Cutting a Ball in Two

Nicolai Vorobjov

University of Bath

18 November 2010
Decomposition of definable sets into topological cells.
Definable (in o-minimal structure), e.g., semialgebraic or subanalytic.
Topological n-cell $= \text{homeomorphic image of a standard } n\text{-ball},$
$\{(x_1, \ldots, x_n) \in \mathbb{R}^n | \sum_{i=1}^{n} x_i^2 < 1\}$ or $(-1, 1)^n$.
An n-cell B^n is \textit{regular} if (B^n, B^n) is homeomorphic (as a pair) to the standard pair $([-1, 1], (-1, 1))$.

\textbf{Figure:} Example of non-regular cell
Decomposition of definable sets into topological cells. **Definable** (in o-minimal structure), e.g., semialgebraic or subanalytic.

Topological n-cell = homeomorphic image of a standard n-ball, $\{(x_1, \ldots, x_n) \in \mathbb{R}^n | \sum_{i=1}^{n} x_i^2 < 1\}$ or $(-1, 1)^n$.

An n-cell B^n is **regular** if $(B^n, \overline{B^n})$ is homeomorphic (as a pair) to the standard pair $([-1, 1], (-1, 1))$.

Figure: Example of non-regular cell
Decomposition of definable sets into topological cells. **Definable** (in o-minimal structure), e.g., semialgebraic or subanalytic.

Topological n-**cell** = homeomorphic image of a standard n-ball, \(\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^{n} x_i^2 < 1 \} \) or \((-1, 1)^n\).

An n-cell B^n is **regular** if \((B^n, B^n)\) is homeomorphic (as a pair) to the standard pair \((-1, 1], (-1, 1))\).

Figure: Example of non-regular cell
Decomposition of definable sets into topological cells.

Definable (in o-minimal structure), e.g., semialgebraic or subanalytic.

Topological n-cell = homeomorphic image of a standard n-ball,
\[\{(x_1, \ldots, x_n) \in \mathbb{R}^n | \sum_{i=1}^{n} x_i^2 < 1 \} \text{ or } (-1, 1)^n. \]

An n-cell B^n is *regular* if $(\overline{B^n}, B^n)$ is homeomorphic (as a pair) to the standard pair $([-1, 1], (-1, 1))$.

Figure: Example of non-regular cell
Sometimes useful to have a decomposition into regular cells. For this may need to cut an n-cell into parts by an inscribed $(n - 1)$-cell.

Question: Under which conditions parts B^+_n and B^-_n are regular cells?
Sometimes useful to have a decomposition into regular cells. For this may need to cut an n-cell into parts by an inscribed $(n-1)$-cell.

Question: Under which conditions parts B_+^n and B_-^n are regular cells?
Definition

Let $a \in \mathbb{R}^n$, $B \subseteq \mathbb{R}^n$. The subset aB is a cone with vertex a and base B if each point in aB is expressed uniquely as $\lambda a + (1 - \lambda)b$ for some $b \in B$ and $0 \leq \lambda \leq 1$.

![Diagram](image-url)

- **cone**
- **not cone**
 PIECEWISE-LINEAR (PL) TOPOLOGY

Polyhedra and PL maps.

Definition

Let $a \in \mathbb{R}^n$, $B \subset \mathbb{R}^n$. The subset aB is a *cone* with vertex a and base B if each point in aB is expressed uniquely as $\lambda a + (1 - \lambda)b$ for some $b \in B$ and $0 \leq \lambda \leq 1$.

Diagram:

- **Cone:** aB where each point in aB can be uniquely expressed as $\lambda a + (1 - \lambda)b$ for some $b \in B$ and $0 \leq \lambda \leq 1$.
- **Not Cone:** aB where the condition for a cone is not satisfied.
PIECEWISE-LINEAR (PL) TOPOLOGY

Polyhedra and PL maps.

Definition

Let \(a \in \mathbb{R}^n \), \(B \subset \mathbb{R}^n \). The subset \(aB \) is a cone with vertex \(a \) and base \(B \) if each point in \(aB \) is expressed uniquely as \(\lambda a + (1 - \lambda)b \) for some \(b \in B \) and \(0 \leq \lambda \leq 1 \).
Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P, where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n.
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:
Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P, where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n.
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:
Definition
A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P, where B is compact.

Example
1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n.
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:
Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P, where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n.
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:
Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P, where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n.
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:
Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P, where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n.
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:
Definition

A subset $P \subset \mathbb{R}^n$ is a *polyhedron* if every point $a \in P$ has a cone neighbourhood (called *star*) aB in P, where B is compact.

Example

1. Any (geometric realization of) simplicial complex.
2. Any open set in \mathbb{R}^n.
3. An intersection of finitely many polyhedra.
4. Non-polyhedra:
Morphisms:

Definition

A map \(f : P \to Q \) is called *piecewise linear (PL)* if every point \(a \in P \) has a star \(aB \) such that

\[
f(\lambda a + (1 - \lambda)b) = \lambda f(a) + (1 - \lambda)f(b)
\]

for all \(b \in B \) and \(0 \leq \lambda \leq 1 \).

Obviously, a linear map is PL.

Exercise

A map \(f : P \to Q \) is PL iff its graph \(\{(x, f(x)) \in \mathbb{R}^{n+m} | x \in P\} \) is a polyhedron.

Main textbook:
Morphisms:

Definition

A map $f : P \rightarrow Q$ is called *piecewise linear (PL)* if every point $a \in P$ has a star aB such that

$$f(\lambda a + (1 - \lambda)b) = \lambda f(a) + (1 - \lambda)f(b)$$

for all $b \in B$ and $0 \leq \lambda \leq 1$.

Obviously, a linear map is PL.

Exercise

A map $f : P \rightarrow Q$ is PL iff its graph $\{(x, f(x)) \in \mathbb{R}^{n+m} | x \in P\}$ is a polyhedron.

Main textbook:
Morphisms:

Definition

A map \(f : P \rightarrow Q \) is called \textit{piecewise linear (PL)} if every point \(a \in P \) has a star \(aB \) such that

\[
 f(\lambda a + (1 - \lambda)b) = \lambda f(a) + (1 - \lambda)f(b)
\]

for all \(b \in B \) and \(0 \leq \lambda \leq 1 \).

Obviously, a linear map is PL.

Exercise

A map \(f : P \rightarrow Q \) is PL iff its graph \(\{(x, f(x)) \in \mathbb{R}^{n+m} | x \in P\} \) is a polyhedron.

Main textbook:
Morphisms:

Definition

A map \(f : P \to Q \) is called *piecewise linear (PL)* if every point \(a \in P \) has a star \(aB \) such that
\[
f(\lambda a + (1 - \lambda)b) = \lambda f(a) + (1 - \lambda)f(b)
\]
for all \(b \in B \) and \(0 \leq \lambda \leq 1 \).

Obviously, a linear map is PL.

Exercise

A map \(f : P \to Q \) is PL iff its graph \(\{(x, f(x)) \in \mathbb{R}^{n+m} | x \in P\} \) is a polyhedron.

Main textbook:
Morphisms:

Definition
A map \(f : P \to Q \) is called *piecewise linear* (PL) if every point \(a \in P \) has a star \(aB \) such that
\[
f(\lambda a + (1 - \lambda)b) = \lambda f(a) + (1 - \lambda)f(b)
\]
for all \(b \in B \) and \(0 \leq \lambda \leq 1 \).

Obviously, a linear map is PL.

Exercise

A map \(f : P \to Q \) is PL iff its graph \(\{(x, f(x)) \in \mathbb{R}^{n+m} \mid x \in P \} \) is a polyhedron.

Main textbook:
What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal Hauptvermutung: *Two definably homeomorphic compact polyhedra are PL homeomorphic.*

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).
What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal Hauptvermutung: Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).
What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron. Open definable sets are polyhedra. Every PL map (or homeomorphism) is a definable map (or homeomorphism). Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal Hauptvermutung: Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997
More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).
What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal Hauptvermutung: Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).
What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal Hauptvermutung: Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).
What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.
Open definable sets are polyhedra.
Every PL map (or homeomorphism) is a definable map (or homeomorphism).
Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal Hauptvermutung: *Two definably homeomorphic compact polyhedra are PL homeomorphic.*

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997
More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).
What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal Hauptvermutung: Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).
What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal Hauptvermutung: Two definably homeomorphic compact polyhedra are PL homeomorphic.

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).
What is the relation to definable sets?

Every compact definable set is *triangulable*, i.e., is definably homeomorphic to a geometric realization of a finite simplicial complex, i.e., to a polyhedron.

Open definable sets are polyhedra.

Every PL map (or homeomorphism) is a definable map (or homeomorphism).

Hence, certain questions about homeomorphisms of definable sets can be reduced to PL homeomorphisms of corresponding polyhedra.

The converse is also partly true, o-minimal Hauptvermutung: *Two definably homeomorphic compact polyhedra are PL homeomorphic.*

M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, 1997

More generally, the Hauptvermutung is false (Milnor, 1960, dim 6 polyhedron).
A polyhedron M is an n-manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n.

M is an n-manifold with boundary if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}^n_+. The boundary ∂M of M is an (unbounded) $(n-1)$-manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}^n_+$.

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n-ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n-ball is, of course an n-cell.) $S^n \subset \mathbb{R}^k$ is a PL n-sphere if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.

Nicolai Vorobjov

Cutting a Ball in Two
A polyhedron M is an n-manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n.

M is an n-manifold with boundary if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}^n_+. The boundary ∂M of M is an (unbounded) $(n-1)$-manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}^n_+$.

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n-ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n-ball is, of course an n-cell.)

$S^n \subset \mathbb{R}^k$ is a PL n-sphere if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.
Definition

A polyhedron M is an n-manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n.

M is an n-manifold with boundary if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}_+^n. The boundary ∂M of M is an (unbounded) $(n-1)$-manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}_+^n$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n-ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n-ball is, of course an n-cell.)

$S^n \subset \mathbb{R}^k$ is a PL n-sphere if S^n is PL homeomorphic to $\partial [-1, 1]^{n+1}$.
Definition

A polyhedron M is an n-manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n.

M is an n-manifold with boundary if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}^n_+. The boundary ∂M of M is an (unbounded) $(n-1)$-manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}^n_+$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n-ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n-ball is, of course an n-cell.)

$S^n \subset \mathbb{R}^k$ is a PL n-sphere if S^n is PL homeomorphic to $\partial [-1, 1]^{n+1}$.

Nicolai Vorobjov
Cutting a Ball in Two
Definition

A polyhedron M is an n-manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n.

M is an n-manifold with boundary if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}^n_+. The boundary ∂M of M is an (unbounded) $(n-1)$-manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}^n_+$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n-ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n-ball is, of course, an n-cell.)

$S^n \subset \mathbb{R}^k$ is a PL n-sphere if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.
Definition

A polyhedron M is an n-manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n.

M is an n-manifold with boundary if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}^n_+. The boundary ∂M of M is an (unbounded) $(n - 1)$-manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}^n_+$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n-ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n-ball is, of course an n-cell.)

$S^n \subset \mathbb{R}^k$ is a PL n-sphere if S^n is PL homeomorphic to $\partial [-1, 1]^{n+1}$.

Definition

A polyhedron M is an n-manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n.

M is an n-manifold with boundary if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}^n_+. The boundary ∂M of M is an (unbounded) $(n-1)$-manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}^n_+$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n-ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n-ball is, of course an n-cell.)

$S^n \subset \mathbb{R}^k$ is a PL n-sphere if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.
Definition

A polyhedron M is an n-manifold if every point $x \in M$ has a neighbourhood in M (PL) homeomorphic to an open set in \mathbb{R}^n.

M is an n-manifold with boundary if every point has a neighbourhood homeomorphic to an open subset of either \mathbb{R}^n or \mathbb{R}^n_+. The boundary ∂M of M is an (unbounded) $(n-1)$-manifold consisting of points corresponding to $\mathbb{R}^{n-1} \times 0 \subset \mathbb{R}_+^n$.

Definition

$B^n \subset \mathbb{R}^k$ is a closed (resp. open) PL n-ball if B^n is PL homeomorphic to $[-1, 1]^n$ (resp. $(-1, 1)^n$). (An open n-ball is, of course an n-cell.)

$S^n \subset \mathbb{R}^k$ is a PL n-sphere if S^n is PL homeomorphic to $\partial[-1, 1]^{n+1}$.
The interior $B^n \setminus \partial B^n$ of any closed ball B^n is a regular cell:

Lemma

Let B and D be n-balls, and $h : \partial B \to \partial D$ a homeomorphism. Then h extends to a homeomorphism $h' : B \to D$.

Proof.
The interior $B^n \setminus \partial B^n$ of any closed ball B^n is a regular cell:

Lemma

Let B and D be n-balls, and $h : \partial B \to \partial D$ a homeomorphism. Then h extends to a homeomorphism $h' : B \to D$.

Proof.
The interior $B^n \setminus \partial B^n$ of any closed ball B^n is a regular cell:

Lemma

Let B and D be n-balls, and $h : \partial B \to \partial D$ a homeomorphism. Then h extends to a homeomorphism $h' : B \to D$.

Proof.

[Diagram showing the extension of h to h']
Definition

Let Z be a closed (open) $(n - 1)$-ball, X, Y be closed (resp., open) n-balls, and $Z = X \cap Y = \partial X \cap \partial Y$. We say that $X \cup Y \cup Z$ is obtained by *gluing* X and Y along Z.

Theorem

If X, Y, Z are closed balls, then $X \cup Y$ is a closed ball.
Definition

Let Z be a closed (open) $(n-1)$-ball, X, Y be closed (resp., open) n-balls, and $\overline{Z} = \overline{X} \cap \overline{Y} = \partial X \cap \partial Y$. We say that $X \cup Y \cup Z$ is obtained by gluing X and Y along Z.

Theorem

If X, Y, Z are closed balls, then $X \cup Y$ is a closed ball.
Definition
Let Z be a closed (open) $(n-1)$-ball, X, Y be closed (resp., open) n-balls, and $\overline{Z} = \overline{X} \cap \overline{Y} = \partial X \cap \partial Y$. We say that $X \cup Y \cup Z$ is obtained by gluing X and Y along Z.

Theorem
If X, Y, Z are closed balls, then $X \cup Y$ is a closed ball.
Definition

Let Z be a closed (open) $(n - 1)$-ball, X, Y be closed (resp., open) n-balls, and $Z = X \cap Y = \partial X \cap \partial Y$. We say that $X \cup Y \cup Z$ is obtained by *gluing* X and Y *along* Z.

Theorem

If X, Y, Z are closed balls, then $X \cup Y$ is a closed ball.
Definition

Let Z be a closed (open) $(n - 1)$-ball, X, Y be closed (resp., open) n-balls, and $Z = \overline{X} \cap \overline{Y} = \partial X \cap \partial Y$. We say that $X \cup Y \cup Z$ is obtained by gluing X and Y along Z.

Theorem

If X, Y, Z are closed balls, then $X \cup Y$ is a closed ball.
Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n-balls. Let $X \cap Y$ be a closed $(n - 1)$-ball in ∂X, and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres
Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n-balls. Let $X \cap Y$ be a closed $(n-1)$-ball in ∂X, and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres
Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n-balls. Let $X \cap Y$ be a closed $(n-1)$-ball in ∂X, and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres
Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n-balls. Let $X \cap Y$ be a closed $(n-1)$-ball in ∂X, and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres
Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n-balls. Let $X \cap Y$ be a closed $(n-1)$-ball in ∂X, and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres
Converse?

Lemma (Shiota)

Let $X, Y \subseteq \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n-balls. Let $X \cap Y$ be a closed $(n-1)$-ball in ∂X, and let $\text{int}(X \cap Y) \subseteq \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres
Converse?

Lemma (Shiota)

Let $X, Y \subset \mathbb{R}^n$ be compact polyhedra such that X and $X \cup Y$ are closed n-balls. Let $X \cap Y$ be a closed $(n - 1)$-ball in ∂X, and let $\text{int}(X \cap Y) \subset \text{int}(X \cup Y)$. Then Y is a closed ball.

We want to get rid of the assumption that X is a ball.

Start with spheres
SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.
Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closure}(\mathbb{R}^2 \setminus [-1, 1]^2)$.
(In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \to S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).
But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.

Nicolai Vorobjov
Cutting a Ball in Two
SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.
Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closire}(\mathbb{R}^2 \setminus [-1, 1]^2)$.
(In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \to S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).
But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.
SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.
Same for $S^1 \subset S^2$.

Schöfnflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closire}(\mathbb{R}^2 \setminus [-1, 1]^2)$. (In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \rightarrow S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality). But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.
SCHÖNFLIES THEOREM

Jordan theorem: \(S^1 \subset \mathbb{R}^2 \) “divides” \(\mathbb{R}^2 \) into two connected components.
Same for \(S^1 \subset S^2 \).

Schönflies theorem: in addition, the components are homeomorphic to \([-1, 1]^2\) and \textit{closire}(\(\mathbb{R}^2 \setminus [-1, 1]^2\)).
(In case \(S^1 \subset S^2 \), both are homeomorphic to \([-1, 1]^2\).)

Jordan theorem generalizes to all higher dimensions: if \(S^{n-1} \to S^n \) is an embedding then \(S^{n-1} \) divides \(S^n \) into two parts (a very special case of Alexander duality).
But direct generalization of Schönflies is false already for \(n = 3 \): the Alexander Horned sphere.
SCHÖNFLIES THEOREM

Jordan theorem: \(S^1 \subset \mathbb{R}^2 \) “divides” \(\mathbb{R}^2 \) into two connected components.
Same for \(S^1 \subset S^2 \).

Schönflies theorem: in addition, the components are homeomorphic to \([-1, 1]^2 \) and \(\text{closire}(\mathbb{R}^2 \setminus [-1, 1]^2) \).
(In case \(S^1 \subset S^2 \), both are homeomorphic to \([-1, 1]^2 \).

Jordan theorem generalizes to all higher dimensions: if \(S^{n-1} \rightarrow S^n \) is an embedding then \(S^{n-1} \) divides \(S^n \) into two parts (a very special case of Alexander duality).
But direct generalization of Schönflies is false already for \(n = 3 \): the Alexander Horned sphere.
SCHÖNFLIES THEOREM
Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.
Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closire}(\mathbb{R}^2 \setminus [-1, 1]^2)$. (In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \to S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).
But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.
SCHÖNFLIES THEOREM

Jordan theorem: $S^1 \subset \mathbb{R}^2$ “divides” \mathbb{R}^2 into two connected components.
Same for $S^1 \subset S^2$.

Schönflies theorem: in addition, the components are homeomorphic to $[-1, 1]^2$ and $\text{closures}((\mathbb{R}^2 \setminus [-1, 1]^2)$.
(In case $S^1 \subset S^2$, both are homeomorphic to $[-1, 1]^2$.)

Jordan theorem generalizes to all higher dimensions: if $S^{n-1} \rightarrow S^n$ is an embedding then S^{n-1} divides S^n into two parts (a very special case of Alexander duality).
But direct generalization of Schönflies is false already for $n = 3$: the Alexander Horned sphere.
PLATE 3. Alexander horned wild sphere, patina bronze, 9" diameter, by Helaman Ferguson
Definition

A pair of (PL) balls \((B^m, B^n)\) is proper if \(B^n \cap \partial B^m = \partial B^n\). A proper pair is locally flat if each point \(x \in B^n\) has a neighbourhood in \((B^m, B^n)\) homeomorphic (as a pair) to \((\mathbb{R}_+^m, \mathbb{R}_+^n \times 0)\) for \(x \in \partial B^m\) and to \((\mathbb{R}^m, \mathbb{R}_+^n \times 0)\) otherwise. Similarly for spheres \((S^m, S^n)\).
Definition

A pair of (PL) balls \((B^m, B^n)\) is proper if \(B^n \cap \partial B^m = \partial B^n\). A proper pair is *locally flat* if each point \(x \in B^n\) has a neighbourhood in \((B^m, B^n)\) homeomorphic (as a pair) to
\((\mathbb{R}^m_+, \mathbb{R}^n_+ \times 0)\) for \(x \in \partial B^m\) and to
\((\mathbb{R}^m, \mathbb{R}^n \times 0)\) otherwise. Similarly for spheres \((S^m, S^n)\).
Definition

A pair of (PL) balls \((B^m, B^n)\) is proper if \(B^n \cap \partial B^m = \partial B^n\). A proper pair is *locally flat* if each point \(x \in B^n\) has a neighbourhood in \((B^m, B^n)\) homeomorphic (as a pair) to \((\mathbb{R}^m_+ \times 0, \mathbb{R}^n_+ \times 0)\) for \(x \in \partial B^m\) and to \((\mathbb{R}^m, \mathbb{R}^n \times 0)\) otherwise. Similarly for spheres \((S^m, S^n)\).
Definition

A ball pair \((B^m, B^n)\) is *unknotted* if it is homeomorphic to \((-1, 1]^m \times (-1, 1]^n \times 0\).

A sphere pair \((S^m, S^n)\) is *unknotted* if it is homeomorphic to \((\partial\,[-1, 1]^m, \partial\,[-1, 1]^n \times 0)\).

Theorem (Generalized Schönflies theorem)

For \(n \neq 4\) any locally flat pair of PL spheres \((S^n, S^{n-1})\) is unknotted.

Same in **Diff** category. In **Top** Schönflies is true for every \(n\) (Brown, Mazur and Morse, 1960)
Definition

A ball pair \((B^m, B^n)\) is *unknotted* is it is homeomorphic to \(([-1, 1]^m, [-1, 1]^n \times 0)\).

A sphere pair \((S^m, S^n)\) is *unknotted* is it is homeomorphic to \((\partial [-1, 1]^m, \partial [-1, 1]^n \times 0)\).

Theorem (Generalized Schönflies theorem)

For \(n \neq 4\) any locally flat pair of PL spheres \((S^n, S^{n-1})\) is unknotted.

Same in **Diff** category. In **Top** Schönflies is true for every \(n\) (Brown, Mazur and Morse, 1960)
A ball pair \((B^m, B^n)\) is *unknotted* if it is homeomorphic to \([-1, 1]^m \times [-1, 1]^n \times 0\).

A sphere pair \((S^m, S^n)\) is *unknotted* if it is homeomorphic to \(\partial[-1, 1]^m \times \partial[-1, 1]^n \times 0\).

Theorem (Generalized Schönflies theorem)

For \(n \neq 4\) any locally flat pair of PL spheres \((S^n, S^{n-1})\) is unknotted.

Same in Diff category. In Top Schönflies is true for every \(n\) (Brown, Mazur and Morse, 1960)
Definition

A ball pair \((B^m, B^n)\) is *unknotted* if it is homeomorphic to \(([−1, 1]^m, [−1, 1]^n × 0)\).

A sphere pair \((S^m, S^n)\) is *unknotted* if it is homeomorphic to \((∂[−1, 1]^m, ∂[−1, 1]^n × 0)\).

Theorem (Generalized Schönflies theorem)

For \(n \neq 4\) *any locally flat pair of PL spheres* \((S^n, S^{n−1})\) *is unknotted.*

Same in *Diff* category. In *Top* Schönflies is true for every \(n\) (Brown, Mazur and Morse, 1960)
Definition

A ball pair \((B^m, B^n)\) is *unknotted* if it is homeomorphic to \(([-1, 1]^m, [-1, 1]^n \times 0)\).

A sphere pair \((S^m, S^n)\) is *unknotted* if it is homeomorphic to
\((\partial[-1, 1]^m, \partial[-1, 1]^n \times 0)\).

Theorem (Generalized Schönflies theorem)

For \(n \neq 4\) *any locally flat pair of PL spheres* \((S^n, S^{n-1})\) *is unknotted.*

Same in *Diff* category. In *Top* Schönflies is true for every \(n\) (Brown, Mazur and Morse, 1960)
Definition
A ball pair \((B^m, B^n)\) is *unknotted* if it is homeomorphic to
\([-1, 1]^m \times [-1, 1]^n \times 0\).
A sphere pair \((S^m, S^n)\) is *unknotted* if it is homeomorphic to
\(\partial[-1, 1]^m \times \partial[-1, 1]^n \times 0\).

Theorem (Generalized Schönflies theorem)

For \(n \neq 4\) any locally flat pair of PL spheres \((S^n, S^{n-1})\) is unknotted.

Same in **Diff** category. In **Top** Schönflies is true for every \(n\)
(Brown, Mazur and Morse, 1960)
Theorem

For $n \neq 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof (communicated by N. Mnev).

Notation:
$S^{n-1} := \partial B^n, S^{n-2} := \partial B^{n-1}$

$B^n_+, B^n_- \text{ are two connected components of } B^n \text{ separated by } B^{n-1}$

$S^{n-1}_+, S^{n-1}_- \text{ are corresponding components of } S^{n-1}$
Theorem

For $n \neq 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof (communicated by N. Mnev).

Notation:

$S^{n-1} := \partial B^n$, $S^{n-2} := \partial B^{n-1}$

B^n_+, B^n_- are two connected components of B^n separated by B^{n-1}

S^{n-1}_+, S^{n-1}_- are corresponding components of S^{n-1}.
Theorem

For $n \neq 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof (communicated by N. Mnev).

Notation:

$S^{n-1} := \partial B^n$, $S^{n-2} := \partial B^{n-1}$

B^+_n, B^-_n are two connected components of B^n separated by B^{n-1}

S^{n-1}_+, S^{n-1}_- are corresponding components of S^{n-1}
Theorem

For $n \neq 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof (communicated by N. Mnev).

Notation:

$S^{n-1} := \partial B^n$, $S^{n-2} := \partial B^{n-1}$

B^+_n, B^-_n are two connected components of B^n separated by B^{n-1}

S^+_{n-1}, S^-_{n-1} are corresponding components of S^{n-1}
Theorem

For \(n \neq 4, 5 \) any locally flat pair of PL balls \((B^n, B^{n-1})\) is unknotted.

Proof (communicated by N. Mnev).

Notation:
\[S^{n-1} := \partial B^n, \quad S^{n-2} := \partial B^{n-1} \]

\(B^n_+, B^n_- \) are two connected components of \(B^n \) separated by \(B^{n-1} \)

\(S^{n-1}_+, S^{n-1}_- \) are corresponding components of \(S^{n-1} \)
Theorem

For $n \not= 4, 5$ any locally flat pair of PL balls (B^n, B^{n-1}) is unknotted.

Proof (communicated by N. Mnev).

Notation:

$S^{n-1} := \partial B^n$, $S^{n-2} := \partial B^{n-1}$

$B^n_+, B^n_-\text{ are two connected components of } B^n \text{ separated by } B^{n-1}$

$S^{n-1}_+, S^{n-1}_-\text{ are corresponding components of } S^{n-1}$
By Schönflies theorem, for $n \neq 5$, (S^{n-1}, S^{n-2}) is unknotted, and S^{n-1}_\pm are PL balls.
By Schönflies theorem, for $n \neq 5$, (S^{n-1}, S^{n-2}) is unknotted, and S^{n-1}_\pm are PL balls.
(\(C^n, D^{n-1}\)) cone pair with the base (\(S^{n-1}, S^{n-2}\)). Then \(W^n := B^n \cup C^n\) is an \(n\)-sphere, \(V^{n-1} := B^{n-1} \cup D^{n-1}\) is an \((n - 1)\)-sphere, and the pair \((W^n, V^{n-1})\) is locally flat. By Schönflies theorem, for \(n \neq 4\), \((W^n, V^{n-1})\) is unknotted, and the two parts of \(W^n\) separated by \(V^{n-1}\) are PL balls.
(C^n, D^{n-1}) cone pair with the base (S^{n-1}, S^{n-2}). Then W^n := B^n \cup C^n is an n-sphere, V^{n-1} := B^{n-1} \cup D^{n-1} is an (n − 1)-sphere, and the pair (W^n, V^{n-1}) is locally flat. By Schönflies theorem, for n \neq 4, (W^n, V^{n-1}) is unknotted, and the two parts of W^n separated by V^{n-1} are PL balls.
\[(C^n, D^{n-1})\] cone pair with the base \((S^{n-1}, S^{n-2})\). Then \(W^n := B^n \cup C^n\) is an \(n\)-sphere, \(V^{n-1} := B^{n-1} \cup D^{n-1}\) is an \((n-1)\)-sphere, and the pair \((W^n, V^{n-1})\) is locally flat.

By Schönflies theorem, for \(n \neq 4\), \((W^n, V^{n-1})\) is unknotted, and the two parts of \(W^n\) separated by \(V^{n-1}\) are PL balls.
\((C^n, D^{n-1})\) cone pair with the base \((S^{n-1}, S^{n-2})\). Then \(W^n := B^n \cup C^n\) is an \(n\)-sphere, \(V^{n-1} := B^{n-1} \cup D^{n-1}\) is an \((n - 1)\)-sphere, and the pair \((W^n, V^{n-1})\) is locally flat. By Schönflies theorem, for \(n \neq 4\), \((W^n, V^{n-1})\) is unknotted, and the two parts of \(W^n\) separated by \(V^{n-1}\) are PL balls.
These two parts are:

\[B^n_+ \cup E^n_+ \text{ and } B^n_- \cup E^n_- \]

where \(E^n_+ \) and \(E^n_- \) are cones with bases \(S^{n-1}_+ \) and \(S^{n-1}_- \) respectively.

\(S^{n-1}_+ \) and \(S^{n-1}_- \) are PL \((n-1)\)-balls. Hence \(E^n_+ \) and \(E^n_- \) are PL \(n \)-balls.

Shiota’s lemma implies that \(B^n_+ \) and \(B^n_- \) are PL \(n \)-balls.
These two parts are:

\[B^n_+ \cup E^n_+ \text{ and } B^n_- \cup E^n_- \]

where \(E^n_+ \) and \(E^n_- \) are cones with bases \(S^n_{-1} \) and \(S^n_{-1} \) respectively.

\(S^n_{-1} \) and \(S^n_{-1} \) are PL \((n-1)\)-balls. Hence \(E^n_+ \) and \(E^n_- \) are PL \(n\)-balls.

Shiota’s lemma implies that \(B^n_+ \) and \(B^n_- \) are PL \(n\)-balls.
These two parts are:

\[B_+^n \cup E_+^n \text{ and } B_-^n \cup E_-^n \]

where \(E_+^n \) and \(E_-^n \) are cones with bases \(S_+^{n-1} \) and \(S_-^{n-1} \) respectively.

\(S_+^{n-1} \) and \(S_-^{n-1} \) are PL \((n - 1)\)-balls. Hence \(E_+^n \) and \(E_-^n \) are PL \(n \)-balls.

Shiota’s lemma implies that \(B_+^n \) and \(B_-^n \) are PL \(n \)-balls.
These two parts are:

\[B_+^n \cup E_+^n \quad \text{and} \quad B_-^n \cup E_-^n \]

where \(E_+^n \) and \(E_-^n \) are cones with bases \(S_+^{n-1} \) and \(S_-^{n-1} \) respectively.

\(S_+^{n-1} \) and \(S_-^{n-1} \) are PL \((n-1) \)-balls. Hence \(E_+^n \) and \(E_-^n \) are PL \(n \)-balls.

Shiota’s lemma implies that \(B_+^n \) and \(B_-^n \) are PL \(n \)-balls.
These two parts are:

\[B_+^n \cup E_+^n \text{ and } B_-^n \cup E_-^n \]

where \(E_+^n \) and \(E_-^n \) are cones with bases \(S_{+}^{n-1} \) and \(S_{-}^{n-1} \) respectively.

\(S_{+}^{n-1} \) and \(S_{-}^{n-1} \) are PL \((n-1)\)-balls. Hence \(E_+^n \) and \(E_-^n \) are PL \(n\)-balls.

Shiota’s lemma implies that \(B_+^n \) and \(B_-^n \) are PL \(n\)-balls.
These two parts are:

\[B^+_n \cup E^+_n \text{ and } B^-_n \cup E^-_n \]

where \(E^+_n \) and \(E^-_n \) are cones with bases \(S^{n-1}_+ \) and \(S^{n-1}_- \) respectively.

\(S^{n-1}_+ \) and \(S^{n-1}_- \) are PL \((n-1)\)-balls. Hence \(E^+_n \) and \(E^-_n \) are PL \(n\)-balls.

Shiota’s lemma implies that \(B^+_n \) and \(B^-_n \) are PL \(n\)-balls.
Plate 1. Tame sphere, Inner Mongolian black granite, 16" diameter, by Helaman Ferguson

Photograph by Claire Ferguson

Nicolai Vorobjov

Cutting a Ball in Two