- 37. (a) Suppose $g: \mathbb{R} \to \mathbb{R}$ is integrable and $t \in \mathbb{R}$. Show that $\int_{-\infty}^{\infty} g(x-t)dx = \int_{-\infty}^{\infty} g(x)dx$.
 - (b) Deduce that for any $a, b \in \mathbb{R}$ with a < b, $\int_{a+t}^{b+t} g(x-t)dx = \int_{a}^{b} g(x)dx$.
 - (a) Set h(x) = g(x-t). We need to show $\int_{\mathbb{R}} h d\lambda_1 = \int_{\mathbb{R}} g d\lambda_1$, where λ_1 is Lebesgue measure.

First suppose g is nonnegative and simple. By Lemma 11.7(a) we can write $g = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i}$ with all of the $\alpha_i \geq 0$ and $A_i \in \mathcal{B}$. For all $x \in \mathbb{R}$, note that $x - t \in A \Leftrightarrow x \in A + t$, and hence $\mathbf{1}_A(x - t) = \mathbf{1}_{A+t}(x)$. Hence $h = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i+t}$. Then using Lemma 11.7(b) and also the translation invariance of λ_1 (Theorem 6.8) we have

$$\int_{\mathbb{R}} h d\lambda_1 = \sum_{i=1}^n \alpha_i \lambda_1 (A_i + t) = \sum_{i=1}^n \alpha_i \lambda_1 (A_i) = \int_{\mathbb{R}} g d\lambda_1$$

Now suppose g is nonnegative. Let $(g_n)_{n\geq 1}$ be a sequence of simple functions with $0 \leq g_n \uparrow g$ pointwise (see Theorem 10.12). Set $h_n(x) = g_n(x+t)$ for $x \in \mathbb{R}$. Then h_n is simple and $0 \leq h_n \uparrow h$ pointwise, so by MON and the previous case,

$$\int_{\mathbb{R}} h d\lambda_1 = \lim_{n \to \infty} \int_{\mathbb{R}} h_n d\lambda_1 = \lim_{n \to \infty} \int g_n d\lambda_1 = \int_{\mathbb{R}} g d\lambda_1.$$

For general integrable g we have that $h^+(x) = g^+(x-t)$ for all x, and $h^-(x-t) = g^-(x-t)$ for all x. Hence by the previous case $\int h^+ d\lambda_1 = \int g^+ d\lambda_1$ and $\int h^- d\lambda_1 = \int g^- d\lambda_1$. Hence

$$\int h d\lambda_1 = \int h^+ d\lambda_1 - \int h^- d\lambda_1 = \int g^+ d\lambda_1 - \int g^- d\lambda_1 = \int g d\lambda_1.$$

(b) Set $f(x) := g(x)\mathbf{1}_{(a,b)}(x)$. Then $f(x-t) = g(x-t)\mathbf{1}_{(a+t,b+t)}(x)$. Hence by part (a),

$$\int_{a+t}^{b+t} g(x-t)dx = \int_{-\infty}^{\infty} g(x-t)\mathbf{1}_{(a+t,b+t)}(x)dx = \int_{-\infty}^{\infty} f(x-t)dx = \int_{-\infty}^{\infty} f(x)dx = \int_{a}^{b} g(x)dx.$$

38. Let μ be counting measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.

(a) Let $k \in \mathbb{N}$. Show that if $f: X \to [0, \infty)$ with f(n) = 0 for all n > k, then $\int_{\mathbb{N}} f d\mu = \sum_{i=1}^{k} f(i)$. (a) Under the given assumption, f is simple and nonnegative. Indeed $f = \sum_{i=1}^{k} f(i) \mathbf{1}_{\{i\}}$ so by Lemma 11.7(b), since μ is counting measure so $\mu(\{i\}) = 1$ for each i, we have

$$\int f d\mu = \sum_{i=1}^{k} f(i)\mu(\{i\}) = \sum_{i=1}^{k} f(i)$$

(b) Show that if $g: \mathbb{N} \to [0, \infty)$ then $\int_{\mathbb{N}} g d\mu = \sum_{n=1}^{\infty} g(n)$.

(b) For $n \in \mathbb{N}$, define $g_n(i) = g(i)$ for $i \leq n$, with $g_n(i) = 0$ for $i \geq n$. Then by part (a) $\int g_n d\mu = \sum_{i=1}^n g(i)$.

Since we assume $g \ge 0$ we have $g_n \uparrow g$ pointwise and so by MON,

$$\int gd\mu = \lim_{n \to \infty} \int g_n d\mu = \lim_{n \to \infty} \sum_{i=1}^n g(i) = \sum_{i=1}^\infty g(i).$$

(c) Suppose $h : \mathbb{N} \to \mathbb{R}$ with $\sum_{n=1}^{\infty} |h(n)| < \infty$. Show that $\int_{\mathbb{N}} h d\mu = \sum_{i=1}^{\infty} h(i)$. Since $h^+ \leq |h|$ and $h^- \leq |h|$ pointwise we have $\sum_n h^+(n) \leq \sum_n |h(n)| < \infty$ and $\sum_n h^-(n) < \infty$. Hence by (b) both h^+ and h^- are in $L^1(\mu)$, and

$$\int h d\mu = \int h^+ d\mu - \int h^- d\mu = \left(\sum_{n=1}^{\infty} h^+(n)\right) - \sum_{n=1}^{\infty} h^-(n)$$
$$= \lim_{k \to \infty} \left(\sum_{n=1}^k h^+(n)\right) - \lim_{k \to \infty} \sum_{n=1}^k h^+(n)$$
$$= \lim_{k \to \infty} \sum_{n=1}^k (h^+(n) - h^-(n)) = \lim_{k \to \infty} \sum_{n=1}^k h(n) = \sum_{n=1}^{\infty} h(n),$$

where we used the definition of an infinite sum in the second line, and the algebra of limits theorem at the start of the third line.

39. Let (X, \mathcal{M}, μ) be a σ -finite measure space. Suppose F_1, \ldots, F_n are subsets of X with $F_i \in \mathcal{M}$ and $\mu(F_i) < \infty$ for each $i \in [n]$, where we set $[n] := \{1, \ldots, n\}$. For $S \subset [n]$ let |S| denote the number of elements of S. Use the linearity of integration, and the fact that $\mu(A) = \int_X \mathbf{1}_A$ for any $A \in \mathcal{M}$, to prove the inclusion-exclusion formula from Question 44, namely

$$\mu(\bigcup_{i=1}^{n} F_i) = \sum_{J \in S(n)} (-1)^{|J|+1} \mu(\bigcap_{j \in J} F_j), \quad \text{where} \ S(n) := \{J \subset \{1, \dots, n\} : J \neq \emptyset\}$$

[Hint: for any sets $G_1, \ldots, G_k \in \mathcal{M}$ we have $\mathbf{1}_{\bigcap_{i=1}^k G_i} = \prod_{i=1}^k \mathbf{1}_{G_i}$.]

By Lemma 11.7 (integration of simple functions formula), $\mu(\bigcup_{i=1}^{n} F_i) = \int \mathbf{1}_{\bigcup_{i=1}^{n} F_i} d\mu$. By the hint

$$\mathbf{1}_{\bigcup_{i=1}^{n}F_{i}} = 1 - \mathbf{1}_{\bigcap_{i=1}^{n}F_{i}^{c}} = 1 - \prod_{i=1}^{n}\mathbf{1}_{F_{i}^{c}} = 1 - \prod_{i=1}^{n}(1 - \mathbf{1}_{F_{i}}).$$

By a binomial-type expansion, for any real x_1, \ldots, x_n we have

$$\prod_{i=1}^{n} (1-x_i) = (1-x_1)(1-x_2) \cdots (1-x_n) = 1 + \sum_{J \in S(n)} \prod_{i \in J} (-x_i) = 1 + \sum_{J \in S(n)} \prod_{i \in J} (-1)^{|J|} \prod_{i \in J}^{n} x_i$$

Taking $x_i = \mathbf{1}_{F_i}$ and using the hint again, we obtain that

$$\mathbf{1}_{\bigcup_{i=1}^{n}F_{i}} = 1 - \left(1 + \sum_{J \in S(n)} (-1)^{|J|} \prod_{i \in J} \mathbf{1}_{F_{i}}\right) = \sum_{J \in S(n)} (-1)^{|J|+1} \mathbf{1}_{\bigcap_{i \in J}F_{i}}.$$

Using the linearity of integration we obtain that

$$\mu(\bigcup_{i=1}^{n} F_{i}) = \int \mathbf{1}_{\bigcup_{i=1}^{n} F_{i}} d\mu = \sum_{J \in S(n)} (-1)^{|J|+1} \int \mathbf{1}_{\bigcap_{i \in J} F_{i}} d\mu = \sum_{J \in S(n)} (-1)^{|J|+1} \mu(\bigcap_{i \in J} F_{i}).$$

- 40. Let (X, \mathcal{M}, μ) be a σ -finite measure space. Suppose $f, g, h \in L^1(\mu)$.
 - (a) For $F \in L^1(\mu)$ set $||F||_1 := \int |f| d\mu$. Show that $||f + g||_1 \le ||f||_1 + ||g||_1$.
 - (b) Show that $f h \in L^1(\mu)$ and $h g \in L^1(\mu)$ and $||f g||_1 \le ||f h||_1 + ||h g||_1$.
 - (a) By the triangle inequality, for all $x \in X$ we have $|f(x) + g(x)| \le |f(x)| + |g(x)|$, so $0 \le |f+g| \le |f(x)| + |g(x)|$, so $0 \le |f+g| \le |f(x)| + |g(x)|$.
 - |f| + |g| pointwise. By Lemma 11.5(a), and then linearity of integration,

$$||f+g||_1 = \int |f+g|d\mu \le \int (|f|+|g|)d\mu = \int |f|d\mu + \int |g|d\mu = ||f||_1 + ||g||_1$$

(b) Since |-h(x)| = |h(x)| for all $x \in X$, we have $||-h||_1 = \int |-h|d\mu = \int |h|d\mu = ||h||_1$. Hence by part (a) $||f - h||_1 \le ||f||_1 + ||-h||_1 = ||f||_1 + ||h||_1 < \infty$. Thus $f - h \in L^{(\mu)}$ and similarly $h - g \in L^1(\mu)$.

Since f - g = (f - h) + (h - g) we have by part (a) that $||f - g||_1 \le ||f - h||_1 + ||h - g||_1$.

41. Suppose $f : \mathbb{R} \to \mathbb{R}$ is integrable. Show that there exists integrable $g : \mathbb{R} \to \mathbb{R}$ such that $\int_{-\infty}^{\infty} |f(x) - g(x)| dx < \varepsilon$, and g has bounded support (i.e., there exists $n \in \mathbb{N}$ with g(x) = 0 whenever |x| > n).

Setting $f_n := |f| \mathbf{1}_{(-n,n)}$ we have $f_n \uparrow |f|$ pointwise so by MON, we have as $n \to \infty$ that

$$\int_{-n}^{n} f(x)dx = \int f_n d\lambda_1 \to \int |f| d\lambda_1 < \infty$$

so we can choose N such that $\int_{-N}^{N} |f(x)| dx > \int_{-\infty}^{\infty} |f(x)| dx - \varepsilon$. Take $g = f \mathbf{1}_{(-N,N)}$. Then g has bounded support and

$$\int_{-\infty}^{\infty} |f(x) - g(x)| dx = \int_{-\infty}^{N} |f(x)| dx + \int_{N}^{\infty} |f(x)| dx = \int_{-\infty}^{\infty} |f(x)| dx - \int_{-N}^{N} |f(x)| dx < \varepsilon.$$

42. A function $g : \mathbb{R} \to \mathbb{R}$ is called a **step function** if we can write $g = \sum_{i=1}^{k} c_i \mathbf{1}_{I_i}$ for some $k \in \mathbb{N}$, $(c_1, \ldots, c_k) \in \mathbb{R}^k$ and I_1, \ldots, I_k intervals in \mathbb{R} .

Suppose $f : \mathbb{R} \to [0, \infty)$ is simple and has bounded support. Let $\varepsilon > 0$. Show that there exists a step function $g : \mathbb{R} \to \mathbb{R}$ such that $\int_{-\infty}^{\infty} |g - f| dx < \varepsilon$. *Hint: Recall Questions 17 and 23.*

First assume $f = \mathbf{1}_A$ for some bounded Borel set A. By Question 17, given $\varepsilon > 0$ we can find a set U which is a finite union of bounded intervals such that $\lambda(A \triangle U) < \varepsilon/2$. Also we can take these intervals to be half-open, and then since \mathcal{U} is an algebra by Question 23, the set U is in \mathcal{U} and therefore is in fact a finite union of *pairwise disjoint* half-open bounded intervals, denoted I_1, \ldots, I_k say.

Clearly $\mathbf{1}_U = \sum_{i=1}^k \mathbf{1}_{I_i}$ is a step function, and since $|\mathbf{1}_A(x) - \mathbf{1}_U(x)| = \mathbf{1}_{A \triangle U}(x)$ for all $x \in \mathbb{R}$ we have $\int_{-\infty}^{\infty} |\mathbf{1}_A(x) - \mathbf{1}_U(x)| dx = \int \mathbf{1}_{A \triangle U}(x) dx = \lambda_1(A \triangle U) < \varepsilon$.

Now suppose f is simple, $f \ge 0$. By Lemma 11.7 we can write $f = \sum_{i=1}^{\ell} a_i \mathbf{1}_{A_i}$ with A_i all bounded and measurable, and $a_i \ge 0$ for all i. Assume the a_i are not all zero (otherwise $f \equiv 0$ which is itself a step function). Then by the case considered earlier we can find step functions h_1, \ldots, h_{ℓ}

such that $\int |h_i - \mathbf{1}_{A_i}| < \varepsilon/(\ell \max(a_1, \ldots, a_\ell))$ for each *i*. Setting $h = \sum_{i=1}^{\ell} a_i h_i$ gives us a step function with

$$\int |f-h| d\lambda_1 = \int \left| \sum a_i (\mathbf{1}_{A_i} - h_i) \right| d\lambda_1 \le \sum_{i=1}^{\ell} a_i \int |\mathbf{1}_{A_i} - h_i| d\lambda_1 < \varepsilon.$$

43. Suppose $f : \mathbb{R} \to \mathbb{R}$ is in L^1 . Let $\varepsilon > 0$. Using Question 42, show there exists a continuous function $g : \mathbb{R} \to \mathbb{R}$ such that $\|f - g\|_1 < \varepsilon$, i.e. $\int_{-\infty}^{\infty} |f(x) - g(x)| dx < \varepsilon$.

First suppose $f = \mathbf{1}_I$ for I an interval with left endpoint a and right endpoint b. Take $f_n(x) = f(x)$ for $x \in I$ and for $x \leq a - 1/n$, and for $x \geq b + 1/n$, with the value of f_n interpolated linearly between x = a - 1/n and x = a, and the value of f_n interpolated linearly between x = b and x = b + 1/n.

Then f_n is continuous and $|f_n - f| \leq \mathbf{1}_{[a-1/n,a] \cup [b,b+1/n]}$ so that $\int_{-\infty}^{\infty} |f_n - f| dx \leq 2/n$, so $||f_n - f||_1 \to 0$ as $n \to \infty$.

Now take a new function f. Assume $f : \mathbb{R} \to [0, \infty)$ is integrable. Using Question 41, take $g \in L^1$ with bounded support and $||g - f||_1 \le \varepsilon/9$ and $g \ge 0$ (the solution to Question 41 shows that if $f \ge 0$ we can take $g \ge 0$).

Now take g_n simple with $0 \leq g_n \leq g$ pointwise and $g_n \uparrow g$ pointwise. Then by MON, we have $\int g_n d\mu \uparrow \int g d\mu$, so given $\varepsilon > 0$ we can choose N such that $\int |g - g_N| \leq \varepsilon/9$, i.e. $||g - g_N||_1 < \varepsilon/9$. Note also that g_N has bounded support since $0 \leq g_N \leq g$ pointwise and g has bounded support.

Since g_N is simple, we can and do write $g_N = \sum_{i=1}^{\ell} a_i \mathbf{1}_{A_i}$ with A_i all bounded and measurable. Assume the a_i are not all zero (otherwise g = 0 which is continuous). By the case we started with in this solution, we can find continuous functions h_1, \ldots, h_ℓ with $\int |h_i - \mathbf{1}_{A_i}| \leq \varepsilon/(9\ell \max(|a_1|, \ldots, |a_\ell|))$ for each *i*. Then setting $h = \sum_{i=1}^{\ell} a_i h_i$ gives us a continuous function with

$$\int |g_N - h| d\lambda_1 = \int \sum a_i (\mathbf{1}_{A_i} - h_i) d\lambda_1 \le \sum_{i=1}^{\ell} a_i \int |\mathbf{1}_{A_i} - h_i| d\lambda_1 \le \varepsilon/9.$$

Then using Question 40 we obtain that $||f - h||_1 \le ||f - g|| + ||g - g_N||_1 + ||g_N - h||_1 \le \varepsilon/3$. Finally if $f : \mathbb{R} \to \mathbb{R} \in L^1$, by the preceding argument we can find continuous functions F_1, F_2 in L^1 with $||F_1 - f^+||_1 \le \varepsilon/3$ and $||F_2 - f^-||_1 \le \varepsilon/3$. Then by Question 40 again $F_1 - F_2$ is in L^1 (and is continuous) with $||f - (F_1 - F_2)||_1 = ||f^+ - F_1||_1 + ||f^- - F_2||_+ \le \varepsilon$.