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26. (a) Show that if U ⊂ R2 is open and x ∈ U , then we can find a rectangle R ∈ I2 with corners
having rational coordinates such that x ∈ R ⊂ U . [We say that a set A ⊂ R2 is open if for every
x ∈ A there is a disk of positive radius centred on x that is contained in A.]

(b) Show that σ(O2) = B2, where O2 is the class of all open sets in R2, and B2 is the Borel
σ-algebra in R2 (see Definition 9.1).

(a) Let U ∈ O2 and let x ∈ U . Since U is open, there exists r > 0 depending on x such that
B(x, r) (the closed Euclidean disk centred on x with radius r) is contained in U . Therefore writing
x = (x1, x2) we have (x1 − r/2, x1 + r/2)× (x2 − r/2, x2 + r/2) ⊂ B(x, r) ⊂ U .

Now take rational q1, q2, r1, r2 with x1 − r/2 < q1 < x1 < r1 < x1 + r/2, and x2 − r/2 < q2 < x2 <
r2 < x2 + r/2. Then

x ∈ (q1, r1]× (q2, r2] ⊂ (x1 − r/2, x1 + r/2)× (x2 − r/2, x2 + r/2) ⊂ B(x, r) ⊂ U,

so taking R = (q1, r1]× (q2, r2] does the trick.

(b) Recall from Definition 9.1 in the notes that B2 = σ(I2), where I2 is the collection of all sets
of the form (a, b]× (c, d]. Since we can argue as in part (a) for any x ∈ U ,

U = ∪(q1,r1,q2,r2)∈S(q1, r1]× (q2, r2],

where we define S := {(q1, r2, q2, r2) ∈ Q4 : q1 < r1, q2 < r2, (q1, r1] × (q2, r2] ⊂ U}. Since Q4 is
countable, this shows that U is a countable union of sets in I2, and therefore is in σ(I2) = B2.
Thus O2 ⊂ B2, and since B2 is a σ-algebra, also σ(O2) ⊂ B2.

For the inclusion the other way, given A = (a, b]×(c, d] ∈ I2, setting An = (a, b+1/n)×(c, d+1/n)
we have A = ∩∞

n=1An and moreover An ∈ O2 (i.e., An is open) for each n. Thus A is a countable
intersection of sets in O2.

Since σ(O2) is a sigma-algebra containing O2, therefore A ∈ σ(O2), so I2 ⊂ σ(O2), and since
σ(O2) is a σ-algebra, also B2 = σ(R2) ⊂ σ(O2).

27. Suppose ρ is a rotation (about the origin) on R2, i.e. pre-multiplication by a 2× 2 matrix M with
MT = M−1 (viewing elements of R2 as column vectors).

(a) Show that |ρ(x)| = |x| for all x ∈ R2, where for x = (x1, x2) ∈ R2 we put |x| =
�

x2
1 + x2

2.

Consider x as a column vector i.e. x = (x1, x2)
�; then |x|2 = x�x so |ρ(x)|2 = (Mx)�(Mx) =

x�MTMx = x�x = |x|2.
(b) Show that ρ(A) ∈ B2 for all A ∈ B2.

Suppose U ∈ O2 (the class of open sets). Then ρ(U) is also open since if y ∈ ρ(U), then
ρ−1y ∈ U so for some r > 0 we have B(ρ−1y, r) ⊂ U (since U is assumed open), so B(y, r) =
ρ(B(ρ−1y, r)) ⊂ ρ(U). Hence ρ(U) is open, so ρ(U) ∈ B2 since O2 ⊂ B2 by Question 26.

Let F be the class of sets A ⊂ R2 such that ρ(A) ∈ B2. By the preceding paragraph O2 ⊂ F .
Also F is a σ-algebra in R2 because:

• ρ(∅) = ∅ is a Borel set, so ∅ ∈ F .

• If A ∈ F then ρ(R2 \ A) = R2 \ ρ(A) ∈ B2, so R2 \ A ∈ F .
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• If A1, A2, . . . ∈ F then ρ(∪∞
n=1An) = ∪∞

n=1ρ(An) ∈ F , so ∪∞
n=1An ∈ F .

Therefore σ(O2) ⊂ F , so by Question 26, B2 ⊂ F which gives the desired conclusion.

(c) Define a measure µ on B2 by µ(A) = λ2(ρ(A)) for all A ∈ B2. Show that µ is translation
invariant.

For A ∈ B2 and x ∈ R2 we have ρ(A + x) = ρ(A) + ρ(x) (distributive law for matrix
multiplication) so

µ(A+ x) = λ2(ρ(A+ x)) = λ2(ρ(A) + ρ(x)) = λ2(ρA) = µ(A),

where the penultimate inequality is because λ2 is translation invariant. Thus µ is translation
invariant.

(d) Show that λ2 is rotation invariant, i.e. λ2(ρ(A)) = λ2(A) for all Borel A ⊂ R2 (and for any
rotation ρ).

By part (c) along with the fact that every translation-invariant measure on (R2,B2) is of the
form c × λ2 for some constant c (which was given as a hint) our µ is a constant multiple of
λ2, say µ = cλ2. But for the unit ball centred at the origin (denoted B) we have ρ(B) = B,
by part (a). Therefore µ(B) = λ2(ρ(B)) = λ2(B), and hence c = 1.

28. (a) Show that λ2(L) = 0 for any line segment L ⊂ R2.

(b) Let r > 0 and set D := {x ∈ R2 : |x| < r}, the open disk of radius r in R2 centred on the
origin (we define |x| as in the previous question). By approximating to D by an increasing
sequence of regular polygons contained in D, show that λ2(D) = πr2.

You may use without proof the ‘half base times height’ formula for the Lebesgue measure
(area) of a triangle. You may also use without proof the fact that (sin x)/x → 1 as x ↓ 0.

(a) There exists a rotation ρ (about the origin) such that ρ(L) is a vertical line segment. By
rotation invariance (Question 27) λ2(L) = λ2(ρ(L)), so without loss of generality we may assume
that L is vertical, i.e. L ⊂ {a} × (−b, b] for some a, b ∈ R with b > 0.

Given ε > 0, we have L ⊂ (a− ε, a]× (−b, b]. Therefore by definition 8.10,

λ2(L) ≤ λ2((a− ε, a]× (−b, b] = ε(2b).

Since ε is arbitrarily small, therefore λ2(L) = 0.

(b) For n ∈ N, let kn = 3 × 2n−1, so k1 = 3 and kn+1 = 2kn. Let Pn be an open regular polygon
with kn sides and vertices equally spaced on the boundary of D. Also assume Pn is oriented in
such a way that the vertices of Pn+1 include all the vertices of Pn for each n. Then Pn ⊂ Pn+1 for
each n and D = ∪∞

n=1Pn so by upward continuity λ2(D) = limn→∞ λ2(Pn).

We can divide Pn into kn isosceles triangles, each of which has one vertex at the origin and the
other two given by two adjacent vertices of Pn. By rotation invariance, these all have the same area
(i.e., 2-dimensional Lebesgue measure). Let Tn be one of these isosceles triangles. Using additivity
and also the fact that line segments have zero area by part (a), we have λ2(Pn) = knλ2(Tn).
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Let αn = 2π/kn, which is the angle between the two ‘long edges’ of length r of the isosceles triangle
Tn. Without loss of generality we may assume one of these two long edges of Tn is the base of Tn.
Then the height of Tn is r sinαn. Therefore by the ‘half base times height’ formula,

λ2(Tn) = (1/2)r × r sinαn

and therefore by the second hint,

λ2(D) = lim
n→∞

(kn/2)r
2 sin(2π/kn) = πr2 lim

n→∞
((kn/(2π)) sin(2π/kn)) = πr2.

29. Suppose F is a function with the properties assumed in Exercise 25.

(a) Prove that there is a unique measure µF on (R,B) with the property that µF ((a, b]) =
F (b) − F (a) for all a, b ∈ R with a < b. (You may assume without proof Carathéodory’s
extension theorem, along with the results of Exercise 25).

As in Exercise 25, for (a, b] ∈ I set λF ((a, b]) = F (b)− F (a). Also set λF (∅) = 0.

To be able to check the conditions of the Extension theorem, we need to check that π := λF

is a pre-measure on I. Clearly π(∅) = λF (∅) = 0, and it remains to check finite additivity
and countable subadditivity of π.

For finite additivity let I, I1, . . . , Ik ∈ I with I = ∪k
i=1Ii and I1, . . . , Ik pairwise disjoint. Then

by Exercise 25(c), we have λF (I) =
�k

i=1 λF (Ii). This verifies the finite additivity.

We also need to check countable sub-additivity of π on I. Let I, I1, I2, . . . ∈ I with I ⊂
∪∞

k=1Ik. Then by Exercise 25(d), λF (I) ≤
�∞

i=1 λF (Ii). which is the countable subdaditivty
of π := λF on I.
Therefore π is a pre-measure on the semiring I, so by the Caratheodory extension theorem
it extends to a measure µF on σ(I) = B. Also µF is σ-finite on I since µF ((−n, n]) < ∞ for
all n, so by the Uniqueness lemma there is no other measure on σ(I) = B agreeing with µF

on I.
(b) Given y ∈ R, show that the µF -measure of the one-point set {y} is µF ({y}) = F (y)−F (y−),

where F (y−) = limz↑y F (z).

Set An := (y − 1/n, y]. Then An ⊃ An+1 for all n, and An ∈ B for all n, and µF (A1) =
F (y) − F (y − 1) < ∞. Also {y} = ∩∞

n=1An. Therefore by the downward continuity of the
measure µF , we have

µ({y}) = µ(∩∞
n=1An) = lim

n→∞
µ(An) = lim

n→∞
(F (y)− F (y − 1/n)) = F (y)− F (y−).

(c) Show that µF ([a, b]) = F (b)−F (a−), and also find the formulas for µF ((a, b)) and µF ([a, b)),
when −∞ < a < b < ∞.

Since [a, b] = {a} ∪ (a, b], a disjoint union, using the previous part we have

µ([a, b]) = µ({a}) + µ((a, b]) = (F (a)− F (a−)) + (F (b)− F (a)) = F (b)− F (a−).

Also

µ((a, b)) = µ((a, b])− µ({b}) = F (b)− F (a)− (F (b)− F (b−)) = F (b−)− F (a).

Finally µ([a, b)) = µ((a, b)) + µ({a}) = F (b−)− F (a−).
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30. Prove that if W ⊂ R is a Borel set, and f : W → R is a nondecreasing function, then f is
Borel-measurable.

We need to show for all α ∈ R that f−1((α,∞]) ∈ B.
Fix α ∈ R. Let T := f−1((α,∞]) = {x ∈ R : f(x) > α}. If T = ∅ then T ∈ B. So assume T is
non-empty and let t = inf(T ) (or t = −∞ if T is not bounded below).

If x ∈ W with x > t, then there exists y < x with y ∈ T , so f(y) > α, so f(x) > α since f is
increasing, so x ∈ T .

If x < t, then x /∈ T since t is a lower bound for T .

Therefore T is either the set (t,∞) ∩W or the set [t,∞) ∩W . But both (t,∞) and [t,∞) are in
B, and also we assume W ∈ B, so (t,∞) ∩W ∈ B and [t,∞) ∩W ∈ B. Thus T ∈ B.


