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CONTINUUM PERCOLATION (see Meester and Roy 1996)

Let Pλ be a homogeneous Poisson point process in Rd with intensity

λ, i.e.

Pλ(A) ∼ Poisson(|A|)
and Pλ(Ai) are independent variables for A1, A2, . . . disjoint.

Gilbert Graph. Form a graph Gλ := G(Pλ) on Pλ by connecting two

Poisson points x, y iff |x− y| ≤ 1.

Form graph G0
λ := G(Pλ ∪ {0}) similarly on Pλ ∪ {0}.

Let pk(λ) be the prob. that the component of G0
λ containing 0 has k

vertices (also depends on d).

p∞(λ) := 1−∑∞

k=0 pk(λ) be the prob. that this component is infinite.
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RANDOM GEOMETRIC GRAPHS (finite analog) (Penrose 2003)

Let U1, . . . , Un be independently uniformly randomly scattered in a

cube of volume n/λ in d-space. Form a graph Gn,λ on {1, 2, . . . , n} by

i ∼ j iff |Ui − Uj | ≤ 1

Gn,λ is a geometric alternative to the classical random graph model.

Define |Ci| to be the order of the component of Gn,λ containing i. It

can be shown that n−1
∑n

i=1 1{|Ci| = k} P−→ pk(λ) as n→ ∞, i.e.

for large n,

P

[

n−1
n

∑

i=1

1{|Ci| = k} ≈ pk(λ)

]

≈ 1

That is, the proportionate number of vertices of Gn lying in

components of order k, converges to pk(λ) in probability.
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A FORMULA FOR pk(λ).

pk+1(λ) = (k + 1)λk

∫

(Rd)k

h(x1, . . . , xk)

× exp(−λA(0, x1, . . . , xk))dx1 . . . dxk

where h(x1, . . . , xk) is 1 if G({0, x1, . . . , xk}) is connected and

0 ≺ x1 ≺ · · · ≺ xk lexicographically, otherwise zero;

and A(0, x1, . . . , xk) is the volume of the union of 1-balls centred at

0, x1, . . . , xk.

Not tractable for large k.
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THE PHASE TRANSITION

If p∞(λ) = 0, then Gλ has no infinite component, almost surely.

If p∞(λ) > 0, then Gλ has a unique infinite component, almost surely.

Also, p∞(λ) is nondecreasing in λ.

Fundamental theorem: If d ≥ 2 then

λc(d) := sup{λ : p∞(λ) = 0} ∈ (0,∞).

If d = 1 then λc(d) = ∞. From now on, assume d ≥ 2. The value of

λc(d) is not known.
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Sketch proof of fundamental theorem.

Be wise, discretize! Divide Rd into boxes of side ε (ε small, fixed).

If |C0| = ∞ there is an infinite path through occupied boxes

successively distance less than two from each other.

There exists finite γ such that the expected number of such paths of

length n is at most γn(1 − e−λεd

)n. For λ small enough, this tends to

zero as n→ ∞. Hence the probability of an infinite path is zero.

Conversely, if |C0| is finite, there must be a path of empty boxes

surrounding the origin and by a similar argument, can show for λ

large enough the probability of this happening is less than 1.
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CONTINUITY OF p∞(λ)

Clearly p∞(λ) = 0 for λ < λc

Also p∞(λ) is increasing in λ on λ > λc.

Less trivially, it is known that p∞(λ) is continuous in λ on

λ ∈ (λc,∞) and is right continuous at λ = λc, i.e.

p∞(λc) = lim
λ↓λc

p∞(λ).

So p∞(·) is continuous on (0,∞) iff

p∞(λc) = 0.

This is known to hold for d = 2 (Alexander 1996) and for large d

(Tanemura 1996). It is conjectured to hold for all d.
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HIGH-INTENSITY ASYMPTOTICS

Let θ denote the volume of the unit ball in Rd. As λ→ ∞,

p∞(λ) → 1 and in fact (Penrose 1991)

1 − p∞(λ) ∼ p1(λ) = exp(−λθ)

This says that for large λ, given the unlikely event that the

component of G0
λ containing 0 is finite, it is likely to consist of an

isolated vertex. Also, for k ≥ 1,

− log pk+1(λ) = λθ + (d− 1)k log
λ

k
+O(1)

as λ→ ∞ with k fixed (Alexander 1991).
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LARGE-k ASYMPTOTICS FOR pk(λ)

Suppose λ < λc. Then there exists ζ(λ) > 0 such that

ζ(λ) = lim
n→∞

(

−n−1 log pn(λ)
)

or more informally, pn(λ) ∼ (e−ζ(λ))n.

Proof uses subadditivity. With xn
1 := (x1, . . . , xn), recall

pn+1(λ) = (n+ 1)λn

∫

h(xn
1 )e−λA(0,xn

1
)dxn

1 .

Setting qn := pn+1/(n+ 1), can show qnqm ≤ qn+m−1, so

− log qn/(n− 1) → infn≥1(− log qn/(n− 1)) := ζ as n→ ∞.

That ζ(λ) > 0 is a deeper result.
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LARGE-k ASYMPTOTICS: THE SUPERCRITICAL CASE

Suppose λ > λc. Then

lim sup
n→∞

(

n−(d−1)/d log pn(λ)
)

< 0

lim inf
n→∞

(

n−(d−1)/d log pn(λ)
)

> −∞

Loosely speaking, this says that in the supercritical case pn(λ)

decays exponentially in n1−1/d, whereas in the subcritical case it

decays exponentially in n.

10



HIGH DIMENSIONAL ASYMPTOTICS (Penrose 1996)

Let θd denote the volume of the unit ball in Rd. Suppose λ = λ(d) is

chosen so that λ(d)θd = µ (this is the expected degree of the origin 0

in G0
λ).

Asymptotically as d→ ∞ with µ fixed, the structure of C0 converges

to that of a branching process (Z0, Z1, . . .) with Poisson (µ) offspring

distribution (Z0 = 1, Zn is nth generation size). So (Penrose 1996):

pk(λ(d)) → p̃k(µ) := P [
∑∞

n=0 Zn = k];

p∞(λ(d)) → ψ(µ) := P [
∑∞

n=0 Zn = ∞];

θdλc(d) → 1.
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DETAILS OF THE BRANCHING PROCESS THEORY:

p̃k(µ) = P [
∞
∑

n=0

Zn = k] =
kk−2

(k − 1)!
µk−1e−kµ.

t = 1 − ψ(µ) is the smallest positive solution to t = exp(µ(t− 1)). In

particular,

ψ(µ) = 0, if µ ≤ 1

ψ(µ) > 0, if µ > 1
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LARGE COMPONENTS FOR THE RGG

Consider again the random geometric graph Gn,λ (on n uniform

random points in a cube of volume n/λ in d-space)

Let L1(Gn,λ) be the size of the largest component, and L2(Gn,λ) the

size of the second largest component (‘size’ measured by number of

vertices). As n→ ∞ with λ fixed:

if λ > λc then n−1L1(Gn,λ)
P−→ p∞(λ) > 0

if λ < λc then (logn)−1L1(Gn,λ)
P−→ 1/ζ(λ)

and for the Poissonized RGG GNn,λ (Nn ∼ Poisson (n)),

L2(GNn,λ) = O(logn)d/(d−1) in probability if λ > λc
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CENTRAL LIMIT THEOREMS. Let K(Gn,λ) be the number of

components of Gn,λ. As n→ ∞ with λ fixed,

P

[

K(Gn,λ) − EK(Gn,λ)

σ
√
n

≤ t

]

→ Φ(t) := (2π)−1/2

∫ t

−∞

e−x2/2dx

and if λ > λc,

P

[

L1(Gn,λ) − EL1(Gn,λ)

τ
√
n

≤ t

]

→ Φ(t).

Here σ and τ are positive constants, dependent on λ.
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ISOLATED VERTICES. Suppose d = 2. Let N0(Gn,λ) be the

number of isolated vertices. The expected number of isolated vertices

satisfies

EN0(Gn,λ) ≈ n exp(−πλ)

so if we fix t and take λ(n) = (logn+ t)/π, then as n→ ∞,

EN0(Gn,λ(n)) → e−t.

Also, N0 is approximately Poisson distributed so

P [N0(Gn,λ(n)) = 0] → exp(−e−t).
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CONNECTIVITY. Note Gn,λ is connected iff K(Gn,λ) = 1.

Clearly P [K(Gn,λ) = 1] ≤ P [N0(Gn,λ(n)) = 0]. Again taking

λ(n) = (logn+ t)/π with t fixed, it turns out (Penrose 1997) that

lim
n→∞

P [K(Gn,λ(n)) = 1] = lim
n→∞

P [N0(Gn,λ(n)) = 0] = exp(−e−t)

or in other words,

lim
n→∞

(P [K(Gn,λ(n)) > 1] − P [N0(Gn,λ(n)) > 0]) = 0.

This is related to the earlier result that at high intensity, the most

likely way for a vertex to be in a finite component is if it is isolated.
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THE CONNECTIVITY THRESHOLD

Let V1, . . . , Vn be independently uniformly randomly scattered in

[0, 1]d. Form a graph Gr
n on {1, 2, . . . , n} by

i ∼ j iff |Vi − Vj | ≤ r.

Given the values of V1, . . . , Vn, define the connectivity threshold

ρn(K = 1), and the no-isolated-vertex threshold ρn(N0 = 0), by

ρn(K = 1) = min{r : K(Gr
n) = 1};

ρn(N0 = 0) = min{r : N0(Gr
n) = 1}.

The preceding result can be interpreted as giving the limiting

distributions of these thresholds (suitably scaled and centred) as

n→ ∞: they have the same limiting behaviour.
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Taking λ(n) = (logn+ t)/π with t fixed, we have

P [K(Gn,λ(n)) = 1] = P [K(G
√

λ(n)/n
n ) = 1]

= P
[

ρn(K = 1) ≤
√

(logn+ t)/(πn)
]

so the earlier result

lim
n→∞

P [K(Gn,λ(n)) = 1] = lim
n→∞

P [N0(Gn,λ(n)) = 0] = exp(−e−t)

implies

lim
n→∞

P [nπ(ρn(K = 1))2 − logn ≤ t] = exp(e−t)

and likewise for ρn(N0) = 0. In fact we have a stronger result:

lim
n→∞

P [ρn(K = 1) = ρn(N0 = 0)] = 1.
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MULTIPLE CONNECTIVITY. Given k ∈ N, a graph is

k-connected if for any two distinct vertices there are k disjoint paths

connecting them.

Let ρn,k be the smallest r such that Gr
n is k-connected.

Let ρn(N<k = 0) be the smallest r such that Gr
n has no vertex of

degree less than k (a random variable determined by V1, . . . , Vn).

Then

lim
n→∞

P [ρn,k = ρn(N<k = 0)] = 1.

The limit distribution of ρn(N<k = 0) can be determined via Poisson

approximation, as with ρn(N0 = 0).

19



HAMILTONIAN PATHS

Let ρn(Ham) be the smallest r such that Gr
n has a Hamiltonian path

(i.e. a self-avoiding tour through all the vertices). Clearly

ρn(Ham) ≥ ρn(N<2 = 0).

It has recently been established (Balogh, Bollobas, Walters,

Krivelevich, Müller 2009) that

lim
n→∞

P [ρn(Ham) = ρn(N<2 = 0)] = 1.
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OTHER PROPERTIES OF RGGS

Not so much connection to percolation but asymptotic behaviour of

other quantities arising from of random geometric graph have been

considered, including

The largest and smallest degree.

The number of edges, number of triangles and so on.

The clique and chromatic number.

In some cases, non-uniform distributions of the vertices V1, . . . , Vn

have been considered.
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OTHER MODELS OF CONTINUUM PERCOLATION

• The Boolean model. Let Ξ be the union of balls of random

radius centred at the points of Pλ (with some specified radius

distribution). Look at the connected components of Ξ.

• The random connection model. Given Pλ, let each pair (x, y)

of points of Pλ be connected with probability f(|x− y|) with f some

specified function satisfying
∫

Rd

f(|x|)dx <∞

Both of these are generalizations of the model we have been

considering.
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• Nearest-neighbour percolation. Fix k ∈ N. Join each point of

Pλ by an undirected edge to its k nearest neighbours in Pλ. Look at

components of resulting graph.

• Lilypond model. At time zero, start growing a ball of unit rate

outwards from each point of Pλ, stopping as soon as it hits another

ball. This yields a maximal system of non-overlapping balls on P.

• Voronoi cell percolation. Let each vertex of Pλ be coloured red

(with probability p), otherwise blue. Look at connectivity properties

of the union of red Voronoi cells.
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