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49. Let −∞ < a < b < ∞. Suppose g : [a, b] → R is a continuously differentiable, strictly increasing
function. Show that for all bounded Borel-measurable f : (a, b] → R we have the change of

variables formula
� g(b)

g(a)
f(y)dy =

� b

a
f(g(x))g�(x)dx.

Hint: First verify this for f = 1(g(a),t] with g(a) < t ≤ g(b). Then use the Monotone Class theorem.

Unfortunately, there is a typo in the question: It should be for f : (g(a), g(b)] → R rather than
for f : (a, b] → R.

Let H be the class of bounded measurable functions f : (g(a), g(b)] → R such that
� g(b)

g(a)
f(y)dy =

� b

a
f(g(x))g�(x)dx.

First suppose f = 1(g(a),t] with g(a) < t ≤ g(b). Then by definition 10.4 and Lemma 10.7(b),

� g(b)

g(a)

f(y)dy =

�

R
1(g(a),g(b)]1(g(a),t]dλ1 =

�

R
1(g(a),t]dλ1 = λ1((g(a), t]) = t− g(a).

Also by the Fundamental Theorem of Calculus,

� b

a

f(g(x))g�(x)dx =

� g−1(t)

a

g�(x)dx = t− g(a)

and therefore 1(g(a),t] ∈ H.

Set W = (g(a), g(b)]. The class of sets D = {(g(a), t] : g(a) < t ≤ g(b)} is a π-system, and it
generates BW by Question 36. By our previous argument 1A ∈ H for all A ∈ D.

If f, h ∈ H and α ∈ R then f, h ∈ L1((g(a), g(b)]) (since they are bounded) and by linearity of
integration (Theorem 11.5)

� g(b)

g(a)

(f + h)(y)dy =

� g(b)

g(a)

f(y)dy +

� g(b)

g(a)

h(y)dy

=

� b

a

f(g(x))g�(x)dx+

� b

a

h(g(x))g�(x)dx =

� b

a

(f + h)(g(x))g�(x)dx

so f + h ∈ H, and also by linearity

� g(b)

g(a)

αf(y)dy = α

� g(b)

g(a)

f(y)dy = α

� b

a

f(g(x))g�(x)dx =

� b

a

αf(g(x))g�(x)dx

so αf ∈ H.

If fn ∈ H for n ∈ N with 0 ≤ fn ↑ f pointwise, and f is bounded, then by MON,

� g(b)

g(a)

f(y)dy = lim
n→∞

� g(b)

g(a)

fn(y)dy = lim
n→∞

� b

a

fn(g(y))g
�(y)dy =

� b

a

f(g(y))g�(y)dy

so f ∈ H. Therefore we can apply the Monotone Class Theorem (Theorem 13.1) to deduce that
all bounded BW -measurable functions on W are in the class H, as required.
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50. (a) Show that {(x, y) ∈ R2 : x < y} ∈ B ⊗ B.
(b) Let c ∈ (0,∞). Show that {(x, y) ∈ R2 : x < y ≤ x+ c} ∈ B ⊗ B.
(c) Suppose µ is a probability measure on (R,B). For x ∈ R, let F (x) = µ((−∞, x]).

Let c ∈ R. Use Fubini’s Theorem to show that
�∞
−∞(F (x+ c)− F (x))dx = c.

(a) Given b ∈ R let Bb := {(x, y) ∈ R2 : x+ b < y}. Then

Bb = ∪q∈Q{(x, y) ∈ R2 : x+ b < q < y} = ∪q∈Q((−∞, q − b)× (q,∞)),

so that Bb is a countable union of sets in B ⊗ B and therefore is itself in B ⊗ B.
Taking b = 0 gives us the result.

(b) With Bb as defined above, given c ∈ (0,∞) we have

{(x, y) ∈ R2 : x < y ≤ x+ c} = B0 \Bc ∈ B ⊗ B.

(c) First suppose c ≥ 0. We shall apply Fubini’s theorem (in fact Tonelli’s theorem) to the product
of the measure spaces (R,B,λ1) (where λ1 is Lebesgue measure) and (R,B, µ). For (x, y) ∈ R×R
set f(x, y) = 1 if x < y ≤ x+ c (or equivalently, if y − c ≤ x < y), and otherwise f(x, y) = 0.

Then f ≥ 0 and f is (B⊗B)-measurable by part (b), so we can apply Tonelli’s theorem. We have

�

R

��

R
f(x, y)µ(dy)

�
λ1(dx) =

�

R

��

R
1(x,x+c](y)µ(dy)

�
λ1(dx)

=

� ∞

−∞
[µ((−∞, x+ c]− µ((−∞, x])]dx =

� ∞

−∞
[F (x+ c)− F (x)]dx (3)

and by Tonelli’s theorem, this is equal to the same double integral taken in the opposite order,
which comes to

�

R

��

R
f(x, y)λ1(dx)

�
µ(dy) =

�

R

��

R
1[y−c,y)(x)λ1(dx)

�
µ(dy) =

�

R
cµ(dy) = c (4)

where the last equality is because µ is a probability measure. The equality between the expressions
(3) and (4) gives us the result, for the case c > 0.

Now we consider the case with c < 0. Put C = −c, and set G(x) = F (x + c) − F (x). Then by
Question 37,
� ∞

−∞
G(x)dx =

� ∞

−∞
G(x+ C)dx =

� ∞

−∞
(F (x)− F (x+ C))dx = −

� ∞

−∞
(F (x+ C)− F (x))dx

and by the case of this result that we already proved, the last expression equals −C = c as
required.

51. Let A ⊂ R2 be a Borel set, and for x ∈ R let Ax := {y ∈ R : (x, y) ∈ A}. Show that

λ2(A) =

� ∞

−∞
λ1(Ax)dx,
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where λd denotes d-dimensional Lebesgue measure.

We have λ2(A) =
�
R2 1Adλ2. Therefore since λ2 = λ1⊗λ1 and B2 = B1⊗B1, by Tonelli’s theorem

λ2(A) =

�

R

��

R
1A(x, y)dy

�
dx

=

�

R

��

R
1Ax(y)dy

�
dx

=

�

R
λ1(Ax)dx.

52. For A ⊂ Rd and u ∈ Rd let A+ u := {a+ u : a ∈ A}. Also if d = 2, for x ∈ R set Ax := {y ∈ R :
(x, y) ∈ A}.

(a) Let −∞ < a < b < ∞, and let I = (a, b). Let y ∈ (0,∞). Compute λ1((I + y) \ I).
(b) Let B ⊂ [0, 1]2 and suppose B is open and B is convex, i.e. for all u, v ∈ B and α ∈ (0, 1)

we have αu+ (1− α)v ∈ B. Let e be the unit vector (0, 1) and for t > 0 let B(t) := B + te.
Given x ∈ R, show that B(t)x = Bx + t.

(c) Show that λ1((B(t) \B)x) = min(t,λ1(Bx)).

(d) Show that λ2(B(t) \ B) ≤ t.

(e) Let π : R2 → R denote projection onto the first co-ordinate, i.e. π(x, y) = x. Show that
t−1λ2(B(t) \ B) → λ1(π(B)) as t ↓ 0.

(a) If y < b− a then (I + y) \ I = [b, b+ y) so λ1((I + y) \ I) = y.

If y ≥ b− a then (I + y) \ I = (a+ y, b+ y) so λ1((I + y) \ I) = b− a.

In other words, λ1((I + y) \ I) = min(y, b− a).

(b) We have that

y ∈ B(t)x ⇐⇒ (x, y) ∈ B + (0, t) ⇐⇒ (x, y − t) ∈ B

⇐⇒ y − t ∈ Bx ⇐⇒ y ∈ Bx + t

so B(t)x = Bx + t as claimed.

(c) Since B is convex, Bx is also convex and therefore an interval (or the empty set), by Parts (a)
and (b) we have that

λ1((B(t) \B)x) = λ1(B(t)x \Bx) = λ1((Bx + t) \ Bx) = min(t,λ1(Bx)).

(d) Let A(t) := B(t) \ B. For x /∈ [0, 1], (A(t))x = ∅. Also by Question 26, since B is open,
B ∈ B2, and likewise B(t) ∈ B2, so A(t) ∈ B2. Therefore by Question 51 and then Part (c),

λ2(A(t)) =

� ∞

−∞
λ1(A(t)x)dx =

� 1

0

min(t,λ1(Bx))dx ≤
� 1

0

tdx = t.
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(e) As shown in the solution to (d), we have t−1λ2(A(t)) =
� 1

0
gt(x)dx, where we set gt(x) =

t−1 min(t,λ1(Bx)).

Let tn ↓ 0. Then as n → ∞ we have gtn(x) → g(x) where g = 1π(B). This is because if x /∈ π(B)
then Bx = ∅ so gt(x) = 0 for all t, but if x ∈ π(B) then Bx is an open non-empty inteval so
λ1(Bx) > 0 so gt(x) = 1 for t small.

Also gtn(x) ≤ gtn+1(x) for all n, x, so by MON,
� 1

0
gtn(x)dx →

�
g(x)dx = λ1(π(B)) as n → ∞.

By the hint this gives us the result.

53. Let (X,M) be a measurable space and suppose f : X → [0,∞] and g : X → [0,∞] are Borel
functions. Show that

� ∞

0

� ∞

0

µ({x ∈ X : f(x) > s, g(x) > t})dsdt =
�

X

f(x)g(x)µ(dx).

By Question 34, the set A ⊂ X × R × R given by A = {(x, s, t) : f(x) > s, g(x) > t} is in
M ⊗ B ⊗ B. Therefore the function 1A is measurable with respect to M ⊗ B ⊗ B, by Question
32. Therefore by Tonelli’s theorem,

� ∞

0

� ∞

0

µ({x ∈ X : f(x) > s, g(x) > t})dsdt =
� ∞

0

� ∞

0

�

X

1A((x, s, t))µ(dx)dsdt

=

�

X

� ∞

0

� ∞

0

1A((x, s, t))dsdtµ(dx)

=

�

X

� ∞

0

� ∞

0

1[0,f(x))(s)1[0,g(x))(t)dsdtµ(dx)

�

X

� ∞

0

f(x)1[0,g(x))(t)dtµ(dx)
�

X

f(x)g(x)µ(dx).

54. (a) Let α ∈ R be a fixed constant. Let f(x) = xα for x ∈ (0, 1]. Determine the values of p ∈ [1,∞)
(depending on α), such that f ∈ Lp([0, 1]).
(b) Let α ∈ R, and let g(x) = xα for x ∈ [1,∞). Determine the values of p ∈ [1,∞) (depending
on α) such that g ∈ Lp([1,∞)).

(a) To have f ∈ Lp([0, 1]) we need to have
� 1

0
|f(x)|αdx < ∞. Since f(x) = xα > 0, this condition

amounts to
� 1

0
xαpdx < ∞. If αp > −1 then

� 1

0
xαpdx = [xαp+1]10/(αp + 1) < ∞. If αp < −1,

we get the same indefinite integral but now the integral comes to +∞ because xαp+1 diverges at
x = 0. If αp = −1 then

� 1

0
xαpdx = [log x]10 = +∞. To sum up, f ∈ Lp([0, 1]) if and only if

αp > −1.

Remark. To go into a bit more detail with the argument above, observe that
� 1

0
xαpdx =

limn→∞
� 1

1/n
xαpdx by MON, and the function xαp is bounded and continuous on [1/n, 1] so by The-

orem 13.8, the Lebesgue integral
� 1

1/n
xαpdx equals the Riemann integral, so by the fundamental
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theorem of calculus it equals g(1)−g(1/n) where g(x) = log x if αp = −1, or g(x) = xαp+1/(αp+1)

for αp �= −1. Thus
� 1

0
f(x)dx = limn→∞(g(1)− g(1/n)), which is finite if αp > −1, and infinite if

αp ≤ −1.

(b) Similarly to (a), to have g ∈ Lp([1,∞)) we need
�∞
1

xαpdx < ∞. If αp = −1 then
�∞
1

xαpdx =
[log x]∞1 = +∞. If αp �= −1 then

�∞
1

xαpdx = [xαp+1]∞1 /(αp + 1) which is finite if αp < −1 but
infinite if αp > −1. So this time we have g ∈ Lp([1,∞)) if and only if αp < −1.

As in the Remark for part (a), we could justify the above in more detail here using the fact that�∞
1

xαpdx = limn→∞
� n

1
xαpdx by MON, and the fact that x �→ xαp is bounded and continuous on

[1, n] for all n.


