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31. (a) Let (X,M) be a measurable space, and let fn : X → R be measurable functions. Show that
the set of points

{x ∈ X : lim
n→∞

fn(x) exists in R}

is in M.
(b) Taking (Ω,F ,P) to be a probability space, and random variables (i.e., measurable functions)
Y1, Y2, . . . : Ω → R show that for any constant µ ∈ R the set:

�
ω ∈ Ω : lim

n→∞
1

n

n�

i=1

Yi(ω) = µ

�

is in F . Deduce that expressions like P[limn→∞
1
n

�n
i=1 Yi = µ] are meaningful.

(a) The complement of the set in question is:

{x ∈ X : lim infn→∞ fn(x) = +∞} ∪ {x ∈ X : lim supn→∞ fn(x) = −∞}
∪ {x ∈ X : lim infn→∞ fn(x) < lim supn→∞ fn(x)}

=: A+ ∪ A− ∪ B.

Hence it is enough to show that each of the sets A+, A−, B is in M.

We have

A+ =
∞�

k=1

�
x ∈ X : lim inf

n→∞
fn(x) > k

�
.

We have shown in Thm 9.12 that lim infn→∞ fn is measurable, hence each set of the intersection
above is in M. Therefore, A+ ∈ M. By a similar argument, A− ∈ M.

We write B as

B =
�

r∈Q {x ∈ X : lim infn→∞ fn(x) < r < lim supn→∞ fn(x)}
=

�
r∈Q ({x ∈ X : lim infn→∞ fn(x) < r} ∩ {x ∈ X : r < lim supn→∞ fn(x)})

(where Q is the set of rational numbers). This represents B as a countable union of sets that are
the intersection of two sets. For each fixed r ∈ Q, the two sets are in M, since lim infn→∞ fn and
lim supn→∞ fn are measurable. Hence B ∈ M, and the statement is proved.

(b) RVs are measurable functions by definition, so fn := 1
n

�n
i=1 Yi, n = 1, 2, . . . are measurable

functions by Theorems 7.2.1 and 7.2.2. We have

{ω ∈ Ω : lim
n→∞

fn(ω) = µ} = {ω ∈ Ω : lim sup
n→∞

fn(ω) = µ} ∩ {ω ∈ Ω : lim inf
n→∞

fn(ω) = µ}.

Since lim supn→∞ fn is measurable, and the first set is the inverse image of the Borel set {µ}
under this function, this set is in F . Similarly, the second set is also in F . Hence the expression
P[limn→∞

1
n

�n
i=1 Yi = µ] is meaningful, because P is defined on the set in question.
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32. Let (X,M) be a measurable space.
(a) Show that if E ∈ M, then its indicator function 1E defined by 1E(x) = 1 for x ∈ E and
1E(x) = 0 for x /∈ E, is a measurable function.
(b) Let f : X → R be function with finite range f(X) = {α1, . . . ,αn} (with α1, . . . ,αn distinct),
so that f =

�n
i=1 αi1Ai

, where Ai = {x ∈ X : f(x) = αi}. Show that f is measurable if and only
if A1, . . . , An ∈ M.

(a) Let f = 1E. Then

f−1((α,∞]) =





X if α < 0

E if 0 ≤ α < 1

∅ if α ≥ 1

and since ∅ ∈ M and X ∈ M, if E ∈ M we have for all α ∈ R that f−1((α,∞]) ∈ M, so f is
measurable.

(b) First suppose Ai ∈ M for 1 ≤ i ≤ n. Then each of the functions 1Ai
is measurable by part

(a). Therefore αi1Ai
is also measurable (for each i) by Corollary 9.9. Hence by Theorem 9.10 the

function f =
�n

i=1 αi1Ai
is measurable.

Conversely, suppose Ai /∈ M for some i. Then for this choice of i we have f−1({αi}) = Ai /∈ M,
and therefore f is not measurable, since if it were measurable, by Theorem 9.6 we would have
f−1(E) measurable for all Borel E ⊂ R, in particular for E = {αi} (which is a Borel set).

33. Suppose (X,M, µ) is a measure space and f : X → [0,∞] is measurable.

(a) Prove that if a ∈ (0,∞) then µ(f−1[a,∞]) ≤ a−1
�
fdµ.

(b) Prove that if
�
fdµ = 0, then µ(f−1((0,∞])) = 0.

(a) Since f is measurable the set A := f−1([a,∞]) = ∩∞
n=1f

−1((a − 1/n,∞]) is in M (being a
countable intersection of sets in M). Alternatively, A ∈ M by Theorem 9.6.

Set g(x) = a1A(x) for all x ∈ X. Then g ≤ f pointwise since g(x) = 0 for x /∈ A and
g(x) = a ≤ f(x) for x ∈ A. Therefore

�
fdµ ≥

�
gdµ = aµ(A) by Lemmas 10.5a and 10.7b,

and hence µ(f−1([a,∞])) = µ(A) ≤ a−1
�
fdµ as claimed.

(b) Now suppose
�
fdµ = 0. Then since f−1((0,∞]) = ∪∞

n=1f
−1([(1/n),∞]), by part (a) and

countable subadditivity of measure (Theorem 3.3 (iii)) we have

µ(f−1((0,∞])) ≤
∞�

n=1

µ(f−1([(1/n),∞])) ≤
∞�

n=1

n

�
fdµ = 0.

34. Let (X,M) be a measurable space. Suppose f : X → [0,∞) and g : X → [0,∞) are measurable
functions. Define the set A ⊂ X × R × R by A := {(x, s, t) : f(x) > s, g(x) > t}. Let B denote
the Borel σ-algebra in R. Show that A ∈ M⊗ B ⊗ B.
We have

A = ∪q,r∈Q{(x, s, t) : f(x) > q > s, g(x) > r > t}
= ∪q,r∈Q(f

−1((q,∞)) ∩ g−1((r,∞))× (−∞, q)× (−∞, r))
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which is a countable union of sets in M⊗ B ⊗ B and hence is itself in M⊗ B ⊗ B.

35. (a) Let (X,M) and (Y,N ) be measurable spaces. Show that that for all A ⊂ X × Y with
A ∈ M⊗N , and all y ∈ Y , the horizontal cross-section A[y] of A defined by

A[y] := {x ∈ X : (x, y) ∈ A}

satisfies A[y] ∈ M.

(b) Suppose f : X → [0,∞] is such that hyp(f) ∈ M⊗B. Show that f is a measurable function.

(a) Fix y ∈ Y . Let F be the collection of A ⊂ X × Y such that A[y] ∈ M.

We claim that F is a σ-algebra. Indeed, ∅[y] = ∅ ∈ M, so ∅ ∈ F . Also, if A ∈ F , then

(Ac)[y] = {x ∈ X : (x, y) ∈ Ac} = {x ∈ X : (x, y) ∈ A}c = (A[y])
c ∈ M,

so Ac ∈ F . Also if An ∈ F for n = 1, 2, 3, . . ., then setting A = ∪∞
n=1An we have

A[y] = {x ∈ X : (x, y) ∈ ∪∞
n=1An} = ∪∞

n=1{x ∈ X : (x, y) ∈ An} = ∪∞
n=1((An)[y]) ∈ M,

so A ∈ F . Thus we have verified the claim.

We claim also that R ⊂ F , where R is the collection of measurable rectangles in X × Y .
Indeed if A ∈ M and B ∈ N then

(A× B)[y] =

�
A if y ∈ B

∅ otherwise.

By the two preceding claims, F is a σ-algebra with R ⊂ F , and therefore M⊗N = σ(R) ⊂
F . In other words, every A ∈ M⊗N is in F , which is what we needed.

(b) Suppose f : X → [0,∞] with hyp(f) ∈ M⊗ B. Then for all y > 0,

f−1((y,∞]) = {x ∈ X : f(x) > y} = {x ∈ X : (x, y) ∈ hyp(f)} = (hyp(f))[y]

which is in M by part (a). If y < 0 then f−1((y,∞]) = X ∈ M, and for y = 0 we have
f−1((0,∞]) = ∪∞

n=1f
−1((1/n,∞]) ∈ M.

Therefore f−1((y,∞]) ∈ M for all y ∈ R, so f is measurable.

36. Let W ∈ B (the Borel sets in R) with W �= ∅. Show that BW is the σ-algebra (in W ) generated
by the collection of all sets of the form (−∞, a] ∩W with a ∈ R.
[Hint: BW was defined in Chapter 9, but also BW = {A ∩W : A ∈ B}.]
According to definition 9.3, BW = {A : A ⊂ W,A ∈ B}. This is a σ-algebra in W since ∅ ∈ BW ,
and if A ∈ BW then W \ A is a Borel set contained in W , so W \ A ∈ BW , and if A1, A2, · · · are
in BW , then ∪∞

i=1Ai is a Borel set contained in W so ∪∞
i=1Ai ∈ BW .

Let IW = {(−∞, a] ∩W : a ∈ R}, and let σW (IW ) be the σ-algebra in W generated by IW . We
are required to show that BW = σW (IW ).
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Clearly IW ⊂ BW , since for any a ∈ R we have (−∞, a] ∈ B so also (−∞, a] ∩W ∈ B (and also
(−∞, a]∩W ⊂ W ). We showed above that BW is a σ-algebra in W , and therefore σW (IW ) ⊂ BW .

It remains to show that BW ⊂ σW (IW ). By the hint, every set in BW can be written as A ∩W
with A ∈ B (it is easy to see that this is really true).

Let F = {A ⊂ R : A ∩ W ∈ σW (IW )}. We claim this is a σ-algebra in R. Indeed, ∅ ∈ F ,
and if A ∈ F then (R \ A) ∩ W = W \ (A ∩ W ) ∈ σW (IW ), and if A1, A2, . . . ∈ F then
(∪iAi) ∩W = ∪i(Ai ∩W ) ∈ σW (IW ).

Let I0 = {(−∞, a] : a ∈ R}. By definition, for all A ∈ I0 we have A ∩ W ∈ IW ⊂ σW (IW ), so
I0 ⊂ F . Therefore B = σ(I0) ⊂ F . Hence, for every A ∈ B we have A∩W ∈ σW (IW ), and hence
BW ⊂ σW (IW ) as required.


