cell = homeomorphic image of a standard n -ball,
 $\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 < 1\}$ or $(-1, 1)^n$.

An n -cell B^n is **regular** if (B^n, B^n) is homeomorphic (as a pair) to the standard pair $([-1, 1], (-1, 1))$.

Figure: Example of non-regular cell

Sometimes useful to have a decomposition into regular cells.
For this may need to cut an n -cell into parts by an inscribed $(n-1)$ -cell.

Question: Under which conditions parts B_+^n and B_-^n are regular cells?

Sometimes useful to have a decomposition into regular cells.
For this may need to cut an n -cell into parts by an inscribed $(n-1)$ -cell.

Question: Under which conditions parts B_+^n and B_-^n are regular cells?

PIECEWISE-LINEAR (PL) TOPOLOGY

Polyhedra and PL maps.

Definition

Let $a \in \mathbb{R}^n$, $B \subset \mathbb{R}^n$. The subset aB is a *cone* with vertex a and base B if each point in aB is expressed uniquely as $\lambda a + (1 - \lambda)b$ for some $b \in B$ and $0 \leq \lambda \leq 1$.

cone

not cone

PIECEWISE-LINEAR (PL) TOPOLOGY

Polyhedra and PL maps.

Definition

Let $a \in \mathbb{R}^n$, $B \subset \mathbb{R}^n$. The subset aB is a *cone* with vertex a and base B if each point in aB is expressed uniquely as $\lambda a + (1 - \lambda)b$ for some $b \in B$ and $0 \leq \lambda \leq 1$.

cone

not cone

PIECEWISE-LINEAR (PL) TOPOLOGY

Polyhedra and PL maps.

Definition

Let $a \in \mathbb{R}^n$, $B \subset \mathbb{R}^n$. The subset aB is a *cone* with vertex a and base B if each point in aB is expressed uniquely as $\lambda a + (1 - \lambda)b$ for some $b \in B$ and $0 \leq \lambda \leq 1$.

cone

not cone

Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P , where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n .
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:

Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P , where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n .
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:

Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P , where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n .
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:

Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P , where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n .
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:

Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P , where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n .
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:

Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P , where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n .
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:

Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P , where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n .
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:

Morphisms:

Definition

A map $f : P \rightarrow Q$ is called *piecewise linear (PL)* if every point $a \in P$ has a star aB such that $f(\lambda a + (1 - \lambda)b) = \lambda f(a) + (1 - \lambda)f(b)$ for all $b \in B$ and $0 \leq \lambda \leq 1$.

Obviously, a linear map is PL.

Exercise

A map $f : P \rightarrow Q$ is PL iff its graph $\{(x, f(x)) \in \mathbb{R}^{n+m} \mid x \in P\}$ is a polyhedron.

Main textbook:

C.P. Rourke, B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer, 1972

Morphisms:

Definition

A map $f : P \rightarrow Q$ is called *piecewise linear (PL)* if every point $a \in P$ has a star aB such that $f(\lambda a + (1 - \lambda)b) = \lambda f(a) + (1 - \lambda)f(b)$ for all $b \in B$ and $0 \leq \lambda \leq 1$.

Obviously, a linear map is PL.

Exercise

A map $f : P \rightarrow Q$ is PL iff its graph $\{(x, f(x)) \in \mathbb{R}^{n+m} \mid x \in P\}$ is a polyhedron.

Main textbook:

C.P. Rourke, B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer, 1972

Morphisms:

Definition

A map $f : P \rightarrow Q$ is called *piecewise linear (PL)* if every point $a \in P$ has a star aB such that $f(\lambda a + (1 - \lambda)b) = \lambda f(a) + (1 - \lambda)f(b)$ for all $b \in B$ and $0 \leq \lambda \leq 1$.

Obviously, a linear map is PL.

Exercise

A map $f : P \rightarrow Q$ is PL iff its graph $\{(x, f(x)) \in \mathbb{R}^{n+m} \mid x \in P\}$ is a polyhedron.

Main textbook:

C.P. Rourke, B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer, 1972

Morphisms:

Definition

A map $f : P \rightarrow Q$ is called *piecewise linear (PL)* if every point $a \in P$ has a star aB such that $f(\lambda a + (1 - \lambda)b) = \lambda f(a) + (1 - \lambda)f(b)$ for all $b \in B$ and $0 \leq \lambda \leq 1$.

Obviously, a linear map is PL.

Exercise

A map $f : P \rightarrow Q$ is PL iff its graph $\{(x, f(x)) \in \mathbb{R}^{n+m} \mid x \in P\}$ is a polyhedron.

Main textbook:

C.P. Rourke, B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer, 1972

Morphisms:

Definition

A map $f : P \rightarrow Q$ is called *piecewise linear (PL)* if every point $a \in P$ has a star aB such that $f(\lambda a + (1 - \lambda)b) = \lambda f(a) + (1 - \lambda)f(b)$ for all $b \in B$ and $0 \leq \lambda \leq 1$.

Obviously, a linear map is PL.

Exercise

A map $f : P \rightarrow Q$ is PL iff its graph $\{(x, f(x)) \in \mathbb{R}^{n+m} \mid x \in P\}$ is a polyhedron.

Main textbook:

C.P. Rourke, B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer, 1972

What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal **Hauptvermutung**:
Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets,
Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960,
dim 6 polyhedron).

What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal **Hauptvermutung**:
Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets,
Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960,
dim 6 polyhedron).

What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal **Hauptvermutung**:
Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).

What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal **Hauptvermutung**:
Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets,
Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960,
dim 6 polyhedron).

What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal **Hauptvermutung**:
Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets,
Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960,
dim 6 polyhedron).

What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal **Hauptvermutung**:
Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).

What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal **Hauptvermutung**:
Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets,
Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960,
dim 6 polyhedron).

What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal **Hauptvermutung**:
Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets,
Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960,
dim 6 polyhedron).

What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal **Hauptvermutung**:
Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets,
Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960,
dim 6 polyhedron).

Definition

A polyhedron M is an n -manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n .

M is an n -manifold *with boundary* if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}_+^n . The *boundary* ∂M of M is an (unbounded) $(n-1)$ -manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}_+^n$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) *PL n-ball* if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n -ball is, of course an n -cell.)

$S^n \subset \mathbb{R}^k$ is a *PL n-sphere* if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.

Definition

A polyhedron M is an n -manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n .

M is an n -manifold *with boundary* if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}_+^n . The *boundary* ∂M of M is an (unbounded) $(n-1)$ -manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}_+^n$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) *PL n-ball* if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n -ball is, of course an n -cell.)

$S^n \subset \mathbb{R}^k$ is a *PL n-sphere* if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.

Definition

A polyhedron M is an n -manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n .

M is an n -manifold *with boundary* if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}_+^n . The *boundary* ∂M of M is an (unbounded) $(n-1)$ -manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}_+^n$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) *PL n-ball* if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n -ball is, of course an n -cell.)

$S^n \subset \mathbb{R}^k$ is a *PL n-sphere* if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.

Definition

A polyhedron M is an n -manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n .

M is an n -manifold *with boundary* if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}_+^n . The *boundary* ∂M of M is an (unbounded) $(n-1)$ -manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}_+^n$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n -ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n -ball is, of course an n -cell.)

$S^n \subset \mathbb{R}^k$ is a PL n -sphere if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.

Definition

A polyhedron M is an n -manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n .

M is an n -manifold *with boundary* if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}_+^n . The *boundary* ∂M of M is an (unbounded) $(n-1)$ -manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}_+^n$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n -ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n -ball is, of course an n -cell.)

$S^n \subset \mathbb{R}^k$ is a PL n -sphere if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.

Definition

A polyhedron M is an n -manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n .

M is an n -manifold *with boundary* if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}_+^n . The *boundary* ∂M of M is an (unbounded) $(n-1)$ -manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}_+^n$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n -ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n -ball is, of course an n -cell.)

$S^n \subset \mathbb{R}^k$ is a PL n -sphere if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.

Definition

A polyhedron M is an n -manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n .

M is an n -manifold *with boundary* if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}_+^n . The *boundary* ∂M of M is an (unbounded) $(n-1)$ -manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}_+^n$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n -ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n -ball is, of course an n -cell.)

$S^n \subset \mathbb{R}^k$ is a PL n -sphere if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.

The interior $B^n \setminus \partial B^n$ of any closed ball B^n is a regular cell:

Lemma

Let B and D be n -balls, and $h : \partial B \rightarrow \partial D$ a homeomorphism. Then h extends to a homeomorphism $h' : B \rightarrow D$.

Proof

The interior $B^n \setminus \partial B^n$ of any closed ball B^n is a regular cell:

Lemma

Let B and D be n -balls, and $h : \partial B \rightarrow \partial D$ a homeomorphism. Then h extends to a homeomorphism $h' : B \rightarrow D$.

Proof.

The interior $B^n \setminus \partial B^n$ of any closed ball B^n is a regular cell:

Lemma

Let B and D be n -balls, and $h : \partial B \rightarrow \partial D$ a homeomorphism. Then h extends to a homeomorphism $h' : B \rightarrow D$.

Proof.

Definition

Let Z be a closed (open) $(n-1)$ -ball, X, Y be closed (resp., open) n -balls, and $\bar{Z} = \bar{X} \cap \bar{Y} = \partial X \cap \partial Y$. We say that $X \cup Y \cup Z$ is obtained by *gluing* X and Y along Z .

Theorem

If X, Y, Z are closed balls, then $X \cup Y$ is a closed ball.

Definition

Let Z be a closed (open) $(n-1)$ -ball, X, Y be closed (resp., open) n -balls, and $\bar{Z} = \bar{X} \cap \bar{Y} = \partial X \cap \partial Y$. We say that $X \cup Y \cup Z$ is obtained by *gluing* X and Y along Z .

Theorem

If X, Y, Z are closed balls, then $X \cup Y$ is a closed ball.

Definition

Let Z be a closed (open) $(n-1)$ -ball, X, Y be closed (resp., open) n -balls, and $\bar{Z} = \bar{X} \cap \bar{Y} = \partial X \cap \partial Y$. We say that $X \cup Y \cup Z$ is obtained by *gluing* X and Y along Z .

Theorem

If X, Y, Z are closed balls, then $X \cup Y$ is a closed ball.

Definition

Let Z be a closed (open) $(n-1)$ -ball, X, Y be closed (resp., open) n -balls, and $\bar{Z} = \bar{X} \cap \bar{Y} = \partial X \cap \partial Y$. We say that $X \cup Y \cup Z$ is obtained by *gluing* X and Y along Z .

Theorem

If X, Y, Z are closed balls, then $X \cup Y$ is a closed ball.

Definition

Let Z be a closed (open) $(n-1)$ -ball, X, Y be closed (resp., open) n -balls, and $\bar{Z} = \bar{X} \cap \bar{Y} = \partial X \cap \partial Y$. We say that $X \cup Y \cup Z$ is obtained by *gluing* X and Y along Z .

Theorem

If X, Y, Z are closed balls, then $X \cup Y$ is a closed ball.

Converse?

Lemma (Schidlovskij)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n -balls. Let $X \cap Y$ be a closed $(n-1)$ -ball in ∂X , and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres

Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n -balls. Let $X \cap Y$ be a closed $(n-1)$ -ball in ∂X , and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres

Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n -balls. Let $X \cap Y$ be a closed $(n-1)$ -ball in ∂X , and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres

Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n -balls. Let $X \cap Y$ be a closed $(n-1)$ -ball in ∂X , and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres

Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n -balls. Let $X \cap Y$ be a closed $(n-1)$ -ball in ∂X , and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres

Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n -balls. Let $X \cap Y$ be a closed $(n-1)$ -ball in ∂X , and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres

Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n -balls. Let $X \cap Y$ be a closed $(n-1)$ -ball in ∂X , and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres

SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.

Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closure}(\mathbb{R}^2 \setminus [-1, 1]^2)$.

(In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \rightarrow S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).

But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.

SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.

Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closure}(\mathbb{R}^2 \setminus [-1, 1]^2)$.

(In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \rightarrow S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).

But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.

SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.

Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closure}(\mathbb{R}^2 \setminus [-1, 1]^2)$.

(In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \rightarrow S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).

But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.

SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.

Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closure}(\mathbb{R}^2 \setminus [-1, 1]^2)$.

(In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \rightarrow S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).

But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.

SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.

Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closure}(\mathbb{R}^2 \setminus [-1, 1]^2)$.

(In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \rightarrow S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).

But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.

SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.

Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closure}(\mathbb{R}^2 \setminus [-1, 1]^2)$.

(In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \rightarrow S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).

But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.

SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.

Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closure}(\mathbb{R}^2 \setminus [-1, 1]^2)$.

(In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \rightarrow S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).

But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.

Photograph by Helaman Ferguson

PLATE 3. Alexander horned wild sphere, patina bronze, 9" diameter,
by Helaman Ferguson

Definition

A pair of (PL) balls (B^m, B^n) is *proper* if $B^n \cap \partial B^m = \partial B^n$. A proper pair is *locally flat* if each point $x \in B^n$ has a neighbourhood in (B^m, B^n) homeomorphic (as a pair) to $(\mathbb{R}_+^m, \mathbb{R}_+^n \times 0)$ for $x \in \partial B^m$ and to $(\mathbb{R}^m, \mathbb{R}^n \times 0)$ otherwise. Similarly for spheres (S^m, S^n) .

$n=m-1$

Definition

A pair of (PL) balls (B^m, B^n) is *proper* if $B^n \cap \partial B^m = \partial B^n$. A proper pair is *locally flat* if each point $x \in B^n$ has a neighbourhood in (B^m, B^n) homeomorphic (as a pair) to $(\mathbb{R}_+^m, \mathbb{R}_+^n \times 0)$ for $x \in \partial B^m$ and to $(\mathbb{R}^m, \mathbb{R}^n \times 0)$ otherwise. Similarly for spheres (S^m, S^n) .

Definition

A pair of (PL) balls (B^m, B^n) is *proper* if $B^n \cap \partial B^m = \partial B^n$. A proper pair is *locally flat* if each point $x \in B^n$ has a neighbourhood in (B^m, B^n) homeomorphic (as a pair) to $(\mathbb{R}_+^m, \mathbb{R}_+^n \times 0)$ for $x \in \partial B^m$ and to $(\mathbb{R}^m, \mathbb{R}^n \times 0)$ otherwise. Similarly for spheres (S^m, S^n) .

$$\begin{matrix} n=m-1 \\ B^m \end{matrix}$$

Definition

A ball pair (B^m, B^n) is *unknotted* if it is homeomorphic to $([-1, 1]^m, [-1, 1]^n \times 0)$.

A sphere pair (S^m, S^n) is *unknotted* if it is homeomorphic to $(\partial[-1, 1]^m, \partial[-1, 1]^n \times 0)$.

Theorem (Generalized Schönflies theorem)

For $n \neq 4$ any locally flat pair of PL spheres (S^n, S^{n-1}) is *unknotted*.

Same in **Diff** category. In **Top** Schönflies is true for every n (Brown, Mazur and Morse, 1960)

Definition

A ball pair (B^m, B^n) is *unknotted* if it is homeomorphic to $([-1, 1]^m, [-1, 1]^n \times 0)$.

A sphere pair (S^m, S^n) is *unknotted* if it is homeomorphic to $(\partial[-1, 1]^m, \partial[-1, 1]^n \times 0)$.

Theorem (Generalized Schönflies theorem)

For $n \neq 4$ any locally flat pair of PL spheres (S^n, S^{n-1}) is unknotted.

Same in **Diff** category. In **Top** Schönflies is true for every n (Brown, Mazur and Morse, 1960)

Definition

A ball pair (B^m, B^n) is *unknotted* if it is homeomorphic to $([-1, 1]^m, [-1, 1]^n \times 0)$.

A sphere pair (S^m, S^n) is *unknotted* if it is homeomorphic to $(\partial[-1, 1]^m, \partial[-1, 1]^n \times 0)$.

Theorem (Generalized Schönflies theorem)

For $n \neq 4$ any locally flat pair of PL spheres (S^n, S^{n-1}) is unknotted.

Same in **Diff** category. In **Top** Schönflies is true for every n (Brown, Mazur and Morse, 1960)

Definition

A ball pair (B^m, B^n) is *unknotted* if it is homeomorphic to $([-1, 1]^m, [-1, 1]^n \times 0)$.

A sphere pair (S^m, S^n) is *unknotted* if it is homeomorphic to $(\partial[-1, 1]^m, \partial[-1, 1]^n \times 0)$.

Theorem (Generalized Schönflies theorem)

For $n \neq 4$ any locally flat pair of PL spheres (S^n, S^{n-1}) is unknotted.

Same in **Diff** category. In **Top** Schönflies is true for every n (Brown, Mazur and Morse, 1960)

Definition

A ball pair (B^m, B^n) is *unknotted* if it is homeomorphic to $([-1, 1]^m, [-1, 1]^n \times 0)$.

A sphere pair (S^m, S^n) is *unknotted* if it is homeomorphic to $(\partial[-1, 1]^m, \partial[-1, 1]^n \times 0)$.

Theorem (Generalized Schönflies theorem)

For $n \neq 4$ any locally flat pair of PL spheres (S^n, S^{n-1}) is unknotted.

Same in **Diff** category. In **Top** Schönflies is true for every n (Brown, Mazur and Morse, 1960)

Definition

A ball pair (B^m, B^n) is *unknotted* if it is homeomorphic to $([-1, 1]^m, [-1, 1]^n \times 0)$.

A sphere pair (S^m, S^n) is *unknotted* if it is homeomorphic to $(\partial[-1, 1]^m, \partial[-1, 1]^n \times 0)$.

Theorem (Generalized Schönflies theorem)

For $n \neq 4$ any locally flat pair of PL spheres (S^n, S^{n-1}) is unknotted.

Same in **Diff** category. In **Top** Schönflies is true for every n (Brown, Mazur and Morse, 1960)

Theorem

For $n \neq 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof communicated by K. Itoev.

Notation:

$S^{n-1} := \partial B^n$, $S^{n-2} := \partial B^{n-1}$

B_+^n , B_-^n are two connected components of B^n separated by B^{n-1}

S_+^{n-1} , S_-^{n-1} are corresponding components of S^{n-1}

Theorem

For $n \neq 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof (communicated by K. Itoev):

Notation:

$S^{n-1} := \partial B^n$, $S^{n-2} := \partial B^{n-1}$

B_+^n , B_-^n are two connected components of B^n separated by B^{n-1}

S_+^{n-1} , S_-^{n-1} are corresponding components of S^{n-1}

Theorem

For $n \neq 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof (communicated by N. Mnev).

Notation:

$S^{n-1} := \partial B^n$, $S^{n-2} := \partial B^{n-1}$

B_+^n , B_-^n are two connected components of B^n separated by B^{n-1}

S_+^{n-1} , S_-^{n-1} are corresponding components of S^{n-1}

□

Theorem

For $n \neq 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof (communicated by N. Mnev).

Notation:

$S^{n-1} := \partial B^n$, $S^{n-2} := \partial B^{n-1}$

B_+^n , B_-^n are two connected components of B^n separated by B^{n-1}

S_+^{n-1} , S_-^{n-1} are corresponding components of S^{n-1}

□

Theorem

For $n \neq 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof (communicated by N. Mnev).

Notation:

$S^{n-1} := \partial B^n$, $S^{n-2} := \partial B^{n-1}$

B_+^n , B_-^n are two connected components of B^n separated by B^{n-1}

S_+^{n-1} , S_-^{n-1} are corresponding components of S^{n-1}

□

Theorem

For $n \neq 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof (communicated by N. Mnev).

Notation:

$$S^{n-1} := \partial B^n, S^{n-2} := \partial B^{n-1}$$

B_+^n, B_-^n are two connected components of B^n separated by B^{n-1}

S_+^{n-1}, S_-^{n-1} are corresponding components of S^{n-1}

□

By Schönflies theorem, for $n \neq 5$, (S^{n-1}, S^{n-2}) is unknotted, and S^{n-1}_{\pm} are PL balls.

By Schönflies theorem, for $n \neq 5$, (S^{n-1}, S^{n-2}) is unknotted, and S_{\pm}^{n-1} are PL balls.

(C^n, D^{n-1}) cone pair with the base (S^{n-1}, S^{n-2}) . Then
 $W^n := B^n \cup C^n$ is an n -sphere, $V^{n-1} := B^{n-1} \cup D^{n-1}$ is an
 $(n-1)$ -sphere, and the pair (W^n, V^{n-1}) is locally flat.
 By Schönflies theorem, for $n \neq 4$, (W^n, V^{n-1}) is unknotted, and
 the two parts of W^n separated by V^{n-1} are PL balls.

(C^n, D^{n-1}) cone pair with the base (S^{n-1}, S^{n-2}) . Then
 $W^n := B^n \cup C^n$ is an n -sphere, $V^{n-1} := B^{n-1} \cup D^{n-1}$ is an
 $(n-1)$ -sphere, and the pair (W^n, V^{n-1}) is locally flat.
 By Schönflies theorem, for $n \neq 4$, (W^n, V^{n-1}) is unknotted, and
 the two parts of W^n separated by V^{n-1} are PL balls.

(C^n, D^{n-1}) cone pair with the base (S^{n-1}, S^{n-2}) . Then $W^n := B^n \cup C^n$ is an n -sphere, $V^{n-1} := B^{n-1} \cup D^{n-1}$ is an $(n-1)$ -sphere, and the pair (W^n, V^{n-1}) is locally flat.

By Schönflies theorem, for $n \neq 4$, (W^n, V^{n-1}) is unknotted, and the two parts of W^n separated by V^{n-1} are PL balls.

(C^n, D^{n-1}) cone pair with the base (S^{n-1}, S^{n-2}) . Then $W^n := B^n \cup C^n$ is an n -sphere, $V^{n-1} := B^{n-1} \cup D^{n-1}$ is an $(n-1)$ -sphere, and the pair (W^n, V^{n-1}) is locally flat. By Schönflies theorem, for $n \neq 4$, (W^n, V^{n-1}) is unknotted, and the two parts of W^n separated by V^{n-1} are PL balls.

These two parts are:

$$B_+^n \cup E_+^n \text{ and } B_-^n \cup E_-^n$$

where E_+^n and E_-^n are cones with bases S_+^{n-1} and S_-^{n-1} respectively.

S_+^{n-1} and S_-^{n-1} are PL $(n-1)$ -balls. Hence E_+^n and E_-^n are PL n -balls.

Shiota's lemma implies that B_+^n and B_-^n are PL n -balls.

These two parts are:

$B_+^n \cup E_+^n$ and $B_-^n \cup E_-^n$

where E_+^n and E_-^n are cones with bases S_+^{n-1} and S_-^{n-1} respectively.

S_+^{n-1} and S_-^{n-1} are PL $(n-1)$ -balls. Hence E_+^n and E_-^n are PL n -balls.

Shiota's lemma implies that B_+^n and B_-^n are PL n -balls.

These two parts are:

$$B_+^n \cup E_+^n \text{ and } B_-^n \cup E_-^n$$

where E_+^n and E_-^n are cones with bases S_+^{n-1} and S_-^{n-1} respectively.

S_+^{n-1} and S_-^{n-1} are PL $(n-1)$ -balls. Hence E_+^n and E_-^n are PL n -balls.

Shiota's lemma implies that B_+^n and B_-^n are PL n -balls.

These two parts are:

$$B_+^n \cup E_+^n \text{ and } B_-^n \cup E_-^n$$

where E_+^n and E_-^n are cones with bases S_+^{n-1} and S_-^{n-1} respectively.

S_+^{n-1} and S_-^{n-1} are PL $(n-1)$ -balls. Hence E_+^n and E_-^n are PL n -balls.

Shiota's lemma implies that B_+^n and B_-^n are PL n -balls.

These two parts are:

$$B_+^n \cup E_+^n \text{ and } B_-^n \cup E_-^n$$

where E_+^n and E_-^n are cones with bases S_+^{n-1} and S_-^{n-1} respectively.

S_+^{n-1} and S_-^{n-1} are PL $(n-1)$ -balls. Hence E_+^n and E_-^n are PL n -balls.

Shioya's lemma implies that B_+^n and B_-^n are PL n -balls.

These two parts are:

$$B_+^n \cup E_+^n \text{ and } B_-^n \cup E_-^n$$

where E_+^n and E_-^n are cones with bases S_+^{n-1} and S_-^{n-1} respectively.

S_+^{n-1} and S_-^{n-1} are PL $(n-1)$ -balls. Hence E_+^n and E_-^n are PL n -balls.

Shiota's lemma implies that B_+^n and B_-^n are PL n -balls.

Photograph by Clare Ferguson

PLATE 1. Tame sphere, Inner Mongolian black granite, 16" diameter,
by Helaman Ferguson