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13.

14.

15.

Show that if A C R is countable then A € B and A\(A) = 0.

Let x € R. Then R\ {z} = (—o0,z)U(z,c0) is open, so is in B (since B is the o-algebra generated
by the collection O of open sets in R). Therefore since B is a o-algebra, also {z} = (R\ {z})° € B

Now suppose A C R is countable. Then we can write A = U2 {x;} for some sequence of real
numbers (x1,Zs,...) (in the case where A is finite we could take z; = x; for all but finitely many
i). Since {z;} € B for each i, and since B is a o-algebra, we have

A= U;‘il{u’lﬁ'z} e B.

Next we want to show A\;(A) = 0. For z € R, setting J,, = (x — 1/n,z + 1/n] we have {z} C J,
so M({z}) < M (J,) = 2/n. Since n is arbitrarily large this shows that A\;({z}) < 0 and hence
A ({z}) = 0. Then with A and x; as above, since A = U, {x;}, using countable subadditivity of
Lebesgue measure (see Theorem 3.3) we have

A) < Z M({z}) = 0.

Also A\1(A) > 0 since \; is a measure. So A\ (A) = 0.
Show that for any interval I with left endpoint a and right endpoint b we have \(I) = b — a
(regardless of whether a,b € I or not).

Assume a < b (in the degenerate case a = b, either I = {a} so A\;(I) = 0 by the previous question,
or [ =@ so A\ (I)=0).

Choose € € (0, (b—a)/2). Let Iy = (a+¢,b—¢] and [, = (a —e,b+¢].
Then IO clcC Il so that )\1(_[0) S )\1(]) S )\1([1)

A1 is defined as the unique measure on (R, B) such that A\ ((u,v]) = v —u for all u < v. Therefore
MIp)=0b—¢e)—(at+e)=b—a—2e; MN1)=(0b+e)—(a—¢e)=b—a+ 2,
and therefore
b—a—2e<\()<b—a+2e.
Since € can be arbitrarily small (subject to € > 0) this shows that A\ (/) = b — a.

Give an example of a Borel set A C R with A;(A) > 0 but with no non-empty open interval
contained in A.

We could take A = (0,1] \ Q. Note that Q € B since Q is countable. Also, the set Q N (0, 1]
is countable, so A\ (Q N (0,1]) = O Smce AU (Qn(0,1]) = (0,1] (disjoint union), we have
A (4) + M (@0 (0,1]) = A (0,1] =

MA) =1-1(QN(0,1]) =1 > 0.

However, A does not contain any non-empty open interval since QQ is dense in the real line, so any
non-empty interval of the form (a, b) contains at least one element of A.
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16.

17.

18.

Given € > 0, give an example of an open set U C R with \;(U) < e that is dense in R, i.e. has
non-empty intersection with every non-empty open interval in R.

Enumerate the rationals Q as Q = {q1,¢2,¢s,...} (this can be done because Q is countably
infinite). Let 6 € (0,£/2). For i € N Set

) )

Ii = (qi — 500 i + 5),

and set U := U2, I;. Then U is open since if z € U, we can find ¢ such that x € I;, but then since
I; is an open interval we can find n > 0 with (x —n,x +n) C I; C U.

Also, U is dense in R because Q is dense in R and Q C U.
Finally, by subadditivity of Lebesgue measure Ap,

<Z)\1 =2

=1

which is less than ¢ by our choice of 4.
Suppose A C R is a bounded Borel set. Show that for all € > 0 there exists a set U which is a
finite union of intervals, such that A (AAU) < ¢, where AAU = (A\U)U (U \ A).

Since A;(A) = A*(A) (the Lebesgue outer measure of A), which is finite because A is bounded, by
the definiton of Lebesgue outer measure there exists a sequence of half-open intervals I, Iy, I3, . ..
such that A C U2, I, := S, and >0 Mi(L;) < M(A4) +¢/2.

By subadditivity of the measure A\; (Theorem 3.3(iii)), A\ (S) < >0 ML) < M(A4) +¢/2. In
particular /\1(5') < 00.

For each n set S, := U, I;. Then S,, C S, for all n, and U2, S,, = S. Therefore by the upward
continuity of the measure \; (Theorem 3.3(i)) we have /\1(Sn) — A(S) as n — oo, and since
A (S) < oo, we can (and do) choose N such that A;(Sy) > A (S) —e/2.

Set U = Sy. Then A C Sand U C S, so that A\ U C S\ U, and thus
MANT) < M(S\U) =XM(S) = M(U) <e/2,

and similarly

MU\ A) S M(S\VA) = (S) = M(A) <e/2.
Combining the last two displays shows that \{(UAA) = X\ (U \ A) + M (A\U) <¢
In this question we write A*(A) for the Lebesgue outer measure of A.

(a) What is the definition of the Lebesque outer measure of a set A C R?

(b) Show that for any (not necessarily Borel) A C R there exists a Borel set B C R with A C B
and A (B) = A (A).

(¢) Suppose A C R is a Borel set with A\;(A) > 0. Using the fact that A;(A) = A\*(A), show that
for any € > 0 there exists a non-empty half-open interval I with A\;(AN1T) > (1 — &)\ ().



MA40042 Measure Theory and Integration (2024/25): Solutions 12
(d) Show that the set A© A :={z —y:x,y € A} includes a non-empty half-open interval.

(a) The Lebesgue outer measure of A is defined by

X (A) = inf{> (b — a;) : A C U, (a5, bi], —00 < a; < b; < ooVi € N}
=1

(b) By definition of Lebesgue outer measure \*, if A*(A) < oo then for each n € N we can find a
covering I, 1, I 9, ... of A by half-open intervals, such that Y >°, A(1,,;) < A*(A) + 1/n.

Let A,, = U2, 1, ;. Since each interval I, ; is in B, and B is a o-algebra we have A, = U, 1, ; € B.
That is, A, is a Borel set. By subadditivity of measure,

AM(A4,) < i (L) < A(A) + nt.

Now set B = N>, A,. Then B € B (i.e. B is a Borel set), because it is a countable intersection
of sets in B. Then A C B, but for all n we have B C A, so A\ (B) < A\ (4,) < A (A) + 1/n.
Therefore A;(B) < A*(A), but also A\*(A) < X\*(B) = A\ (B) since A C B, so A{(B) = \*(A).

If A*(A) = oo then we can just take B = R.

(c) Without loss of generality we may assume A is bounded. For if not, then let A, = AN(—n,n].
By upwards continuity A;(A,) — A(A) as n — oo, and since A\;(A4) > 0, we can choose n with

A1(A,) > 0. If the result holds for this A, then it also holds for A since A, C A. Hence, from
now on we assume A is bounded, with 0 < A\(A) < occ.

Proof by contradiction; supose there exists ¢ > 0 such that for every interval I we have \;(INA) <
(I —e)A(I). Now fix this . Clearly € < 1. Let § > 0 be taken so small that (1 —¢)(1+6) < 1.
Then by the defnition of outer measure, we can take a sequence of intervals I,, € Z, defined for
each n € N, such that A C U221, and Y 7, M (I,) < (14 0)Ai(A). Then

i)\l(A NIL,)<(1-e¢) i)\l(]n) < (1—)(1+8)Ai(A).

Since A C U2 1, also A = AN (U, 1,) = U2 (AN 1), so by the countable subadditivity of
Lebesgue measure (Theorem 3.3 (iii)),

oo

M(A) <D M(ANT).

n=1
Combining this with the previous displayed inequality shows that A\j(A) < (1 —&)(1 + §)A\(A),
which is a contradiction by the choice of 9.

(d) Here we are assuming A is as in Part (c¢). Using Part (c) with e = 0.01, pick I € Z such that
M(ANT) > 0.99\(I). Write I = (a,a + 6] with & > 0. Then A (AN T) > 0.995.

Suppose z ¢ A S A. Then for all z,y € A we have z # x — y so © # z + y and hence the
(A+2)NA=g, thatis A+ z C A“.
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19.

20.

Suppose moreover that z € (0,/2]. Then (a,a+6/2]+ z C (a,a+¢] since if w € (a,a+ /2] then
a+0<w+z<(a+3/2)+5/2.

Therefore (AN (a,a+6/2]) + 2z C A°N (a,a + §]. Thus by the translation invariance of Lebesgue
measure,

M(A°N (a,a+0) = M((AN (a,a+6/2) + 2) = M(AN (a,a+6/2))
= (5/2) — M(A°N (a,a+5/2)
> 0.496.

On the other hand A\ (A°N (a,a+0]) =0 — M (AN (a,a+ d]) <0.016, and these two inequalities
for A1 (A°N (a,a + d]) are contradictary.

Therefore no such z exists, i.e. no z satisfies both z ¢ A© A and z € (0,6/2], or in other words
(0,6/2] c Ao A.

Suppose X is a non-empty set and D is a w-system in X. Show that for any k € N, if A; € D for
i=1,2,...,k then N%_, A; € D.

Proof by induction. The result is true for £k = 1. Suppose it is true for some k. Suppose A; € D
for 1 <i<k+1. Set B= U} A;. By the inductive hypothesis B € D. Since D is a 7-system

ﬂf;’llAi = BN Ai+1 eD
which completes the induction.

Let Z denote the class of half-open intervals in R, together with the empty set (as in the lecture
notes). Define the set-function: 7 : Z — [0, oo] by

(4) = 0 ifA=g;
T e A40.

Show that 7 has more than one extension to a measure on B = ¢(Z). What condition (of the
uniqueness theorem) failed here?

One such extension would be the counting measure 1 defined in Example 3.2(a). Since any non-
empty interval has infinitely many elements, this u is also an extension of 7 to B.

However, for any constant ¢ € (0, co] the set function cu is also a measure, which also extends .

For any sequence of sets F,, € Z with we must have F, # @ for at least one n, and for that
n we have m(F,) = oo (by the definition of 7). Hence there is no sequence of sets F,, € 7
with US®, F,, = R and 7(F,) < oo for all n. Therefore Theorem 5.5 (Uniqueness lemma) is not
applicable.



