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37.

38.

(a) Suppose g : R — R is integrable and t € R. Show that [*°_g(z —t)dz = [ g(z)dz.
(b) Deduce that for any a,b € R with a < b, fbittg (x —t)dx = ffg(a:)d:c
(a) Set h(z) = g(x —t). We need to show [, hdA; = [, gd\i, where )i is Lebesgue measure.

First suppose ¢ is nonnegative and simple. By Lemma 11.7(a) we can write g = > . ; a;14,
with all of the a; > 0 and A; € B. For all z € R, note that + —t € A & x € A+ t, and
hence 14(x —t) = 1a4¢(z). Hence h = > | @;14,44. Then using Lemma 11.7(b) and also the
translation invariance of A\; (Theorem 6.8) we have

/hd)\l Zml (Ai+1) =) aid(4) :/gd)\l.
i=1 R

Now suppose g is nonnegative. Let (g,),>1 be a sequence of simple functions with 0 < g, 1 ¢
pointwise (see Theorem 10.12). Set h,(z) = g,(x+1t) for x € R. Then h,, is simple and 0 < h,, T h
pointwise, so by MON and the previous case,

/hd)\l lim hpdh = lim | g,d)\; = /gd)\l.

For general integrable g we have that h*(x) = g™ (z — ¢) for all x, and h™(x — t) = g~ (x — t) for
all z. Hence by the previous case fh*d)\l = fg+d)\1 and fh_d)\l = fg‘d)\l. Hence

/hd)\l :/h+d)\1—/hd)\1 :/g+d)\1 —/gd/\1 :/gd)\l

(b) Set f(x) := g(x)1(p(x). Then f(x —t) = g(x — t)1(gq+p+1) (x). Hence by part (a),

/it g(x —t)de = /_Z 9(@ — 1)L (atepte) (v)d = /_Z flz—t)dz = /: fla)de = /abg(m)dx_

Let p be counting measure on (N, P(N)).
(a) Let k € N. Show that if f : X — [0,00) with f(n) = 0 for all n > k, then [ fdu = S F).

(a) Under the given assumption, f is simple and nonnegative. Indeed f = Zl L f(7)1g so by
Lemma 11.7(b), since u is counting measure so p({i}) = 1 for each i, we have

[ in=3" s =3 )

(b) Show that if g : N — [0,00) then [ gdu =", g(n).

(b) For n € N, define g,(:) = ¢(i) for ¢ < n, with ¢,(i) = 0 for ¢ > n. Then by part (a)
S gndp =371 9(0).

Since we assume g > 0 we have g, T ¢ pointwise and so by MON,

[ o=t [ = 1 300 =3 a0
1=1 =1
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39.

(¢) Suppose h : N — R with >~ |h(n)| < co. Show that [ hdu = Y2, h(i).

Since h* < |h| and h~ < |h| pointwise we have > h*(n) <> |h(n)] <ooand ) h™(n) < occ.
Hence by (b) both AT and h~ are in L'(u), and

/hduz /h*du—/h‘du: (ihwn)) —ih_(n)

k k
= fim (5 00) = fim 30w o)
k

n=

k

= lim Y (k¥ (n) —h~(n)) = lim » h(n) = > hln),

where we used the definition of an infinite sum in the second line, and the algebra of limits theorem
at the start of the third line.

Let (X, M, i) be a o-finite measure space. Suppose Fi, ..., F, are subsets of X with F; € M and
u(F;) < oo for each i € [n], where we set [n] := {1,...,n}. For S C [n] let |S| denote the number
of elements of S. Use the linearity of integration, and the fact that j(A) = [, 14 for any A € M,
to prove the inclusion-exclusion formula from Question 44, namely

UL F) = Y (=) (e Fy),  where S(n) = {J C{1,...,n}:J # o}
JeS(n)
[Hint: for any sets Gy, ...,Gr € M we have 1 g, = Hle 1g,./
By Lemma 11.7 (integration of simple functions formula), pu(U? F;) = f 1yn  r,dp. By the hint

n

]-U?:1Fi =1- lﬁ?:le'c =1- H 1Fz'c =1- H(l - 1Fi)'
=1

j= =1

By a binomial-type expansion, for any real z, ..., x, we have
[[a-z)=(-2)(—m)--(Q—z) =1+ Y [z =1+ > J[D"']]=
i=1 JeS(n) i€J JeS(n) i€J ieJ

Taking z; = 1p, and using the hint again, we obtain that
1U?:1Fi =1-11+ Z <_1)‘J‘ H 1Fi - Z <_1>‘J|+11mi€JFi'
JeS(n) ieJ JeS(n)

Using the linearity of integration we obtain that

,U(UZL:1E) /1u;'_1FldM Z (_1)|J+1\/102.6indu Z (_1)|J‘+1,U,(mi€JF’i)'

JES(n) JES(n)
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40.

41.

42.

Let (X, M, ) be a o-finite measure space. Suppose f,g,h € L*(u).
(a) For F € L' () set ||[F|[y := [ |f|dp. Show that [|f + glls < [[f]l1 + ll9]-
(b) Show that f —h € L'(u) and h — g € L'(p) and [[f — glli < || = Rlli + |2 = g]}1-

(a) By the triangle inequality, for all x € X we have |f(z)+g(z)| < |f(z)|+]g(z)],s00 < |f+g| <
|f| + |g| pointwise. By Lemma 11.5(a), and then linearity of integration,

I + gl = / 1+ gldu < / (1] + lgl)du = / Fldp+ / lgldie = £l + gl

(b) Since | — h(z)| = |h(z)] for all z € X, we have || — h|ly = [ | — h|du = [ |h|dp = ||h||;. Hence
by part () |f — Alli < [flli+ Il = Al = [fll + I8l < o0. Thus f — b € Liz) and similaly
h—ge L' ().

Since f —g = (f —h) + (h — g) we have by part (a) that ||f — gl <[|f —AllL + [|h — g]|1.
Suppose f : R — R is integrable. Show that there exists integrable g : R — R such that

2 1f(@) — g(2)]de < e, and g has bounded support (i.c., there exists n € N with g(z) = 0
whenever |z] > n).

Setting f, := | f|1(—nn) we have f, 1 |f| pointwise so by MON, we have as n — oo that

/_:f(x)dx = /fnd)\l —>/|f|d)\1 <00

so we can choose N such that f_NN |f(x)|de > [7°_|f(z)|de —e.
Take g = f1(_n ). Then g has bounded support and

[ 1@ - s = [ 1@l [Cisa= [ e [ i <

A function g : R — R is called a step function if we can write g = Zle c;1y, for some k € N,
(c1,...,cx) € R¥ and I4,. .., I} intervals in R.

Suppose f : R — [0,00) is simple and has bounded support. Let € > 0. Show that there exists a
step function g : R — R such that [~ _|g — f|dz < e. Hint: Recall Questions 17 and 25.

First assume f = 14 for some bounded Borel set A. By Question 17, given £ > 0 we can find a
set U which is a finite union of bounded intervals such that A(AAU) < ¢/2. Also we can take
these intervals to be half-open, and then since U is an algebra by Qusestion 23, the set U is in
U and therefore is in fact a finite union of pairwise disjoint half-open bounded intervals, denoted
Ii, ..., I say.

Clearly 1y = Zk 17, is a step function, and since |14(z) — 1y (2)| = 1aav(z) for all z € R we
have [% [14(z) — 1y()|dz = [1aav(z)dz = A\ (AAU) < e.

Now suppose f is simple, f > 0. By Lemma 11.7 we can write f = zle a;14, with A; all bounded
and measurable, and a; > 0 for all 7. Assume the a; are not all zero (otherwise f = 0 which is
itself a step function). Then by the case considered earlier we can find step functions hy, ..., hy
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43.

such that [ |h; — 14,
function with

15 =nax = [ aita ~m)

< ¢/(lmax(ay,...,a,)) for each i. Setting h = Zle a;h; gives us a step

J4
d)\l < ZCLZ/ |1A1 — hz‘d>\1 < €.
=1

Suppose f : R — Ris in L'. Let ¢ > 0. Using Question 42, show there exists a continuous
function g : R — R such that ||f — g[|; <e, ie. [7|f(z) — g(z)|dz <e.

First suppose f = 1; for I an interval with left endpoint a and right endpoint b. Take f,,(z) = f(x)
for x € I and for < a — 1/n, and for x > b+ 1/n, with the value of f, interpolated linearly
between x = a — 1/n and x = a, and the value of f, interpolated linearly between x = b and
r=0b+1/n.

Then f, is continuous and | f, — f| < La—1/n,aup,b+1/n) SO that ffooo |fo—fldz < 2/n,so||fn—fl1 —
0 as n — 0.

Now take a new function f. Assume f: R — [0, 00) is integrable. Using Question 41, take g € L'
with bounded support and ||g — f|l1 < /9 and g > 0 (the solution to Question 41 shows that if
f > 0 we can take g > 0).

Now take g, simple with 0 < ¢, < g pointwise and ¢, T ¢ pointwise. Then by MON, we have
[ gndpt [ gdp, so given e > 0 we can choose N such that [ |g—gn| <e/9, Le. |lg—gn|1 < /9.
Note also that gy has bounded support since 0 < gy < g pointwise and g has bounded support.

Since gy is simple, we can and do write gy = Zle a;14, with A; all bounded and measur-
able. Assume the a; are not all zero (otherwise ¢ = 0 which is continuous). By the case we
started with in this solution, we can find continuous functions hq,..., h, with f |hi — 14, <

e/(9¢max(|ay|, .. ., |as|)) for each i. Then setting h = S¢_, a;h; gives us a continous function with

y4
/\gN — hld\, = /Zai(ui — hy)d\ < Zai/mi — hld\ < /9.
1=1

Then using Question 40 we obtain that ||f — k|l < ||f — gl + lg — gnll1 + llgn — bl < /3.
Finally if f : R — R € L', by the preceding argument we can find continuous functions Fy, I in
L' with [|[Fy — [Tl <¢/3 and ||F> — f7||1 < ¢/3. Then by Question 40 again F; — Fy is in L'
(and is continuous) with ||f — (Fy — EY) |1 = ||fT — Fili + |/~ — Fall« <e.



