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37. (a) Suppose g : R → R is integrable and t ∈ R. Show that
�∞
−∞ g(x− t)dx =

�∞
−∞ g(x)dx.

(b) Deduce that for any a, b ∈ R with a < b,
� b+t

a+t
g(x− t)dx =

� b

a
g(x)dx.

(a) Set h(x) = g(x− t). We need to show
�
R hdλ1 =

�
R gdλ1, where λ1 is Lebesgue measure.

First suppose g is nonnegative and simple. By Lemma 11.7(a) we can write g =
�n

i=1 αi1Ai

with all of the αi ≥ 0 and Ai ∈ B. For all x ∈ R, note that x − t ∈ A ⇔ x ∈ A + t, and
hence 1A(x − t) = 1A+t(x). Hence h =

�n
i=1 αi1Ai+t. Then using Lemma 11.7(b) and also the

translation invariance of λ1 (Theorem 6.8) we have

�

R
hdλ1 =

n�

i=1

αiλ1(Ai + t) =
n�

i=1

αiλ1(Ai) =

�

R
gdλ1.

Now suppose g is nonnegative. Let (gn)n≥1 be a sequence of simple functions with 0 ≤ gn ↑ g
pointwise (see Theorem 10.12). Set hn(x) = gn(x+ t) for x ∈ R. Then hn is simple and 0 ≤ hn ↑ h
pointwise, so by MON and the previous case,

�

R
hdλ1 = lim

n→∞

�

R
hndλ1 = lim

n→∞

�
gndλ1 =

�

R
gdλ1.

For general integrable g we have that h+(x) = g+(x− t) for all x, and h−(x− t) = g−(x− t) for
all x. Hence by the previous case

�
h+dλ1 =

�
g+dλ1 and

�
h−dλ1 =

�
g−dλ1. Hence

�
hdλ1 =

�
h+dλ1 −

�
h−dλ1 =

�
g+dλ1 −

�
g−dλ1 =

�
gdλ1.

(b) Set f(x) := g(x)1(a,b)(x). Then f(x− t) = g(x− t)1(a+t,b+t)(x). Hence by part (a),

� b+t

a+t

g(x− t)dx =

� ∞

−∞
g(x− t)1(a+t,b+t)(x)dx =

� ∞

−∞
f(x− t)dx =

� ∞

−∞
f(x)dx =

� b

a

g(x)dx.

38. Let µ be counting measure on (N,P(N)).
(a) Let k ∈ N. Show that if f : X → [0,∞) with f(n) = 0 for all n > k, then

�
N fdµ =

�k
i=1 f(i).

(a) Under the given assumption, f is simple and nonnegative. Indeed f =
�k

i=1 f(i)1{i} so by
Lemma 11.7(b), since µ is counting measure so µ({i}) = 1 for each i, we have

�
fdµ =

k�

i=1

f(i)µ({i}) =
k�

i=1

f(i).

(b) Show that if g : N → [0,∞) then
�
N gdµ =

�∞
n=1 g(n).

(b) For n ∈ N, define gn(i) = g(i) for i ≤ n, with gn(i) = 0 for i ≥ n. Then by part (a)�
gndµ =

�n
i=1 g(i).

Since we assume g ≥ 0 we have gn ↑ g pointwise and so by MON,

�
gdµ = lim

n→∞

�
gndµ = lim

n→∞

n�

i=1

g(i) =
∞�

i=1

g(i).
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(c) Suppose h : N → R with
�∞

n=1 |h(n)| < ∞. Show that
�
N hdµ =

�∞
i=1 h(i).

Since h+ ≤ |h| and h− ≤ |h| pointwise we have
�

n h
+(n) ≤ �

n |h(n)| < ∞ and
�

n h
−(n) < ∞.

Hence by (b) both h+ and h− are in L1(µ), and

�
hdµ =

�
h+dµ−

�
h−dµ =

� ∞�

n=1

h+(n)
�
−

∞�

n=1

h−(n)

= lim
k→∞

� k�

n=1

h+(n)
�
− lim

k→∞

k�

n=1

h+(n)

= lim
k→∞

k�

n=1

(h+(n)− h−(n)) = lim
k→∞

k�

n=1

h(n) =
∞�

n=1

h(n),

where we used the definition of an infinite sum in the second line, and the algebra of limits theorem
at the start of the third line.

39. Let (X,M, µ) be a σ-finite measure space. Suppose F1, . . . , Fn are subsets of X with Fi ∈ M and
µ(Fi) < ∞ for each i ∈ [n], where we set [n] := {1, . . . , n}. For S ⊂ [n] let |S| denote the number
of elements of S. Use the linearity of integration, and the fact that µ(A) =

�
X
1A for any A ∈ M,

to prove the inclusion-exclusion formula from Question 44, namely

µ(∪n
i=1Fi) =

�

J∈S(n)
(−1)|J |+1µ(∩j∈JFj), where S(n) := {J ⊂ {1, . . . , n} : J �= ∅}.

[Hint: for any sets G1, . . . , Gk ∈ M we have 1∩k
i=1Gi

=
�k

i=1 1Gi
.]

By Lemma 11.7 (integration of simple functions formula), µ(∪n
i=1Fi) =

�
1∪n

i=1Fi
dµ. By the hint

1∪n
i=1Fi

= 1− 1∩n
i=1F

c
i
= 1−

n�

i=1

1F c
i
= 1−

n�

i=1

(1− 1Fi
).

By a binomial-type expansion, for any real x1, . . . , xn we have

n�

i=1

(1− xi) = (1− x1)(1− x2) · · · (1− xn) = 1 +
�

J∈S(n)

�

i∈J
(−xi) = 1 +

�

J∈S(n)

�

i∈J
(−1)|J |

n�

i∈J
xi

Taking xi = 1Fi
and using the hint again, we obtain that

1∪n
i=1Fi

= 1−


1 +

�

J∈S(n)
(−1)|J |

�

i∈J
1Fi


 =

�

J∈S(n)
(−1)|J |+11∩i∈JFi

.

Using the linearity of integration we obtain that

µ(∪n
i=1Fi) =

�
1∪n

i=1Fi
dµ =

�

J∈S(n)
(−1)|J |+1

�
1∩i∈JFi

dµ =
�

J∈S(n)
(−1)|J |+1µ(∩i∈JFi).
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40. Let (X,M, µ) be a σ-finite measure space. Suppose f, g, h ∈ L1(µ).

(a) For F ∈ L1(µ) set �F�1 :=
�
|f |dµ. Show that �f + g�1 ≤ �f�1 + �g�1.

(b) Show that f − h ∈ L1(µ) and h− g ∈ L1(µ) and �f − g�1 ≤ �f − h�1 + �h− g�1.
(a) By the triangle inequality, for all x ∈ X we have |f(x)+g(x)| ≤ |f(x)|+ |g(x)|, so 0 ≤ |f+g| ≤
|f |+ |g| pointwise. By Lemma 11.5(a), and then linearity of integration,

�f + g�1 =
�

|f + g|dµ ≤
�

(|f |+ |g|)dµ =

�
|f |dµ+

�
|g|dµ = �f�1 + �g�1.

(b) Since |− h(x)| = |h(x)| for all x ∈ X, we have � − h�1 =
�
|− h|dµ =

�
|h|dµ = �h�1. Hence

by part (a) �f − h�1 ≤ �f�1 + � − h�1 = �f�1 + �h�1 < ∞. Thus f − h ∈ L(µ) and similarly
h− g ∈ L1(µ).

Since f − g = (f − h) + (h− g) we have by part (a) that �f − g�1 ≤ �f − h�1 + �h− g�1.

41. Suppose f : R → R is integrable. Show that there exists integrable g : R → R such that�∞
−∞ |f(x) − g(x)|dx < ε, and g has bounded support (i.e., there exists n ∈ N with g(x) = 0
whenever |x| > n).

Setting fn := |f |1(−n,n) we have fn ↑ |f | pointwise so by MON, we have as n → ∞ that

� n

−n

f(x)dx =

�
fndλ1 →

�
|f |dλ1 < ∞

so we can choose N such that
� N

−N
|f(x)|dx >

�∞
−∞ |f(x)|dx− ε.

Take g = f1(−N,N). Then g has bounded support and

� ∞

−∞
|f(x)− g(x)|dx =

� N

−∞
|f(x)|dx+

� ∞

N

|f(x)|dx =

� ∞

−∞
|f(x)|dx−

� N

−N

|f(x)|dx < ε.

42. A function g : R → R is called a step function if we can write g =
�k

i=1 ci1Ii for some k ∈ N,
(c1, . . . , ck) ∈ Rk and I1, . . . , Ik intervals in R.
Suppose f : R → [0,∞) is simple and has bounded support. Let ε > 0. Show that there exists a
step function g : R → R such that

�∞
−∞ |g − f |dx < ε. Hint: Recall Questions 17 and 23.

First assume f = 1A for some bounded Borel set A. By Question 17, given ε > 0 we can find a
set U which is a finite union of bounded intervals such that λ(A�U) < ε/2. Also we can take
these intervals to be half-open, and then since U is an algebra by Qusestion 23, the set U is in
U and therefore is in fact a finite union of pairwise disjoint half-open bounded intervals, denoted
I1, . . . , Ik say.

Clearly 1U =
�k

i=1 1Ii is a step function, and since |1A(x) − 1U(x)| = 1A�U (x) for all x ∈ R we
have

�∞
−∞ |1A(x)− 1U(x)|dx =

�
1A�U (x)dx = λ1(A�U) < ε.

Now suppose f is simple, f ≥ 0. By Lemma 11.7 we can write f =
��

i=1 ai1Ai
with Ai all bounded

and measurable, and ai ≥ 0 for all i. Assume the ai are not all zero (otherwise f ≡ 0 which is
itself a step function). Then by the case considered earlier we can find step functions h1, . . . , h�
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such that
�
|hi − 1Ai

| < ε/(�max(a1, . . . , a�)) for each i. Setting h =
��

i=1 aihi gives us a step
function with

�
|f − h|dλ1 =

� ���
�

ai(1Ai
− hi)

��� dλ1 ≤
��

i=1

ai

�
|1Ai

− hi|dλ1 < ε.

43. Suppose f : R → R is in L1. Let ε > 0. Using Question 42, show there exists a continuous
function g : R → R such that �f − g�1 < ε, i.e.

�∞
−∞ |f(x)− g(x)|dx < ε.

First suppose f = 1I for I an interval with left endpoint a and right endpoint b. Take fn(x) = f(x)
for x ∈ I and for x ≤ a − 1/n, and for x ≥ b + 1/n, with the value of fn interpolated linearly
between x = a − 1/n and x = a, and the value of fn interpolated linearly between x = b and
x = b+ 1/n.

Then fn is continuous and |fn−f | ≤ 1[a−1/n,a]∪[b,b+1/n] so that
�∞
−∞ |fn−f |dx ≤ 2/n, so �fn−f�1 →

0 as n → ∞.

Now take a new function f . Assume f : R → [0,∞) is integrable. Using Question 41, take g ∈ L1

with bounded support and �g − f�1 ≤ ε/9 and g ≥ 0 (the solution to Question 41 shows that if
f ≥ 0 we can take g ≥ 0).

Now take gn simple with 0 ≤ gn ≤ g pointwise and gn ↑ g pointwise. Then by MON, we have�
gndµ ↑

�
gdµ, so given ε > 0 we can choose N such that

�
|g− gN | ≤ ε/9, i.e. �g− gN�1 < ε/9.

Note also that gN has bounded support since 0 ≤ gN ≤ g pointwise and g has bounded support.

Since gN is simple, we can and do write gN =
��

i=1 ai1Ai
with Ai all bounded and measur-

able. Assume the ai are not all zero (otherwise g = 0 which is continuous). By the case we
started with in this solution, we can find continuous functions h1, . . . , h� with

�
|hi − 1Ai

| ≤
ε/(9�max(|a1|, . . . , |a�|)) for each i. Then setting h =

��
i=1 aihi gives us a continous function with

�
|gN − h|dλ1 =

� �
ai(1Ai

− hi)dλ1 ≤
��

i=1

ai

�
|1Ai

− hi|dλ1 ≤ ε/9.

Then using Question 40 we obtain that �f − h�1 ≤ �f − g�+ �g − gN�1 + �gN − h�1 ≤ ε/3.

Finally if f : R → R ∈ L1, by the preceding argument we can find continuous functions F1, F2 in
L1 with �F1 − f+�1 ≤ ε/3 and �F2 − f−�1 ≤ ε/3. Then by Question 40 again F1 − F2 is in L1

(and is continuous) with �f − (F1 − F2)�1 = �f+ − F1�1 + �f− − F2�+ ≤ ε.


