21. Show that λ_1 has the scaling property: for any real number $c \neq 0$ and any Borel set $B \in \mathcal{B}$, we have $\lambda_1(cB) = |c|\lambda_1(B)$. [Here $cB := \{cx : x \in B\}$.]

Define $\nu(B) := \lambda_1(cB), B \in \mathcal{B}$. It is easy to check that ν is a measure; indeed, $\nu(\emptyset) = \lambda_1(c\emptyset) = \lambda_1(\emptyset) = 0$, and if $A_1, A_2, \ldots \in \mathcal{B}$ are pairwise disjoint then so are cA_1, cA_2, \ldots and hence

$$\nu(\bigcup_{n=1}^{\infty} A_n) = \lambda_1(c \bigcup_{n=1}^{\infty} A_n) = \lambda_1(\bigcup_{n=1}^{\infty} (cA_n)) = \sum_{n=1}^{\infty} \lambda_1(cA_n) = \sum_{n=1}^{\infty} \nu(A_n)$$

Likewise, $|c|\lambda_1(B)$ is a measure by Exercise 9 (c). We check that these two measures agree on the class \mathcal{I} of bounded half-open intervals: if $I \in \mathcal{I}$, writing I = (a, b], we have

$$cI = (ca, cb]$$
 if $c > 0$; $cI = [cb, ca)$ if $c < 0$.

In either case the length is |c|(b-a), so $\nu(I) = \lambda_1(cI) = |c|(b-a) = |c|\lambda_1(I)$. Also \mathcal{I} is a π -system, and $\mathbb{R} = \bigcup_{n=1}^{\infty} (-n, n]$ (a countable union of sets in \mathcal{I} with finite λ_1 -measure). Hence the Uniqueness Lemma (Theorem 5.5) implies that $\nu(A) = |c|\lambda_1(A)$ for all Borel sets A.

ALTERNATVE METHOD using outer measure. Since B is Borel we have $\lambda_1(B) = \lambda^*(B)$, the Lebesgue outer measure of B. Assume for now that $\lambda_1(B) < \infty$. Then by definition of outer measure, given $\varepsilon > 0$ we can find intervals $I_1, I_2 \ldots \in \mathcal{I}$ such that $B \subset \bigcup_{i=1}^{\infty} I_i$ and $\sum_{i=1}^{\infty} \lambda(I_i) < \lambda_1(B) + \varepsilon$. But then also $cB \subset \bigcup_{i=1}^{\infty} cI_i$ and it is easy to see that $\lambda_1(cI) = |c|\lambda(I)$ for all $I \in \mathcal{I}$ (using Question 14 when c < 0). Therefore by countable subadditivity of measure (Theorem 3.3(iii)),

$$\lambda_1(cB) \le \sum_{i=1}^{\infty} \lambda_1(cI_i) = \sum_{i=1}^{\infty} |c|\lambda(I_i) \le |c|(\lambda_1(B) + \varepsilon).$$

Therefore since $\varepsilon > 0$ is arbitrary we have $\lambda_1(cB) \leq |c|\lambda_1(B)$, and this is also true when $\lambda_1(B) = \infty$. But applying the same argument using the set cB and the constant c^{-1} , we have that $\lambda_1(B) = \lambda_1(c^{-1}(cB)) \leq |c^{-1}|\lambda_1(cB)$, and hence $\lambda_1(cB) \geq |c|\lambda_1(B)$. Combining the inequalities shows that $\lambda_1(cB) = |c|\lambda_1(B)$.

- 22. Suppose μ is a translation invariant measure on $(\mathbb{R}, \mathcal{B})$. Set $\gamma := \mu((0, 1])$ and assume $0 < \gamma < \infty$.
 - (a) Show that $\mu((0, 1/n]) = \gamma/n$ for all $n \in \mathbb{N}$. Since $(0, 1] = \bigcup_{i=1}^{n} \left(\frac{i-1}{n}, \frac{i}{n}\right]$ (disjoint union) and μ is a measure we have

$$\gamma = \mu((0,1]) = \sum_{i=1}^{n} \mu((\frac{i-1}{n}, \frac{i}{n}]) = n\mu((0, \frac{1}{n}])$$

where we have used tranlation invariance in the last step. This gives the result.

(b) Show that $\mu((0,q]) = \gamma q$ for all rational q > 0.

For any such q we can write q = m/n with $m \in \mathbb{N}$, $n \in \mathbb{N}$. Then $(0,q] = \bigcup_{i=1}^{m} \left(\frac{i-1}{n}, \frac{i}{n}\right]$ (disjoint union) so that using translation invariance, and (a), we have

$$\mu((0,q]) = \sum_{i=1}^{m} \mu((\frac{i-1}{n}, \frac{i}{n}]) = m\mu((0, \frac{1}{n}]) = m(\gamma/n) = \gamma q$$

- (c) Let \mathcal{I}' be the class of half-open intervals in \mathbb{R} with rational endpoints, i.e. the class of intervals of the form (q, r] with $q \in \mathbb{Q}$, $r \in \mathbb{Q}$ and $q \leq r$. Show that $\mu(I) = \gamma \lambda_1(I)$ for all $I \in \mathcal{I}'$. For I = (q, r] with q < r and $q, r \in \mathbb{Q}$, by translation invariance $\mu(I) = \mu((0, r - q])$. Since r - q is also rational, we therefore have by part (b) that $\mu(I) = \gamma(r - q) = \gamma \lambda_1(I)$. Obviously if $I = \emptyset$ then $\mu(I) = \gamma \lambda_1(I) = 0$.
- (d) Show that $\sigma(\mathcal{I}') = \mathcal{B}$. You may use without proof the fact that \mathbb{Q} is dense in \mathbb{R} , that is, every non-empty open interval in \mathbb{R} contains at least one rational number.

Let \mathcal{I} be the class of bounded half-open intervals as defined in lectures. By a result from lectures $\mathcal{B} = \sigma(\mathcal{I})$. In particular $\mathcal{I} \subset \mathcal{B}$. Therefore $\mathcal{I}' \subset \mathcal{I} \subset \mathcal{B}$ and hence (since \mathcal{B} is a σ -algebra) $\sigma(\mathcal{I}') \subset \mathcal{B}$.

Conversely, given $I = (a, b] \in \mathcal{I}$, for all $x \in (a, \infty)$ we can find rational q, r with a < q < x < r, and hence

$$(a,\infty) = \bigcup_{\{q,r \in \mathbb{Q}: a < q < r < \infty\}} (q,r)$$

which is a countable union of sets in \mathcal{I}' , and therefore is in $\sigma(\mathcal{I}')$. Similarly $(b, \infty) \in \sigma(\mathcal{I}')$, so $I = (a, \infty) \setminus (b, \infty) \in \sigma(\mathcal{I}')$. Hence $\mathcal{I} \subset \sigma(\mathcal{I}')$. Therefore since $\sigma(\mathcal{I}')$ is a σ -algebra, $\mathcal{B} = \sigma(\mathcal{I}) \subset \sigma(\mathcal{I}')$. Combined with the previous paragraph this shows $\sigma(\mathcal{I}') = \mathcal{B}$

(e) Use the Uniqueness lemma to show that μ(B) = γλ₁(B) for all B ∈ B.
Since λ₁ is a measure on (ℝ, B), also γλ₁ is a measure on (ℝ, B) (see Exercise 9(c)). By part (c), the measures μ and γλ₁ agree on I' which is a π-system (because if q, r, s, t are all rational with q ≤ r and s ≤ t then (q, r) ∩ (s, t) = (max(q, s), min(r, t)) ∈ I').
Moreover, setting F_n = (-n, n] we have F_n ∈ I' and γλ₁(F_n) = 2γn < ∞ for all n, and ∪[∞]_{n=1}F_n = ℝ, so γλ₁ is σ-finite on I'.
Therefore we can apply the Uniqueness lemma to deduce that the measures γλ₁ and μ agree

Inerefore we can apply the Uniqueness lemma to deduce that the measures $\gamma \lambda_1$ and μ agree on $\sigma(\mathcal{I}') = \mathcal{B}$ (using part (d)), that is $\gamma \lambda_1(B) = \mu(B)$ for all $B \in \mathcal{B}$.

- 23. Suppose X is a non-empty set and \mathcal{S} is a semi-algebra in X. As in Chapter 6 of the notes, let \mathcal{U} be the class of sets of the form $\bigcup_{i=1}^{k} A_i$ with $k \in \mathbb{N}$ and A_1, \ldots, A_k pairwise disjoint sets in \mathcal{S} .
 - (a) Show by induction on k that if $A \in \mathcal{U}$ then $A^c \in \mathcal{U}$, i.e. \mathcal{U} is closed under complementation.
 - (b) Show also that \mathcal{U} is closed under pairwise intersections and deduce that \mathcal{U} is an algebra.
 - (c) Deduce that \mathcal{U} is the algebra generated by \mathcal{S} .

(a) For the base case with k = 1, note that if $A \in \mathcal{S}$ then by the definition of semi-algebra A^c is a finite union of pairwise disjoint sets in \mathcal{S} , and hence is in \mathcal{U} . For the inductive hypothesis let $n \geq 1$ and assume if $A = \bigcup_{i=1}^{n} I_i$ with A_1, \ldots, A_n pairwise disjoint in \mathcal{S} , then $A^c \in \mathcal{U}$.

For the inductive step let $A = \bigcup_{i=1}^{n+1} I_i$ with I_1, \ldots, I_{n+1} disjoint sets in \mathcal{S} . Set $B = \bigcup_{i=1}^n I_i$. By the inductive hypothesis we have $B^c \in \mathcal{U}$. Moreover by the base case (or the definition of semialgebra) we have $I_{n+1}^c \in \mathcal{U}$. Therefore by De Morgan's law, and the first part of Part (b) of this question (to be proved below),

$$A^c = (B \cup I_{n+1})^c = B^c \cap I_{n+1}^c \in \mathcal{U}.$$

This completes the induction.

(b) Suppose $A, B \in \mathcal{U}$; we shall show $A \cap B \in \mathcal{U}$. Write $A = \bigcup_{i=1}^{k} I_i$ and $B = \bigcup_{j=1}^{\ell} J_j$ with I_1, \ldots, I_k pairwise disjoint sets in \mathcal{S} , and J_1, \ldots, J_ℓ pairwise disjoint sets in \mathcal{S} . Then

$$A \cap B = \bigcup_{i=1}^k \bigcup_{j=1}^\ell (I_i \cap J_j) = \bigcup_{(i,j) \in [k] \times [\ell]} K_{i,j}$$

where we set $K_{i,j} := I_i \cap J_j$ for each (i, j). Since S is a π -system we have $K_{i,j} \in S$ for each (i, j). Also for $(i', j') \neq (i, j)$ we have

$$K_{i,j} \cap K_{i',j'} = I_i \cap J_j \cap I_{i'} \cap J_{j'} = \emptyset,$$

because either $i \neq i'$ (so $I_i \cap I_{i'} = \emptyset$) or $j \neq j'$ (so $J_j \cap J_{j'} = \emptyset$).

Therefore the sets $K_{i,j}$, $1 \leq i \leq k$, $1 \leq j \leq \ell$ are pairwise disjoint so $A \cap B \in \mathcal{U}$. Therefore \mathcal{U} is closed under pairwise intersections (that is, it is a π -system). This gives the first part of (b), and hence also (a).

Next we show \mathcal{U} is closed under pairwise unions. Given $A, B \in \mathcal{U}$ we have (by part (a)) that $A^c \in \mathcal{U}$ and $B^c \in \mathcal{U}$, so that by the De Morgan law, and the first part of (b),

$$(A \cup B)^c = A^c \cap B^c \in \mathcal{U}$$

and hence (by (a) again) also $A \cup B = ((A \cup B)^c)^c \in \mathcal{U}$. So \mathcal{U} is an algebra.

(c) Let \mathcal{A} be the algebra generated by \mathcal{S} . Then \mathcal{A} is the intersection of all algebras containing \mathcal{S} so $\mathcal{A} \subset \mathcal{U}$ (since we've just shown that \mathcal{U} is one such algebra).

Conversely, since \mathcal{A} is an algebra we have for any $I_1, \ldots, I_k \in \mathcal{S}$ that $\bigcup_{i=1}^k I_i \in \mathcal{A}$. Therefore $\mathcal{U} \subset \mathcal{A}$ so $\mathcal{U} = \mathcal{A}$.

- 24. Suppose X is a non-empty set, \mathcal{S} is a semi-algebra in X and π is a pre-measure on (X, \mathcal{S}) .
 - (a) Show that if $A, A_1, \ldots, A_k \in \mathcal{S}$ with A_1, \ldots, A_k pairwise disjoint and $\bigcup_{i=1}^k A_i \subset A$, then $\sum_{i=1}^k \pi(A_i) \leq \pi(A)$. Define \mathcal{U} as in Question 23. By that question \mathcal{U} is an algebra. Then $\bigcup_{i=1}^k A_i \in \mathcal{U}$, so $(\bigcup_{i=1}^k A_i)^c \in \mathcal{U}$, so $B := A \cap (\bigcup_{i=1}^k A_i)^c \in \mathcal{U}$. Writing $B = \bigcup_{i=1}^m C_i$ with C_1, \ldots, C_m pairwise

 $(\bigcup_{i=1}^{k}A_{i})^{c} \in \mathcal{U}$, so $B := A \cap (\bigcup_{i=1}^{k}A_{i})^{c} \in \mathcal{U}$. Writing $B = \bigcup_{j=1}^{m}C_{j}$ with C_{1}, \ldots, C_{m} pairwise disjoint sets in \mathcal{S} , we have $A = (\bigcup_{i=1}^{k}A_{i}) \cup (\bigcup_{j=1}^{m}C_{j})$ which is a finite union of disjoint sets in \mathcal{S} , so $\pi(A) = (\sum_{i=1}^{k}\pi(A_{i})) + \sum_{j=1}^{m}\pi(C_{j})$ since π is a pre-measure so finitely additive. Hence $\pi(A) \geq \sum_{i=1}^{k}\pi(A_{i})$.

- (b) Show that π is countably additive, i.e. $\pi(\bigcup_{n=1}^{\infty}A_n) = \sum_{n=1}^{\infty}\pi(A_n)$ whenever $A_1, A_2, \ldots \in S$ are pairwise disjoint with $\bigcup_{n=1}^{\infty}A_n \in S$. Set $A = \bigcup_{n=1}^{\infty}A_n$. By (a), $\sum_{n=1}^{k}\pi(A_n) \leq \pi(A)$ for all k, so taking the large-k limit, $\sum_{n=1}^{\infty}\pi(A_n) \leq \pi(A)$. Conversely, since π is a pre-measure so countably sub-additive, $\pi(A) \leq \sum_{n=1}^{\infty}\pi(A_n)$. The result follows.
- 25. Let $F : (-\infty, \infty) \to \mathbb{R}$ be a non-decreasing, right continuous function. Let \mathcal{I} denote the set of bounded half-open intervals in \mathbb{R} (as in lectures). Put $\lambda_F(\emptyset) = 0$, and for all other $I \in \mathcal{I}$, put

$$\lambda_F(I) = F(b) - F(a)$$
, where I has endpoints a and b.

- (a) Check that $\lambda_F(I) \geq 0$ for all $I \in \mathcal{I}$.
- (b) Show that λ_F is finitely sub-additive on \mathcal{I} .
- (c) Show that λ_F is finitely additive on \mathcal{I} .
- (d) Show that λ_F is countably additive on \mathcal{I} .

(a) If $I = \emptyset$ then $\lambda_F(I) = 0$ (this should have been stated more clearly in the question).

If I = (a, b] for finite a < b, then $\lambda_F(I) = F(b) - F(a) \ge 0$ since F is non-decreasing.

(b) We adapt the proof of Lemma 4.3(i). We need to show that if $A \subset \bigcup_{i=1}^{k} A_i$ with all of A, A_1, \ldots, A_k in \mathcal{I} , then $\lambda_F(A) \leq \sum_{i=1}^{k} \lambda_F(A_i)$. It is enough to prove this in the case where A, A_1, \ldots, A_k are all non-empty, so that we can and do write A = (a, b] and $A_i = (a_i, b_i]$ for $1 \leq i \leq k$. We may also assume without loss of generality that $b_k \geq \max_{1 \leq i \leq k-1} b_i$.

We prove the result by induction on k. If $A \subset A_1$ then $a \ge a_1$ and $b \le b_1$, so $F(a) \ge F(a_1)$ and $F(b) \le F(b_1)$ (since F is assumed non-decreasing), and hence $\lambda_F(A_1) - \lambda_F(A) = F(b_1) - F(a_1) - F(b) + F(a) \ge 0$, so the statement holds if k = 1.

Suppose now that $k \geq 2$ and that the statement holds for k-1. Suppose $A \subset \bigcup_{i=1}^{k} A_i$. If $A \cap A_k = \emptyset$ then $A \subset \bigcup_{i=1}^{k-1} A_i$ so by the inductive hypothesis $\lambda_F(A) \leq \sum_{i=1}^{k-1} \lambda_F(A_i) \leq \sum_{i=1}^{k} \lambda_F(A_i)$, completing the induction in this case.

If $A \cap A_k \neq \emptyset$ then $a_k < b \leq b_k$ and $(a, a_k] \subset \bigcup_{i=1}^{k-1} A_i$ (where we define $(a, a_k] = \emptyset$ if $a_k \leq a$). Hence by the inductive hypothesis and the fact that F is non-decreasing,

$$\lambda_F(A) = (F(b) - F(a_k)) + (F(a_k) - F(a)) \le \lambda_F(A_k) + \sum_{i=1}^{k-1} \lambda_F(A_i) = \sum_{i=1}^k \lambda_F(A_i),$$

completing the induction.

(c) We need to show that for all $k \in \mathbb{N}$, if $I = \bigcup_{i=1}^{k} I_i$ with I, I_1, \ldots, I_k all in \mathcal{I} and I_1, \ldots, I_k pairwise disjoint, then $\lambda_F(I) = \sum_{i=1}^{k} \lambda_F(I_i)$.

As in part (b), it suffices to prove this for the case where I, I_1, \ldots, I_k are all non-empty. We can then write I = (a, b] and $I_i = (a_i, b_i]$ for each i, and assume without loss of generality that $b_1 \leq b_2 \leq \cdots \leq b_k$.

Since $I \subset \bigcup_{i=1}^{k} I_i$ we have $a_1 \leq a$ and $b_k \geq b$. Since $I_1 \subset I$ and $I_k \subset I$ we have $a_1 \geq a$ and $b_k \leq b$. Thus $a_1 = a$ and $b_k = b$.

For $1 \leq i \leq k-1$, we have $b_i \leq a_{i+1}$ (because $I_i \cap I_{i+1} = \emptyset$) and $b_i \geq a_{i+1}$ (because otherwise, the interval (b_i, a_{i+1}) would be non-empty and contained in $I \setminus \bigcup_{j=1}^k I_j$, contradicting the assumption $I = \bigcup_{j=1}^k I_j$). Therefore $b_i = a_{i+1}$. Hence

$$\sum_{i=1}^{k} \lambda_F(I_i) = \sum_{i=1}^{k} (F(b_i) - F(a_i)) = F(b_k) + \left(\sum_{i=1}^{k-1} (F(b_i) - F(a_{i+1})) - F(a_1)\right) = F(b) + 0 - F(a) = \lambda_F(I),$$

as required. Alternatively the result can be proved by induction, similarly to part (b).

(d) We modify the proof of Theorem 4.4. Suppose $A, A_1, A_2, \ldots \in \mathcal{I}$ with $A \subset \bigcup_{i=1}^{\infty} A_i$. We may assume $A \neq \emptyset$ (otherwise the subadditivity result is trivial). Write A = (a, b] and $A_i = (a_i, b_i]$ for each *i* (we may omit all *i* with $A_i = \emptyset$ from the list of A_i).

Let $\varepsilon > 0$ be fixed. Since F is right-continuous, we can find $a' \in (a, b)$ such that $F(a') < F(a) + \varepsilon$, and hence with A' := (a', b] we have

$$\lambda_F(A) = F(b) - F(a) \le F(b) - F(a') + \varepsilon = \lambda_F(A') + \varepsilon.$$
(1)

For each n = 1, 2, ..., by the right continuity of F, we can find $b'_n > b_n$ with $F(b'_n) < F(b_n) + \frac{\varepsilon}{2^n}$. Then setting $A'_n := (a_n, b'_n]$ we have

$$\lambda_F(A'_n) = F(b'_n) - F(a_n) \le F(b_n) + \frac{\varepsilon}{2^n} - F(a) = \lambda_F(A_n) + \frac{\varepsilon}{2^n}.$$
(2)

Now

$$[a',b] \subset A \subset \bigcup_{n=1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} (a_n,b'_n).$$

Therefore, by compactness of [a', b] (Heine-Borel), there exists $N \ge 1$ such that

$$[a',b] \subset \cup_{n=1}^{N} (a_n,b'_n).$$

It follows that $A' = (a', b] \subset \bigcup_{n=1}^{N} (a_n, b'_n)$, so by the finite subadditivity established in part (b),

$$\lambda_F(A') \le \sum_{n=1}^N \lambda_F(A'_n).$$

Hence we have

$$\lambda_F(A) \stackrel{(1)}{\leq} \lambda_F((A') + \varepsilon \le \left(\sum_{n=1}^N \lambda_F(A'_n)\right) + \varepsilon \stackrel{(2)}{\leq} \left(\sum_{n=1}^N \lambda_F(A_n)\right) + \varepsilon + \sum_{n=1}^N \frac{\varepsilon}{2^n} \le \left(\sum_{n=1}^\infty \lambda_F(A_n)\right) + 2\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we can let $\varepsilon \downarrow 0$, and we obtain the result.