Limit Theorems in Stochastic Geometry with Applications

Mathew Penrose (University of Bath)

Workshop on Geometry and Stochastics of Nonlinear, Functional and Graph Data Bornholm, August 2016

Locally determined functionals

Let $d \in \mathbf{N}$. Suppose $\xi(x,F) \in \mathbf{R}$ is defined for $F \subset \mathbf{R}^d$ finite, $x \in F$, with $\xi(x,F)$ determined either by $F \cap B_1(x)$ [here $B_r(x)$ is a ball], or by $F \cap B_{N_k(x,F)}(x)$, with $N_k(x,F)$ the k-nearest neighbour dist., k fixed.

Examples include $\xi(x,F)=N_1(x,F)$, or [with G(F,r) a geometric graph] $\xi(x,F)=$ the number of triangles in G(F,1) that include x.

(Our methods apply to other ξ ...)

Interested in limit theorems (LLN, CLT) for $\sum_{x \in F_n} \xi_n(x, F_n)$ for empirical pt. processes F_n (sample of size n from some density),

where $\xi_n(x,F) = \xi(n^{1/d}x,n^{1/d}F)$, assuming translation invariance.

Some point processes in \mathbf{R}^d

Let X_1, X_2, \ldots be independent random d-vectors

with common density f in \mathbf{R}^d with support $\mathcal{K} \subseteq \mathbf{R}^d$ (e.g. $\mathcal{K} = [0,1]^d$).

Let $F_n := \{X_1, \dots, X_n\}.$

For a > 0, let \mathcal{H}_a be a homogeneous Poisson process in \mathbf{R}^d with intensity a.

Main interest is in $\sum_{i=1}^{n} \xi_n(X_i, F_n)$

Laws of Large Numbers (P.-Yukich 2003, P. 2007a)

Let $\varepsilon > 0$. If $\sup_n E[|\xi_n(X_1, F_n)|^{1+\varepsilon}] < \infty$, then

$$n^{-1} \sum_{i=1}^{n} \xi_n(X_i, F_n) \to \int E\xi(0, \mathcal{H}_{f(x)}) f(x) dx$$
 in L^1 ,

Idea of proof. Locally $n^{1/d}(-X_i+F_n)$ resembles $\mathcal{H}_{f(X_i)}$.

Can improve to L^2 convergence under $2 + \varepsilon$ moments condition.

Can improve to a.s. convergence under stronger moments and smoothness.

If
$$\xi$$
 is homogeneous, i.e. $\xi(ax, aF) = a^{\beta}\xi(x, F) \ \forall x, F$ (some β), then

RHS simplifies to
$$E\xi(0,\mathcal{H}_1)I_{1-\beta/d}(f)$$
 [where $I_{\alpha}(f)=\int_{\mathcal{K}}f(x)^{\alpha}dx$.]

Example: Entropy estimators (see P.-Yukich, 2011, 2013)

Given $\rho \in (0,1) \cup (1,\infty)$, the *Renyi* ρ -entropy of f is computed in terms of $I_{\rho}(\alpha)$ (see Leonenko et al. *Ann. Stat.* 2008)

Put $\xi(x,F)=N_1(x,F)^{\alpha}$. Assuming moment condition, preceding LLN gives [with $\pi_d=$ vol. of unit ball in ${\bf R}^d$]:

$$n^{-1} \sum_{i=1}^{n} (n^{1/d} N_1(X_i, F_n))^{\alpha} \to \pi_d^{-\alpha/d} \Gamma(1 + \frac{\alpha}{d}) I_{1-\alpha/d}(f)$$
 in L^1

providing a consistent estimator for $(1-\alpha/d)$ -entropy of (unknown) f.

Put $\xi(x, F) = \log(\pi_d N_1(x, F)^d)$. Can show $E\xi(0, \mathcal{H}_a) = -\gamma - \log a$ (Euler const.) so given the moment condition,

$$n^{-1} \sum_{i} \log(n\pi_d N_1(X_i, F_n)^d) \to I_0(f) - \gamma$$
 in L^1

with $I_0(f) = -\int f \log f$ the Shannon entropy of f .

When do the moments conditions hold in the preceding examples?

A sufficient condition for the $(1+\varepsilon)$ moments condition [and hence L^1 LLN] for $\xi(x,F)=N_1(x,F)^\alpha$ is any of

- ullet $\alpha>0$ and $\mathcal K$ a finite union of convex compact sets with f bounded away from 0 and ∞ on $\mathcal K$.
- \bullet $-d < \alpha < 0$ and f bounded
- $0 < \alpha < d$ and $I_{1-\alpha/d}(f) < \infty$ and $E[|X_1|^r] < \infty$, some $r > d/(d-\alpha)$.

Sufficient for the L^2 LLN for $\xi(x,F) = \log N_1(x,F)$ is either

- ullet f and ${\cal K}$ both bounded, or
- $E[|X_1|^r] < \infty$, some r > 0.

Extending the general theory to manifolds (P. and Yukich 2013)

Now suppose the points X_i lie on an m-dimensional submanifold \mathcal{M} of \mathbf{R}^d with $m \leq d$. Each $x \in \mathcal{M}$ has a neighbourhood g(U), some open $U \subset \mathbf{R}^m$ and smooth $g: U \to \mathcal{M}$. Integration over \mathcal{M} is defined locally on g(U) by

$$\int_{g(U)} h(x)dx = \int_{U} h(g(x))D_g(x)dx$$

with D_g a Jacobian. Now f is the density on \mathcal{M} , so

$$P[X_i \in A] = \int_A f(x)dx, \quad A \subseteq \mathcal{M}.$$

Given ξ , set $\xi_n(x,F) = \xi(n^{1/m}x, n^{1/m}F)$, and let \mathcal{H}_a be a homogeneous Poisson process in \mathbf{R}^m (embedded in \mathbf{R}^d).

Law of large numbers in manifolds

The general LLN carries through to manifolds if ξ is (i) translation and rotation invariant and (ii) continuous, in the sense that $\forall k \in \mathbf{N}$, Lebesgue-almost all $(x_1,\ldots,x_k) \in (\mathbf{R}^m)^k$ lie at a continuity point of the mapping on $\mathbf{R}^{mk} \to \mathbf{R}$ given by

$$(x_1, \ldots, x_k) \mapsto \xi(0, \{x_1, \ldots, x_k\}).$$

The result says that under a $(1+\varepsilon)$ -moment condition we have

$$n^{-1} \sum_{i=1}^{n} (\xi_n(X_i, F_n)) \to \int_{\mathcal{M}} E[\xi(0, \mathcal{H}_{f(y)})] f(y) dy$$

The idea is similar to before: the rescaled point process $n^{1/m}(-X_i+F_n)$ approximates to $\mathcal{H}_{f(X_i)}$ after rotation. There is an extension the non-RI case.

The Levina-Bickel dimension estimator

Want to estimate m from data in \mathbf{R}^d . Let $k \in \mathbb{N}$. Consider

$$\zeta(x,F) = (k-2) \left(\sum_{j=1}^{k-1} \log \frac{N_k(x,F)}{N_j(x,F)} \right)^{-1}$$

This is homogeneous of order 0, ie $\zeta(ax,aF)=\zeta(x,F)$. Also $\{(N_j(0,\mathcal{H}_a)/N_k(0,\mathcal{H}_a))^m\}_{j=1}^{k-1}$ are a sample from the U(0,1) distribution so

$$\mathbb{E}\zeta(0,\mathcal{H}_a) = (k-2)m\mathbb{E}[(\sum_{j=1}^{k-1}\log(U_j^{-1}))^{-1}] = m$$

where U_i are independent U(0,1).

Consistency of Levina-Bickel (P. and Yukich, 2013)

Suppose $\mathcal K$ is a compact m-dim. submanifold-with-boundary of $\mathcal M$, and f is bounded away from 0 and ∞ on $\mathcal K$, and $k \geq 11$. Recall $\zeta(x,F) = (k-2)/\sum_{j=1}^{k-1} \log \frac{N_k(x,F)}{N_j(x,F)}$. Then a.s.

$$\lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} \zeta(X_i, F_n) = m$$

Moments condition might fail! If m=1, d=3 and $\mathcal M$ includes part of z-axis and part of unit circle in (x,y)-plane, then $P[\zeta(X_1,F_n)=\infty]>0$.

Consistency result proved via truncation.

Central Limit theorem in flat space (P., 2007b)

Under a $(2+\varepsilon)$ -moment condition on $\xi_n(x,F_n)$ and $\xi_n(x,F_n\cup\{y\})$, $x,y\in\mathcal{K}$ and similar moment conditions for F_{M_λ} (M_λ an indep. Poisson (λ) variable with $\lambda\sim n$)

$$n^{-1} \operatorname{Var} \sum_{i=1}^{n} \xi_{n}(X_{i}, F_{n}) \to \int V^{\xi}(f(x)) f(x) dx - (\int \delta^{\xi}(f(x)) f(x) dx)^{2}$$

$$V^{\xi}(a) = E\xi(0, \mathcal{H}_{a})^{2} + a \int ([E\xi(0, \mathcal{H}_{a}^{u})\xi(u, \mathcal{H}_{a}^{0}) - (E\xi(0, \mathcal{H}_{a}))^{2}]) du$$

$$\delta^{\xi}(a) = E\xi(0, \mathcal{H}_{a}) + a \int E[\xi(0, \mathcal{H}_{a}^{u} - \xi(0, \mathcal{H}_{a})] du$$

where $\mathcal{H}_a^u = \mathcal{H}_a \cup \{u\}$. Also we have an associated CLT. Moreover, we have similar results in manifolds!

Sketch proof of variance convergence and CLT

- (i) Poissonize. First consider $\sum_{i=1}^{M_n} \xi_n(X_i, F_{M_n})$.
- (ii) Mecke-type moment formulae. Express variance in terms of integrals.
- (iii) Variance limit. Rescaled point process near x locally resembles $\mathcal{H}_{f(x)}.$
- (iv) CLT via local spatial dependency (Stein's method).
- (v) De-Poissonize: approximate linearity of $\sum_{i=1}^m \xi_n(X_i, F_m)$ w.r.t. o(n) added/removed points.

Examples where the general CLT applies

Assume f bounded away from 0 and ∞ on \mathcal{K} and \mathcal{K} is compact convex (in \mathbf{R}^m) or a compact submanifold-with-boundary of \mathcal{M} (eg if \mathcal{M} is a sphere and $\mathcal{K} = \mathcal{M}$). Then the general CLT applies if

- e.g. $\xi(x,F) = h(N_1(x,F))$ with h bounded
- e.g. $\xi(x,F) = N_1(x,F)^{\alpha}$ with $\alpha > 0$.
- e.g. $\xi(x,F) =$ number of triangles in G(F,1) including x.
- e.g. $\xi_n(x,F) = \zeta(x,F) \mathbf{1}\{N_1(x,F) \leq \rho\}$, for some fixed $\rho > 0$, depending on \mathcal{M} . Can get a CLT for the modified Levina-Bickel statistic which ignores terms with $N_1(x,F) > \rho$.

Examples where the moment condition fails

The $(2+\varepsilon)$ moment condition for $\xi_n(x,F_n\cup\{y\})$ fails e.g. when

$$\xi(x,F) = N_1(x,F)^{\alpha}, \quad -m/2 < \alpha < 0$$

$$\xi(x,F) = \log N_1(x,F),$$

Nevertheless, can obtain CLTs for these examples, using truncation $\xi^{\varepsilon} = N_1^{\alpha}(x, F) \mathbf{1}_{\{N_1(x,F)>\varepsilon\}}$, and Efron-Stein inequality to control $\operatorname{Var} \sum_i (\xi_n - \xi_n^{\varepsilon})(X_i, F_n)$.

Efron-Stein bounds this variance in terms of the 'add one costs'.

Example: Spacings, ϕ -divergence (Baryshnikov, P. and Yukich 2009)

Consider another density g with same support \mathcal{K} as f. Let $\phi: \mathbf{R}^+ \to \mathbf{R}$ satisfy appropriate growth bounds on $|\phi|$ at 0 and ∞ , e.g. $\phi(x) = -\log x$ (or $x \log x$ or x^r , r > 0). The ϕ -divergence of g from f is

$$\int_{\mathcal{K}} \phi(\frac{g(x)}{f(x)}) f(x) dx$$

and an empirical version (used in eg goodness of fit test) is given by

$$\sum_{i=1}^{n} \phi(n \int_{B_{N_1(X_i, F_n)}(X_i)} g(y) dy) \approx \sum_{i=1}^{n} \phi(n \pi_d N_1(X_i, F_n)^d g(x))$$

corresponding to (non translation invariant)

$$\xi(x,F) = \phi(g(x)\pi_d N_1(x,F)^d)$$

Assume f, g, bounded away from 0 and ∞ on convex compact support \mathcal{K} .

Similar methods to before, adapted to the non-TI invariant case by setting

$$\xi_n(x,F) = \xi(x, -x + n^{1/d}(-x + F)),$$

can be used to show that the empirical ϕ -divergence

$$\sum_{i=1}^{n} \phi(n\pi_d N_1(X_i, F_n)^d g(x))$$

converges to the $\hat{\phi}$ -divergence

$$\int_{\mathcal{K}} \hat{\phi}(\frac{g(x)}{f(x)}) f(x) dx$$

where $\hat{\phi}(t) = E[\phi(te_1)]$ and e_1 is exponential with mean 1.

Associated CLTs are available.

References

- M.D. Penrose and J.E. Yukich (2003) Weak laws of large numbers in geometric probability. *Ann. Appl. Probab.* **13**, 277-303.
- M.D. Penrose (2007a) Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13, 1124-1150.
- M.D. Penrose (2007b) Gaussian limits for random geometric measures. *Electronic Journal of Probability* 12 (paper 35), 989-1035.
- Y. Baryshnikov, M.D. Penrose and J.E. Yukich (2009). Gaussian limits for generalized spacings, *Ann. Appl. Probab.* **19**, 158-185.
- M.D. Penrose and J. E. Yukich (2011) Laws of large numbers and nearest neighbor distances. Advances in Directional and Linear Statistics, eds. M.T. Wells, and A. SenGupta, pp. 189–199 Physica-Verlag HD Berlin.
- M.D. Penrose and J.E. Yukich (2013) Limit theory for point processes in manifolds. *Annals of Applied Probability* **23**, 2161-2211.