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44. Suppose (X,M, µ) is a measure space and Fn ⊂ X with Fn ∈ M and µ(Fn) < ∞, ∀n ∈ N.
Suppose also that D ⊂ M is a π-system in X with Fn ∈ D for all n ∈ N, and ν is a measure on
(X,M) such that ν(A) = µ(A) for all A ∈ D. For n ∈ N set En := ∪n

j=1Fj.

(a) Use the inclusion-exclusion formula from Question 39 to show for all n ∈ N, A ∈ D that

µ(En) = ν(En); µ(A ∩ En) = ν(A ∩ En).

(b) Now suppose moreover that ∪∞
n=1Fn = X. Show that µ(A) = ν(A) for all A ∈ σ(D).

(a) Since D is a π-system, any intersection of finitely many sets in D is also in D. In particular
∩j∈JFj ∈ D for all J ∈ S(n). Therefore using inclusion-exclusion,

µ(En) =
�

J∈S(n)
(−1)|J |+1µ(∩j∈JFj) =

�

J∈S(n)
(−1)|J |+1ν(∩j∈JFj) = ν(En).

Similarly, for A ∈ D we have ∩j∈J(A ∩ Fj) ∈ D for all J ∈ S(n), so

µ(A ∩ En) = µ(∪n
j=1(A ∩ Fj)) =

�

J∈S(n)
(−1)|J |+1µ(∩j∈J(A ∩ Fj))

=
�

J∈S(n)
(−1)|J |+1ν(∩j∈J(A ∩ Fj)) = ν(A ∩ En).

(b) For n ≥ N and A ∈ M define

µn(A) = µ(A ∩ En); νn(A) = ν(A ∩ En).

Then µn is a measure on (X,M) since for A1, A2, . . . pairwise disjoint in M we have

µn(∪∞
i=1Ai) = µ((∪∞

i=1Ai) ∩ En) = µ(∪∞
i=1(Ai ∩ En)) =

∞�

i=1

µn(Ai).

Similarly νn is a measure on (X,M). Also µn(X) = µ(X ∩ En) = µ(En) ≤
�n

i=1 µ(Fi) < ∞.

For any A ∈ D, by (a) we have µ(A∩En) = ν(A∩En) and µ(En) = ν(En). Hence µn(A) = νn(A)
for all A ∈ D, and µn(X) = µ(En) = ν(En) = νn(X) < ∞. Hence we can apply Lemma 5.6
(uniqueness lemma for finite measures) to deduce that µn(A) = νn(A) for all A ∈ σ(D). Thus for
all A ∈ σ(D) we have

µ(A ∩ En) = µn(A) = νn(A) = ν(A ∩ En).

Finally, since (A∩En) ⊂ (A∩En+1) for all n ≥ N and ∪∞
n=1(A∩En) = A∩(∪∞

n=1En) = A∩X = A,
using upward continuity we obtain for all A ∈ σ(D) that

µ(A) = lim
n→∞

µ(A ∩ En) = lim
n→∞

ν(A ∩ En) = ν(A).
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45. Let (Ω,F , µ) be a probability space. Let f : Ω → [0,∞] be measurable, i.e. f is a nonnegative
random variable. For t ≥ 0 define L(t) :=

�
Ω
e−tf(ω)µ(dω) (the Laplace transform of f).

(a) Show that limt→∞ L(t) = µ({ω ∈ Ω : f(ω) = 0}). Here we make the convention that e−∞ = 0.

(b) Show that limt↓0 L(t) = µ({ω ∈ Ω : f(ω) < ∞}).
(c) Show that limt↓0(t−1(L(0) − L(t))) =

�
fdµ if the integral on the right is finite . [Hint: use

the fact that 1− e−x ≤ x for x ≥ 0].

What about if the integral is infinite?

(a) Fix a sequence tn ↑ ∞. Let ω ∈ Ω. Then

lim
n→∞

e−tnf(ω) =

�
1 if f(ω) = 0;

0 if f(ω) > 0.

Since tn > 0 for all n, we have the domination |e−tnf(ω)| ≤ 1, and here 1 ∈ L1(µ), since
�
Ω
1 dµ =

µ(Ω) = 1 < ∞. Therefore, by the Dominated Convergence Theorem

L(tn) =

�

Ω

e−tnf dµ
n→∞−→

�

Ω

1C dµ = µ(C),

where C = {ω ∈ Ω : f(ω) = 0}. Since this convergence holds for any choice of tn with tn ↑ ∞, it
follows that L(t) → µ(C) as t → ∞, as required.

[Here we are using: if F : [0,∞) → R is a function and a ∈ R are such that F (tn) → a for any
sequence (tn)n∈N with tn ↑ ∞ as n → ∞, then F (t) → a as t → ∞.]

(b) Fix a sequence tn ↓ 0. We have

lim
n→∞

e−tnf(ω) =

�
1 if f(ω) < ∞;

0 if f(ω) = ∞.

As in Part (a), since tn > 0 for all n, we have the domination |e−tnf(ω)| ≤ 1, and here 1 ∈ L1(µ),
since

�
Ω
1 dµ = µ(Ω) = 1 < ∞. Therefore, by the Dominated Convergence Theorem

L(tn) =

�

Ω

e−tnf dµ
n→∞−→

�

Ω

1D dµ = µ(D),

where D = {ω ∈ Ω : f(ω) < +∞}. Since our choice of tn satisfying tn ↓ 0 is arbitrary, it follows
that L(t) → µ(D) as t ↓ 0, as required.

[Here we are using: if F : (0,∞) → R is a function and a ∈ R with F (tn) → a for any sequence
(tn)n∈N with tn ↓ 0 as n ↓ 0, then F (t) → a as t ↓ 0. This is similar to the fact that if a function
is sequentially continuous at 0, then it is continuous at 0, which you should have seen in first year
Analysis.]

(c) Let us take a sequence tn ↓ 0. Then

t−1
n (L(0)− L(tn)) =

�

Ω

t−1
n (1− e−tnf(ω))µ(dω) =

�
gndµ
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where we set gn(ω) := t−1
n (1 − e−tnf(ω)). Then gn(ω) → f(ω) as n → ∞, and also (using the

hint) gn(ω) ≤ f(ω). Therefore if
�
fdµ < ∞ we can use Dominated convergence with dominating

function f to deduce that

lim
n→∞

t−1
n (L(0)− L(tn)) =

�

Ω

f(ω)µ(dω) =

�
fdµ.

If
�
fdµ = ∞ we can no longer use Dominated Convergence (DOM). However, in fact we have

0 ≤ gn(ω) ≤ gn+1(ω) for all ω, so we can use Monotone Convergence (MON) to deduce that in
this case limn→∞ t−1

n (L(0) − L(tn)) =
�
fdµ = ∞. Thus in all cases t−1

n (L(0) − L(tn)) →
�
fdµ

as n → ∞. Since this holds for any sequence tn ↓ 0, it follows that t−1(L(0)− L(tn)) →
�
fdµ as

t ↓ 0.

46. Let (X,M, µ) be a σ-finite measure space. Show the following.

(a) If f : X → [−∞,∞] is measurable, E ∈ M,
�
E
|f | dµ = 0, then f = 0 a.e. on E.

(b) If f ∈ L1(µ) with
�
E
f dµ = 0 for all E ∈ M, then f = 0 a.e. on X.

(c) If f ∈ L1(µ) with
���

X
f dµ

�� =
�
X
|f | dµ, then either f ≥ 0 a.e. on X, or f ≤ 0 a.e. on X.

(d) If f : X → R and g : X → R are measurable functions, then {x ∈ X : f(x) �= g(x)} ∈ M.

(a) By the assumption given, setting g = |f |1E we have
�
gdµ = 0. Also g ≥ 0 pointwise. There-

fore by Question 33 (b) we have µ(g−1((0,∞])) = 0, so that µ({x ∈ E : f(x) �= 0} = 0, or in other
words f = 0 µ-a.e. on E.

(b) Suppose f ∈ L1(µ) with
�
E
fdµ = 0 for all E ∈ M.

Take E = {x ∈ X : f(x) ≥ 0}. Then f1E ≥ 0 pointwise and by the stated condition
�
f1Edµ =�

E
f = 0. Hence by Question 33 (b), µ({x ∈ X : f(x)1E(x) > 0}) = 0, that is, µ(f−1((0,∞])) = 0.

Also setting g = −f , we have
�
E
gdµ = −

�
E
fdµ = 0 for all E, so by the same argument as above

we have µ(g−1((0,∞])) = 0, that is, µ(f−1([−∞, 0))) = 0. Therefore

µ({x ∈ X : x �= 0}) = µ(f−1((0,∞]) ∪ f−1([−∞, 0))) ≤ µ(f−1((0,∞])) + µ(f−1([−∞, 0))) = 0,

so µ({x ∈ X : x �= 0}) = 0, or in other words f = 0 a.e.

(c) Suppose f ∈ L1(µ) with
���

X
f dµ

�� =
�
X
|f | dµ. Set I+ =

�
f+dµ and I− =

�
f−dµ. Then

I+ ≥ 0, I− ≥ 0 and since |f | = f+ − f−, our assumption tells us that

|I+ − I−| = I+ + I−

which fails unless either I+ = 0 or I− = 0 (or both). But if I+ = 0 then by Question 33 (b) we
have f+ = 0 µ-almost everywhere, or in other words f ≤ 0 µ-a.e. Similarly, if I− = 0 then by
Question 33 (b) we have f− = 0 µ-almost everywhere, or in other words f ≥ 0 µ-a.e.

(d) By Corollary 10.8 and Theorem 10.13 the function f − g is measurable, so by Theorem 10.5
the set {x ∈ X : f(x) �= g(x)} = (f − g)−1(R \ {0}) is in M.
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47. Let f : R → R be integrable. Suppose {hn}n≥1 is a sequence in R such that hn → 0.

(a) Show that for any K ∈ (0,∞) we have
� K

−K
|f(x+ hn)− f(x)|dx → 0 as n → ∞. [Hint: first

suppose f is continuous, and recall that any continuous real-valued function on a compact
interval is bounded.]

(b) Show that
�∞
−∞ |f(x+ hn)− f(x)|dx → 0 as n → ∞.

(a) First assume f is continuous. In that case, setting gn(x) = |f(x + hn) − f(x)| we have
gn → 0 pointwise as n → ∞, and (assuming n is large enough so that |hn| ≤ 1) |gn(x)| ≤
|fn(x) + fn(x + hn)| ≤ 2M , where we set M = sup−K−1≤x≤K+1 |f(x)| which is finite by the

hint. Since
� K

−K
(2M)dx = 4KM < ∞, by DOM we have

� K

−K

|f(x+ hn)− f(x)|dx =

� K

−K

gn(x)dx → 0 as n → ∞.

In the general case (f maybe not continuous) we have to use Question 43. Given ε > 0,
take w : R → R such that w is continuous and

�∞
−∞ |w(x)− f(x)|dx < ε/3, and set wn(x) =

w(x+ hn). Then
� K

−K
|wn(x)−w(x)|dx → 0 as n → ∞ by the argument just given. Also, for

all n, using Question 37 we have

� ∞

−∞
|wn(x)− fn(x)|dx =

� ∞

−∞
|w(x+ hn)− f(x+ hn)|dx =

� ∞

−∞
|w(x)− f(x)|dx < ε/3,

so for large enough n, setting fn(x) = f(x+ hn) we have

� K

−K

|fn − f |dx ≤
� K

−K

|fn − wn|dx+

� K

−K

|wn − w|dx+

� K

−K

|w − f |dx < ε.

(b) Let ε > 0 and choose K such that
�
R\[−K,K]

|f(x)|dx < ε. This can be done by the solution

to Question 41. Set fn(x) = f(x + hn). Then using (b), choose N so that
� K+1

−(K+1)
|fn(x) −

f(x)|dx < ε for all n ≥ N , and also |hn| ≤ 1 for all n ≥ N . Then for n ≥ N , we have

� ∞

−∞
|fn(x)− f(x)|dx ≤

�

[−K−1,K+1]c
|fn(x)− f(x)|dx+

� K+1

−K−1

|fn(x)− f(x)|dx

≤
�

[−K−1,K+1]c
|f(x+ hn)|dx+

�

[−K−1,K+1]c
|f(x)|dx+ ε

≤ 2

�

[−K,K]c
|f(x)|dx+ ε ≤ 3ε

which gives the result.

48. Let (X,M, µ) be a σ-finite measure space. Suppose f, f1, f2, . . . ∈ R(X) such that fn ↑ f pointwise
and moreover fn ∈ L1(µ) and supn

�
fndµ < ∞. Show that f ∈ L1(µ) and

�
fndµ →

�
fdµ as

n → ∞. (This result is sometimes called Beppo Levi’s theorem.)
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Since fn ↑ f (pointwise) we have f+
n ↑ f+ and f−

n ↓ f− (pointwise). Basically this is because the
function x �→ tox+ from R → R is continuous and nondecreasing, whle the function x �→ x− is
continuous and nonincreasing.

Hence f−
n ≤ f−

1 pointwise so
�
f−
n dµ ≤

�
f−
1 dµ which is finite because f1 ∈ L1(µ).

By assumption there exists K ∈ N such that for all n we have
�
f+
n dµ −

�
f−
n dµ =

�
fndµ ≤ K.

Therefore for all n we have
�

f+
n dµ ≤ K +

�
f−
n dµ ≤ K +

�
f−
1 dµ < ∞.

Since 0 ≤ f+
n ↑ f+, by MON we have

�
f+dµ = lim

n→∞

�
f+
n dµ ≤ K +

�
f−
1 dµ < ∞.

Also 0 ≤ f−
n ≤ f−

1 pointwise and
�
f−
1 dµ < ∞ and f−

n → f− pointwise so we can apply DOM
(with dominating function f−

1 ) to deduce that

�
f−dµ = lim

n→∞

�
f−
n dµ ≤

�
f1dµ < ∞.

Therefore both f+ and f− are integrable; hence so is f . Moreover by the Algebra of Limits
theorem
�

fdµ =

�
f+dµ−

�
f−dµ = lim

n→∞

�
f+
n dµ− lim

n→∞

�
f−
n dµ = lim

n→∞
(

�
f+
n dµ−

�
f−
n dµ) = lim

n→∞

�
fndµ

as required.


