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44. Suppose (X, M, u) is a measure space and F,, C X with F,, € M and u(F,) < oo, Vn € N.
Suppose also that D C M is a m-system in X with F,, € D for all n € N, and v is a measure on
(X, M) such that v(A) = u(A) for all A € D. For n € N set £, := U}_, Fj.

(a) Use the inclusion-exclusion formula from Question 39 to show for all n € N, A € D that

M(En) = V(En); M(A N En) = V(A N En)

(b) Now suppose moreover that US® , F,, = X. Show that u(A) = v(A) for all A € o(D).

(a) Since D is a w-system, any intersection of finitely many sets in D is also in D. In particular
NjesF; € D for all J € S(n). Therefore using inclusion-exclusion,

wE) =Y (O ugesFy) = ) ()Y u(Nes Fy) = v(E).

JeS(n) JES(n)

Similarly, for A € D we have Njc;(ANF;) € D for all J € S(n), so
HANE,) = p(Ui (ANE)) = Y ()" u(Myes (AN F))
JeS(n)
= Y (-)"Mu(nes(ANF)) = v(ANE,).
JeS(n)
(b) For n > N and A € M define
pn(A) = (AN E,); v (A) =v(ANE,).

Then p, is a measure on (X, M) since for Ay, Ay, ... pairwise disjoint in M we have
tn (V21 4) = p((UZ1A) N Ey) = p(UZ (4 N Ey) Zﬂn

Similarly v, is a measure on (X, M). Also p1,,(X) = (X N E,) = p(E,) < >0 u(F;) < o0
For any A € D, by (a) we have u(ANE,) =v(ANE,) and p(E,) = v(E,). Hence p,(A) = v,(A)
for all A € D, and p,(X) = w(E,) = v(E,) = v,(X) < co. Hence we can apply Lemma 5.6
(uniqueness lemma for finite measures) to deduce that p,(A) = v, (A) for all A € o(D). Thus for
all A € o(D) we have
(AN E,) = pn(A) =v,(A) =v(ANE,).

Finally, since (ANE,) C (ANE, ;1) foralln > N and U2, (ANE,) = AN(U L, E,) = ANX = A,
using upward continuity we obtain for all A € o(D) that

p(A) = lim p(ANE,) = lim v(ANE,) =v(A).

n—oo n—oo
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45. Let (2, F, ) be a probability space. Let f : 2 — [0,00] be measurable, i.e. f is a nonnegative
random variable. For ¢ > 0 define L(t) := [, e”/)p(dw) (the Laplace transform of f).

(a) Show that lim; o L(t) = p({w € 2 : f(w) = 0}). Here we make the convention that e=> = 0.
(b) Show that lim o L(t) = u({w € Q: f(w) < oo}).

(c) Show that limyo(¢t~*(L(0) — L(t))) = [ fdu if the integral on the right is finite . [Hint: use
the fact that 1 — e < z for > 0].

What about if the integral is infinite?

(a) Fix a sequence t,, T co. Let w € Q. Then

lim e /@ = {1 if f(w) =0;
i 0

n—oo

Since ¢, > 0 for all n, we have the domination |e**/“)] <1, and here 1 € L'(y), since [, 1du =
1(2) = 1 < oo. Therefore, by the Dominated Convergence Theorem

L(t,) = / ey X / 1o dp = p(C),
Q Q

where C' = {w € Q: f(w) = 0}. Since this convergence holds for any choice of ¢, with ¢, 1 oo, it
follows that L(t) — u(C) as t — oo, as required.

[Here we are using: if F': [0,00) — R is a function and a € R are such that F(¢,) — a for any
sequence (t,)neny With ¢, T 0o as n — oo, then F(t) — a as t — 0.

(b) Fix a sequence t, | 0. We have

lim e—tnf@) _ {1 if f(w) < oo;

n—o0

0 if f(w) = o0.

As in Part (a), since t,, > 0 for all n, we have the domination |e~*/®)| < 1, and here 1 € L'(p),
since [, 1dp = p(2) =1 < co. Therefore, by the Dominated Convergence Theorem

L(t,) = /Qe_t”f dp =% /Q 1pdu = p(D),

where D = {w € Q: f(w) < +00}. Since our choice of ¢, satisfying ¢,, | 0 is arbitrary, it follows
that L(t) — (D) as t | 0, as required.

[Here we are using: if F': (0,00) — R is a function and a € R with F(t,) — a for any sequence
(tn)neny with ¢, L 0 as n } 0, then F(t) — a as t | 0. This is similar to the fact that if a function
is sequentially continuous at 0, then it is continuous at 0, which you should have seen in first year
Analysis.]

(c) Let us take a sequence t,, | 0. Then
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46.

where we set g,(w) =t (1 — e /@), Then g,(w) = f(w) as n — oo, and also (using the
hint) g, (w) < f(w). Therefore if | fdu < co we can use Dominated convergence with dominating
function f to deduce that

n—oo

i 1 (2(0) = L) = [ f()ntdo) = [ s

If [ fdp = co we can no longer use Dominated Convergence (DOM). However, in fact we have
0 < gn(w) < gny1(w) for all w, so we can use Monotone Convergence (MON) to deduce that in
this case lim,, o ¢, ' (L(0) — L(t,)) = [ fdu = co. Thus in all cases t,'(L(0) — L(t,)) — [ fdu
as n — o0o. Since this holds for any sequence t,, | 0, it follows that t~*(L(0) — L(t,)) — [ fdu as
t 0.

Let (X, M, ) be a o-finite measure space. Show the following.
(a) If f: X — [—00,00] is measurable, E € M, [.|f|du =0, then f =0 a.e. on E.

(b) If f € L' () with [, fdp =0 for all E € M, then f =0 a.e. on X.

(c) If f € L*(u) with | [y fdu| = [y |f]dp, then either f >0 a.c. on X, or f <0 ae. on X.
(d) If f: X - R and g : X — R are measurable functions, then {z € X : f(x) # g(x)} € M.
(a) By the assumption given, setting g = |f|15 we have [ gdu = 0. Also g > 0 pointwise. There-

fore by Question 33 (b) we have u(g*((0,00])) = 0, so that u({z € E : f(x) # 0} = 0, or in other
words f =0 p-a.e. on E.

(b) Suppose f € L'(p) with [, fdu =0 for all E € M.

Take E = {z € X : f(x) > 0}. Then f1g > 0 pointwise and by the stated condition [ f1gdu =
[ [ = 0. Hence by Question 33 (b), u({z € X : f(x)1g(z) > 0}) = 0, that is, p(f~"((0,00])) = 0.

Also setting g = — f, we have [, gdu = — [, fdu = 0 for all E, so by the same argument as above
we have u(g71((0,00])) = 0, that is, u(f~*([—00,0))) = 0. Therefore

p{z € X oo 0}) = pu(f7((0,00)) U f7H([=00,0))) < pu(f (0, 00))) + pu(f 7 ([=00,0))) =0,
so u({z € X 12 #0}) =0, or in other words f =0 a.e.

(c) Suppose f € L'(u) with | [y fdu| = [ [fldp. Set I™ = [ ftdp and I- = [ f~du. Then
IT™ >0, >0 and since |f| = f* — f~, our assumption tells us that

It =1 | =1t 41

which fails unless either It = 0 or I~ = 0 (or both). But if I* = 0 then by Question 33 (b) we
have fT = 0 p-almost everywhere, or in other words f < 0 p-a.e. Similarly, if I~ = 0 then by
Question 33 (b) we have f~ = 0 u-almost everywhere, or in other words f > 0 p-a.e.

(d) By Corollary 10.8 and Theorem 10.13 the function f — g is measurable, so by Theorem 10.5
the set {x € X : f(z) # g(x)} = (f —g) " (R\ {0}) is in M.
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47. Let f: R — R be integrable. Suppose {h,},>1 is a sequence in R such that h,, — 0.

(a) Show that for any K € (0, 00) we have f_KK |f(x+hy,)— f(x)|dr — 0 as n — oo. [Hint: first
suppose f is continuous, and recall that any continuous real-valued function on a compact
interval is bounded.]

(b) Show that [ |f(x + h,) — f(z)|dz — 0 as n — oco.

(a) First assume f is continuous. In that case, setting g,(z) = |f(x + h,) — f(z)| we have
gn — 0 pointwise as n — oo, and (assuming n is large enough so that |h,| < 1) |g.(z)| <
| fa(®) + fal® 4 hy)| < 2M, where we set M = sup_g_j<,<x 41 |f(z)] which is finite by the

hint. Since ffK(QM)dx =4KM < oo, by DOM we have

/|f($+hn)—f($)|d$=/ gn(z)dx — 0 as n — oo.

K -K
In the general case (f maybe not continuous) we have to use Question 43. Given £ > 0,

take w : R — R such that w is continuous and [*_|w(z) — f(z)|dz < /3, and set w,(z) =

w(x + hy,). Then f_KK |wy,(z) —w(x)|dz — 0 as n — oo by the argument just given. Also, for
all n, using Question 37 we have

o0

/mmww—mummz/fwmwww—fu+mwm=/’hmw—ﬂMWm<d&

so for large enough n, setting f,(x) = f(z + h,) we have
K K K K
/ | fr — fldz S/ !fn—wn\d$+/ ]wn—w\d:l:+/ lw — fldx < e.
K

-K -K -K -

(b) Let € > 0 and choose K such that fR\[fK K] |f(z)|dz < e. This can be done by the solution
K+1

to Question 41. Set f,(x) = f(x + hy,). Then using (b), choose N so that ff(K+1) | fu(z) —
f(z)|dr < e for all n > N, and also |h,| <1 for all n > N. Then for n > N, we have

o) K+1
/'uum—f@wms/’ mmﬂ—ﬂ@wx+/ fole) — f(2)lde
—0 [~K—1,K+1]° —K-1
hy,)|d d
S[«ﬂmw”“+ nx+[«ﬁmwuunx+a

§2/ (@)l +¢ < 3¢
[_KvK]C

which gives the result.

48. Let (X, M, p) be a o-finite measure space. Suppose f, f1, fa,... € R(X) such that f,, T f pointwise
and moreover f,, € L*(u) and sup, [ f.dp < oo. Show that f € L*(u) and [ fodu — [ fdp as
n — oo. (This result is sometimes called Beppo Levi’s theorem.)
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Since f, 1 f (pointwise) we have f 1 f* and f, | f~ (pointwise). Basically this is because the
function x +— tox™ from R — R is continuous and nondecreasing, whle the function z +— x~ is
continuous and nonincreasing.

Hence f, < f; pointwise so [ f, du < [ f{ du which is finite because f; € L'(p).

By assumption there exists K € N such that for all n we have [ ffdy— [ f,dp= [ fodp < K.
Therefore for all n we have

/ﬁng+/nWSK+/ﬁm<w
Since 0 < fF 1 f*, by MON we have
/f+d,u: lim /f;du§K+/f1_d/L<OO.
n—o0

Also 0 < f7 < f; pointwise and [ fidu < oo and f, — f~ pointwise so we can apply DOM
(with dominating function f; ) to deduce that

/f‘duzr}ggo/f{dué/fldu<oo

Therefore both f* and f~ are integrable; hence so is f. Moreover by the Algebra of Limits
theorem

[ in= [ rran- [ gau=tm [ gran-tm [ =t ([ grane [ gode) = lm [ fda

as required.



