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21. Show that λ1 has the scaling property: for any real number c �= 0 and any Borel set B ∈ B, we
have λ1(cB) = |c|λ1(B). [Here cB := {cx : x ∈ B}.]
Define ν(B) := λ1(cB), B ∈ B. It is easy to check that ν is a measure; indeed, ν(∅) = λ1(c∅) =
λ1(∅) = 0, and if A1, A2, . . . ∈ B are pairwise disjoint then so are cA1, cA2, . . . and hence

ν(∪∞
n=1An) = λ1(c ∪∞

n=1 An) = λ1(∪∞
n=1(cAn)) =

∞�

n=1

λ1(cAn) =
∞�

n=1

ν(An).

Likewise, |c|λ1(B) is a measure by Exercise 9 (c). We check that these two measures agree on the
class I of bounded half-open intervals: if I ∈ I, writing I = (a, b], we have

cI = (ca, cb] if c > 0; cI = [cb, ca) if c < 0.

In either case the length is |c|(b − a), so ν(I) = λ1(cI) = |c|(b − a) = |c|λ1(I). Also I is a π-
system, and R = ∪∞

n=1(−n, n] (a countable union of sets in I with finite λ1-measure). Hence the
Uniqueness Lemma (Theorem 5.5) implies that ν(A) = |c|λ1(A) for all Borel sets A.

ALTERNATVE METHOD using outer measure. Since B is Borel we have λ1(B) = λ∗(B), the
Lebesgue outer measure of B. Assume for now that λ1(B) < ∞. Then by definition of outer
measure, given ε > 0 we can find intervals I1, I2 . . . ∈ I such that B ⊂ ∪∞

i=1Ii and
�∞

i=1 λ(Ii) <
λ1(B) + ε. But then also cB ⊂ ∪∞

i=1cIi and it is easy to see that λ1(cI) = |c|λ(I) for all I ∈ I
(using Question 14 when c < 0). Therefore by countable subadditivity of measure (Theorem
3.3(iii)),

λ1(cB) ≤
∞�

i=1

λ1(cIi) =
∞�

i=1

|c|λ(Ii) ≤ |c|(λ1(B) + ε).

Therefore since ε > 0 is arbitrary we have λ1(cB) ≤ |c|λ1(B), and this is also true when λ1(B) =
∞. But applying the same argument using the set cB and the constant c−1, we have that λ1(B) =
λ1(c

−1(cB)) ≤ |c−1|λ1(cB), and hence λ1(cB) ≥ |c|λ1(B). Combining the inequalities shows that
λ1(cB) = |c|λ1(B).

22. Suppose µ is a translation invariant measure on (R,B). Set γ := µ((0, 1]) and assume 0 < γ < ∞.

(a) Show that µ((0, 1/n]) = γ/n for all n ∈ N.
Since (0, 1] = ∪n

i=1(
i−1
n
, i
n
] (disjoint union) and µ is a measure we have

γ = µ((0, 1]) =
n�

i=1

µ((
i− 1

n
,
i

n
]) = nµ((0,

1

n
])

where we have used tranlation invariance in the last step. This gives the result.

(b) Show that µ((0, q]) = γq for all rational q > 0.

For any such q we can write q = m/n with m ∈ N, n ∈ N. Then (0, q] = ∪m
i=1(

i−1
n
, i
n
] (disjoint

union) so that using translation invariance, and (a), we have

µ((0, q]) =
m�

i=1

µ((
i− 1

n
,
i

n
]) = mµ((0,

1

n
]) = m(γ/n) = γq.
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(c) Let I � be the class of half-open intervals in R with rational endpoints, i.e. the class of intervals
of the form (q, r] with q ∈ Q, r ∈ Q and q ≤ r. Show that µ(I) = γλ1(I) for all I ∈ I �.

For I = (q, r] with q < r and q, r ∈ Q, by translation invariance µ(I) = µ((0, r − q]). Since
r− q is also rational, we therefore have by part (b) that µ(I) = γ(r− q) = γλ1(I). Obviously
if I = ∅ then µ(I) = γλ1(I) = 0.

(d) Show that σ(I �) = B. You may use without proof the fact that Q is dense in R, that is,
every non-empty open interval in R contains at least one rational number.

Let I be the class of bounded half-open intervals as defined in lectures. By a result from
lectures B = σ(I). In particular I ⊂ B. Therefore I � ⊂ I ⊂ B and hence (since B is a
σ-algebra) σ(I �) ⊂ B.
Conversely, given I = (a, b] ∈ I, for all x ∈ (a,∞) we can find rational q, r with a < q < x <
r, and hence

(a,∞) = ∪{q,r∈Q:a<q<r<∞}(q, r]

which is a countable union of sets in I �, and therefore is in σ(I �). Similarly (b,∞) ∈ σ(I �),
so I = (a,∞) \ (b,∞) ∈ σ(I �). Hence I ⊂ σ(I �). Therefore since σ(I �) is a σ-algebra,
B = σ(I) ⊂ σ(I �). Combined with the previous paragraph this shows σ(I �) = B

(e) Use the Uniqueness lemma to show that µ(B) = γλ1(B) for all B ∈ B.
Since λ1 is a measure on (R,B), also γλ1 is a measure on (R,B) (see Exercise 9(c)). By
part (c), the measures µ and γλ1 agree on I � which is a π-system (because if q, r, s, t are all
rational with q ≤ r and s ≤ t then (q, r� ∩ (s, t� = (max(q, s),min(r, t)� ∈ I �).

Moreover, setting Fn = (−n, n] we have Fn ∈ I � and γλ1(Fn) = 2γn < ∞ for all n, and
∪∞

n=1Fn = R, so γλ1 is σ-finite on I �.

Therefore we can apply the Uniqueness lemma to deduce that the measures γλ1 and µ agree
on σ(I �) = B (using part (d)), that is γλ1(B) = µ(B) for all B ∈ B.

23. Suppose X is a non-empty set and S is a semi-algebra in X. As in Chapter 6 of the notes, let U
be the class of sets of the form ∪k

i=1Ai with k ∈ N and A1, . . . , Ak pairwise disjoint sets in S.
(a) Show by induction on k that if A ∈ U then Ac ∈ U , i.e. U is closed under complementation.

(b) Show also that U is closed under pairwise intersections and deduce that U is an algebra.

(c) Deduce that U is the algebra generated by S.
(a) For the base case with k = 1, note that if A ∈ S then by the definition of semi-algebra Ac is
a finite union of pairwise disjoint sets in S, and hence is in U . For the inductive hypothesis let
n ≥ 1 and assume if A = ∪n

i=1Ii with A1, . . . , An pairwise disjoint in S, then Ac ∈ U .
For the inductive step let A = ∪n+1

i=1 Ii with I1, . . . , In+1 disjoint sets in S. Set B = ∪n
i=1Ii. By

the inductive hypothesis we have Bc ∈ U . Moreover by the base case (or the definition of semi-
algebra) we have Icn+1 ∈ U . Therefore by De Morgan’s law, and the first part of Part (b) of this
question (to be proved below),

Ac = (B ∪ In+1)
c = Bc ∩ Icn+1 ∈ U .

This completes the induction.



MA40042 Measure Theory and Integration (2024/25): Solutions 16

(b) Suppose A,B ∈ U ; we shall show A∩B ∈ U . Write A = ∪k
i=1Ii and B = ∪�

j=1Jj with I1, . . . , Ik
pairwise disjoint sets in S, and J1, . . . , J� pairwise disjoint sets in S. Then

A ∩ B = ∪k
i=1 ∪�

j=1 (Ii ∩ Jj) = ∪(i,j)∈[k]×[�]Ki,j

where we set Ki,j := Ii ∩ Jj for each (i, j). Since S is a π-system we have Ki,j ∈ S for each (i, j).
Also for (i�, j�) �= (i, j) we have

Ki,j ∩Ki�,j� = Ii ∩ Jj ∩ Ii� ∩ Jj� = ∅,

because either i �= i� (so Ii ∩ Ii� = ∅) or j �= j� (so Jj ∩ Jj� = ∅).

Therefore the sets Ki,j, 1 ≤ i ≤ k, 1 ≤ j ≤ � are pairwise disjoint so A ∩ B ∈ U . Therefore U is
closed under pairwise intersections (that is, it is a π-system). This gives the first part of (b), and
hence also (a).

Next we show U is closed under pairwise unions. Given A,B ∈ U we have (by part (a)) that
Ac ∈ U and Bc ∈ U , so that by the De Morgan law, and the first part of (b),

(A ∪ B)c = Ac ∩ Bc ∈ U

and hence (by (a) again) also A ∪ B = ((A ∪ B)c)c ∈ U . So U is an algebra.

(c) Let A be the algebra generated by S. Then A is the intersection of all algebras containing S
so A ⊂ U (since we’ve just shown that U is one such algebra).

Conversely, since A is an algebra we have for any I1, . . . , Ik ∈ S that ∪k
i=1Ii ∈ A. Therefore U ⊂ A

so U = A.

24. Suppose X is a non-empty set, S is a semi-algebra in X and π is a pre-measure on (X,S).

(a) Show that if A,A1, . . . , Ak ∈ S with A1, . . . , Ak pairwise disjoint and ∪k
i=1Ai ⊂ A, then�k

i=1 π(Ai) ≤ π(A).

Define U as in Question 23. By that question U is an algebra. Then ∪k
i=1Ai ∈ U , so

(∪k
i=1Ai)

c ∈ U , so B := A ∩ (∪k
i=1Ai)

c ∈ U . Writing B = ∪m
j=1Cj with C1, . . . , Cm pairwise

disjoint sets in S, we have A = (∪k
i=1Ai) ∪ (∪m

j=1Cj) which is a finite union of disjoint sets in

S, so π(A) = (
�k

i=1 π(Ai)) +
�m

j=1 π(Cj) since π is a pre-measure so finitely additive. Hence

π(A) ≥ �k
i=1 π(Ai).

(b) Show that π is countably additive, i.e. π(∪∞
n=1An) =

�∞
n=1 π(An) whenever A1, A2, . . . ∈ S

are pairwise disjoint with ∪∞
n=1An ∈ S.

Set A = ∪∞
n=1An. By (a),

�k
n=1 π(An) ≤ π(A) for all k, so taking the large-k limit,�∞

n=1 π(An) ≤ π(A). Conversely, since π is a pre-measure so countably sub-additive, π(A) ≤�∞
n=1 π(An). The result follows.

25. Let F : (−∞,∞) → R be a non-decreasing, right continuous function. Let I denote the set of
bounded half-open intervals in R (as in lectures). Put λF (∅) = 0, and for all other I ∈ I, put

λF (I) = F (b)− F (a), where I has endpoints a and b.
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(a) Check that λF (I) ≥ 0 for all I ∈ I.
(b) Show that λF is finitely sub-additive on I.
(c) Show that λF is finitely additive on I.
(d) Show that λF is countably additive on I.

(a) If I = ∅ then λF (I) = 0 (this should have been stated more clearly in the question).

If I = (a, b] for finite a < b, then λF (I) = F (b)− F (a) ≥ 0 since F is non-decreasing.

(b) We adapt the proof of Lemma 4.3(i). We need to show that if A ⊂ ∪k
i=1Ai with all of

A,A1, . . . , Ak in I, then λF (A) ≤ �k
i=1 λF (Ai). It is enough to prove this in the case where

A,A1, . . . , Ak are all non-empty, so that we can and do write A = (a, b] and Ai = (ai, bi] for
1 ≤ i ≤ k. We may also assume without loss of generality that bk ≥ max1≤i≤k−1 bi.

We prove the result by induction on k. If A ⊂ A1 then a ≥ a1 and b ≤ b1, so F (a) ≥ F (a1) and
F (b) ≤ F (b1) (since F is assumed non-decreasing), and hence λF (A1)− λF (A) = F (b1)−F (a1)−
F (b) + F (a) ≥ 0, so the statement holds if k = 1.

Suppose now that k ≥ 2 and that the statement holds for k − 1. Suppose A ⊂ ∪k
i=1Ai. If

A∩Ak = ∅ then A ⊂ ∪k−1
i=1Ai so by the inductive hypothesis λF (A) ≤

�k−1
i=1 λF (Ai) ≤

�k
i=1 λF (Ai),

completing the induction in this case.

If A ∩ Ak �= ∅ then ak < b ≤ bk and (a, ak] ⊂ ∪k−1
i=1Ai (where we define (a, ak] = ∅ if ak ≤ a).

Hence by the inductive hypothesis and the fact that F is non-decreasing,

λF (A) = (F (b)− F (ak)) + (F (ak)− F (a)) ≤ λF (Ak) +
k−1�

i=1

λF (Ai) =
k�

i=1

λF (Ai),

completing the induction.

(c) We need to show that for all k ∈ N, if I = ∪k
i=1Ii with I, I1, . . . , Ik all in I and I1, . . . , Ik

pairwise disjoint, then λF (I) =
�k

i=1 λF (Ii).

As in part (b), it suffices to prove this for the case where I, I1, . . . , Ik are all non-empty. We
can then write I = (a, b] and Ii = (ai, bi] for each i, and assume without loss of generality that
b1 ≤ b2 ≤ · · · ≤ bk.

Since I ⊂ ∪k
i=1Ii we have a1 ≤ a and bk ≥ b. Since I1 ⊂ I and Ik ⊂ I we have a1 ≥ a and bk ≤ b.

Thus a1 = a and bk = b.

For 1 ≤ i ≤ k− 1, we have bi ≤ ai+1 (because Ii ∩ Ii+1 = ∅) and bi ≥ ai+1 (because otherwise, the
interval (bi, ai+1) would be non-empty and contained in I \ ∪k

j=1Ij, contradicting the assumption
I = ∪k

j=1Ij). Therefore bi = ai+1. Hence

k�

i=1

λF (Ii) =
k�

i=1

(F (bi)− F (ai)) = F (bk) +

�
k−1�

i=1

(F (bi)− F (ai+1)

�
− F (a1)

= F (b) + 0− F (a) = λF (I),

as required. Alternatively the result can be proved by induction, similarly to part (b).
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(d) We modify the proof of Theorem 4.4. Suppose A,A1, A2, . . . ∈ I with A ⊂ ∪∞
i=1Ai. We may

assume A �= ∅ (otherwise the subadditivity result is trivial). Write A = (a, b] and Ai = (ai, bi] for
each i (we may omit all i with Ai = ∅ from the list of Ai).

Let ε > 0 be fixed. Since F is right-continuous, we can find a� ∈ (a, b) such that F (a�) < F (a)+ ε,
and hence with A� := (a�, b] we have

λF (A) = F (b)− F (a) ≤ F (b)− F (a�) + ε = λF (A
�) + ε. (1)

For each n = 1, 2, . . . , by the right continuity of F , we can find b�n > bn with F (b�n) < F (bn) +
ε
2n
.

Then setting A�
n := (an, b

�
n] we have

λF (A
�
n) = F (b�n)− F (an) ≤ F (bn) +

ε

2n
− F (a) = λF (An) +

ε

2n
. (2)

Now

[a�, b] ⊂ A ⊂ ∪∞
n=1An ⊂ ∪∞

n=1(an, b
�
n).

Therefore, by compactness of [a�, b] (Heine-Borel), there exists N ≥ 1 such that

[a�, b] ⊂ ∪N
n=1(an, b

�
n).

It follows that A� = (a�, b] ⊂ ∪N
n=1(an, b

�
n], so by the finite subadditivity established in part (b),

λF (A
�) ≤

N�

n=1

λF (A
�
n).

Hence we have

λF (A)
(1)

≤ λF ((A
�) + ε ≤

�
N�

n=1

λF (A
�
n)

�
+ ε

(2)

≤
�

N�

n=1

λF (An)

�
+ ε+

N�

n=1

ε

2n
≤

� ∞�

n=1

λF (An)

�
+2ε.

Since ε > 0 was arbitrary, we can let ε ↓ 0, and we obtain the result.


