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21. Show that A; has the scaling property: for any real number ¢ # 0 and any Borel set B € B, we
have A\i(cB) = |c|\(B). [Here ¢B := {cz : x € B}]

Define v(B) := A\ (¢B), B € B. It is easy to check that v is a measure; indeed, (&) = A\ (cD) =
M (2) =0, and if Ay, As, ... € B are pairwise disjoint then so are cAj, cA,, ... and hence

v(Up An) = M(cUne An) = A (U2 (cAy) Z)\l (cA,) = Zz/
n=1

Likewise, |c|A1(B) is a measure by Exercise 9 (c). We check that these two measures agree on the
class Z of bounded half-open intervals: if I € Z, writing I = (a, b], we have

cl = (ca,cb] ife>0; ¢l =]cbyca) ifc<O.

In either case the length is |c|(b — a), so v(I) = Ai(c]) = |c|(b— a) = |e|]\(]). Also T is a -
system, and R = U2, (—n,n] (a countable union of sets in Z with finite A;-measure). Hence the
Uniqueness Lemma (Theorem 5.5) implies that v(A) = |¢|A\1(A) for all Borel sets A.

ALTERNATVE METHOD using outer measure. Since B is Borel we have A\;(B) = \*(B), the
Lebesgue outer measure of B. Assume for now that A;(B) < oco. Then by definition of outer
measure, given £ > 0 we can find intervals Iy, Iy... € Z such that B C U2, I; and > = AN(I;) <
M (B) + €. But then also ¢B C U, cl; and it is easy to see that A\j(cI) = |c|A({) for all [ € Z
(using Question 14 when ¢ < 0). Therefore by countable subadditivity of measure (Theorem
3.3(iii)),

Al(cB)SZAl(cI Z|C|A ) < le|(M(B) +¢€).

Therefore since € > 0 is arbitrary we have Al(cB) < |e|A1(B), and this is also true when A (B) =
oo. But applying the same argument using the set ¢B and the constant ¢!, we have that \;(B) =
Ai(c7H(eB)) < |cYAi(eB), and hence A;(cB) > |¢|A1(B). Combining the inequalities shows that
A(eB) = e[\ (B).

22. Suppose 4 is a translation invariant measure on (R, B). Set v := u((0, 1]) and assume 0 < v < oo.

(a) Show that x((0,1/n]) = v/n for all n € N.
Since (0,1] = UL, (=1, £] (disjoint union) and p is a measure we have

n’'n

N i—1 1
— u((0,1]) = I = nu((0, =
v = (0.0 = () = a0, )
where we have used tranlation invariance in the last step. This gives the result.
(b) Show that 1((0, q]) = vq for all rational ¢ > 0.
For any such ¢ we can write ¢ = m/n with m € N,n € N. Then (0, ¢] = U, (=1, £] (disjoint
union) so that using translation invariance, and (a), we have

m

(0 0) = 3 a2 ) = mpl(0,5) = m(a/n) = 4

n
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(c¢) Let Z' be the class of half-open intervals in R with rational endpoints, i.e. the class of intervals
of the form (q,r] with ¢ € Q, r € Q and ¢ < r. Show that u(I) =y (I) for all I € 7'.

For I = (q,r] with ¢ < r and ¢,r € Q, by translation invariance p(I) = pu((0,7 — ¢]). Since
r — q is also rational, we therefore have by part (b) that p(/) = vy(r —q) = v A1 (). Obviously
if I = @ then pu(I) =~A\ (1) =0.

(d) Show that o(Z’) = B. You may use without proof the fact that Q is dense in R, that is,
every non-empty open interval in R contains at least one rational number.
Let Z be the class of bounded half-open intervals as defined in lectures. By a result from
lectures B = o(Z). In particular Z C B. Therefore 7/ C T C B and hence (since B is a
o-algebra) o(Z') C B.
Conversely, given I = (a,b] € Z, for all z € (a,00) we can find rational ¢,r with a < ¢ < z <
r, and hence

(a7 OO) = U{q,rEQ:a<q<r<oo} (Q7 T]

which is a countable union of sets in Z’, and therefore is in ¢(Z’). Similarly (b, c0) € o(Z'),
so I = (a,0) \ (b,00) € o(Z'). Hence Z C o(Z'). Therefore since o(Z') is a o-algebra,
B =0(Z) C 0(Z'). Combined with the previous paragraph this shows o(Z') = B

(e) Use the Uniqueness lemma to show that p(B) = yA(B) for all B € B.

Since A; is a measure on (R, B), also yA; is a measure on (R, B) (see Exercise 9(c)). By
part (c), the measures pu and y\; agree on Z’" which is a m-system (because if ¢, 7, s,t are all
rational with ¢ <r and s <t then (¢,7) N (s,t) = (max(q, s), min(r,t)) € I').
Moreover, setting F,, = (—n,n] we have F,, € 7' and v\{(F,) = 2yn < oo for all n, and
> F, =R, so v\ is o-finite on Z'.
Therefore we can apply the Uniqueness lemma to deduce that the measures yA; and p agree
on 0(Z') = B (using part (d)), that is YA (B) = u(B) for all B € B.
23. Suppose X is a non-empty set and S is a semi-algebra in X. As in Chapter 6 of the notes, let U
be the class of sets of the form U¥_| A; with k € N and Ay, ..., A, pairwise disjoint sets in S.
(a) Show by induction on k that if A € U then A° € U, i.e. U is closed under complementation.
(b) Show also that U is closed under pairwise intersections and deduce that U is an algebra.
(c) Deduce that U is the algebra generated by S.

(a) For the base case with k£ = 1, note that if A € S then by the definition of semi-algebra A€ is
a finite union of pairwise disjoint sets in S, and hence is in &. For the inductive hypothesis let
n > 1 and assume if A = U} ,I; with A;,..., A, pairwise disjoint in S, then A° € U.

For the inductive step let A = U?:IIL- with Ih,..., [,y disjoint sets in S. Set B = U ;I;. By
the inductive hypothesis we have B¢ € U. Moreover by the base case (or the definition of semi-
algebra) we have I¢,, € U. Therefore by De Morgan’s law, and the first part of Part (b) of this
question (to be proved below),

A°=(BUl ) =B°NI; , €U.

This completes the induction.
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(b) Suppose A, B € U; we shall show ANB € U. Write A = U} I; and B = U{_, J; with I, ..., I,
pairwise disjoint sets in S, and Jp, ..., J, pairwise disjoint sets in S. Then

ANB=U_ Ui, (1N J;) = Ugjyemxa Kij

where we set K; j := I; N J; for each (i, 7). Since S is a m-system we have K; ; € S for each (i, j).
Also for (¢, 7") # (i,j) we have

KijN Ky =LNJ;N 1N Jy =2,

because either i # i’ (so [; NIy = &) or j # j' (so J; N Jj = 2).

Therefore the sets K;;,1 <1 < k,1 < j < ¢ are pairwise disjoint so AN B € U. Therefore U is
closed under pairwise intersections (that is, it is a m-system). This gives the first part of (b), and
hence also (a).

Next we show U is closed under pairwise unions. Given A, B € U we have (by part (a)) that

A¢ e

U and B¢ € U, so that by the De Morgan law, and the first part of (b),

(AUB)°= A°NB°elU

and hence (by (a) again) also AU B = ((AU B)°)° € U. So U is an algebra.

(c) Let A be the algebra generated by S. Then A is the intersection of all algebras containing S
so A C U (since we've just shown that ¢/ is one such algebra).

Conversely, since A is an algebra we have for any I3, ..., I, € S that Ut I; € A. Thereforetd C A
soU = A.

24. Suppose X is a non-empty set, S is a semi-algebra in X and 7 is a pre-measure on (X, S).

()

Show that if A, Ay,..., Ay € S with Ay,..., Ay pairwise disjoint and U¥_;A; C A, then
Zf:l m(A;) < w(A).

Define U as in Question 23. By that question U is an algebra. Then UF_,A; € U, so
(U A e U, so B := AN (U 4;)° € U. Writing B = UL, C; with C1,...,Cy, pairwise
disjoint sets in S, we have A = (U}, 4;) U (U7, C;) which is a finite union of disjoint sets in

S,som(A) = (Zle m(Ai)) + 2L, 7(C;) since 7 is a pre-measure so finitely additive. Hence

m(A) = Yo7, w(A).

Show that 7 is countably additive, i.e. (U2 A,) = > -, m(A,) whenever Ay, Ay,... € S
are pairwise disjoint with U, A4, € S.

Set A = U, A,. By (a), SF_ 7(A4,) < w(A) for all k, so taking the large-k limit,
>0 m(An) < m(A). Conversely, since 7 is a pre-measure so countably sub-additive, 7(A) <
Yoo m(A,). The result follows.

25. Let F' : (—o00,00) — R be a non-decreasing, right continuous function. Let Z denote the set of
bounded half-open intervals in R (as in lectures). Put Ap(@) = 0, and for all other I € Z, put

Ar(I) = F(b) — F(a), where I has endpoints a and b.
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(a) Check that Ap(1) > 0 for all [ € Z.

(b) Show that Ap is finitely sub-additive on Z.
(c) Show that A is finitely additive on Z.

(d) Show that A is countably additive on Z.

(a) If I = @ then Ap(I) = 0 (this should have been stated more clearly in the question).

If I = (a,0b] for finite a < b, then A\p(I) = F(b) — F(a) > 0 since F' is non-decreasing.

(b) We adapt the proof of Lemma 4.3(i). We need to show that if A C UF  A; with all of
A Ay,..., Ay in T, then Ap(A) < S2F Ap(A;). Tt is enough to prove this in the case where
A, Ay, ..., Ay are all non-empty, so that we can and do write A = (a,b] and A; = (a;,b;] for
1 <17 < k. We may also assume without loss of generality that by > max;<;<x—1b;.

We prove the result by induction on k. If A C A; then a > a; and b < by, so F(a) > F(a,
F(b) < F(by) (since F is assumed non-decreasing), and hence Ap(A1) — Ap(A) = F(by) — F(ay
F(b) + F(a) > 0, so the statement holds if k£ = 1.

Suppose now that k& > 2 and that the statement holds for k& — 1. Suppose Ac U AL T
ANA), = @ then A C UFZLA; s0 by the inductive hypothesis Ap(A) < S Ap(A4;) < 28 Ap(A)),
completing the induction in this case.

If AN Ay, # @ then ap < b < by, and (a,a] C U2} A; (where we define (a,a;] = @ if a; < a).
Hence by the inductive hypothesis and the fact that F' is non-decreasing,

Ap(A) = (F(b) — Flax)) + (Flag) — F(a)) < Ap(As) + Z_j A(4) = 37 Ae(A),

completing the induction.

(c) We need to show that for all k € N, if I = UF_ [, with I,I;,..., I all in Z and I1,..., I}
pairwise disjoint, then Ap(I) = Zle Ar(L;).

As in part (b), it suffices to prove this for the case where I,1I;,..., I} are all non-empty. We
can then write I = (a,b] and I; = (a;, b;] for each i, and assume without loss of generality that
by <by <o < by

Since [ C Uleli we have a1 < a and b, > b. Since I; C I and I, C I we have a; > a and b, < b.
Thus a; = a and b, = b.

For 1 <i<k—1, we have b; < a;41 (because I; N I;;; = &) and b; > a;41 (because otherwise, the

interval (b;, a;41) Would be non-empty and contained in I\ UJ 11;, contradicting the assumption
I = Uf: I;). Therefore b; = a;;1. Hence

D (L) =) (F(b) — F(a) = < @z+1)) — F(a1)

=1 =1 i=1

— F(b) + 0 — F(a) = Ap(D),

as required. Alternatively the result can be proved by induction, similarly to part (b).
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(d) We modify the proof of Theorem 4.4. Suppose A, Ay, As,... € T with A C U2, A;. We may
assume A # & (otherwise the subadditivity result is trivial). Write A = (a, b] and A; = (a;, b;] for
each i (we may omit all ¢ with A; = & from the list of A;).

Let € > 0 be fixed. Since F' is right-continuous, we can find a’ € (a,b) such that F(a') < F(a)+¢,
and hence with A" := (a’, b] we have

Ar(A) = F(b) — F(a) < F(b) — F(d') + £ = Ap(A') + e (1)

For each n = 1,2,..., by the right continuity of ', we can find b), > b, with F(0),) < F'(b,) + 5=
Then setting A/, := (a,, bl,] we have

Ae(AL)=F) — F(a,) < F(by) + — — F(a) = Ap(A4,) + —. (2)
Now
[a',b) C AC U A, C U, (a,,l).
Therefore, by compactness of [a’,b] (Heine-Borel), there exists N > 1 such that
[d,b] € UN_ (an,b).

It follows that A’ = (a’,b] C UY_,(a,,b’], so by the finite subadditivity established in part (b),

n

Ar(A) <Y Ap(A)).

Hence we have

Ar(A) € AR((A) +e < (Z AF<A;>) 1 (Z AF<An>) retd o< (fj AF<An>> +2.

n=1

Since € > 0 was arbitrary, we can let € | 0, and we obtain the result.



