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55. Let p ∈ [1,∞) and let f ∈ Lp(R). Let (an)n≥1 and (bn)n≥1 be real-valued sequences such that�∞
n=1 |an| < ∞. Show that the sequence of functions

fn(x) :=
n�

k=1

akf(x− bk)

converges in Lp(R).
We show that the sequence is a Cauchy sequence in Lp. For each k set gk(x) = f(x−bk) for x ∈ R.
Then gk ∈ Lp with �gk�p = �f�p by Question 37. By Minkowski’s inequality and a straightforward
induction argument, we have for any h1, . . . , hj ∈ Lp that �h1+h2+ · · ·hj�p ≤

�j
i=1 �hi�p. Hence

for any n < m we have

�fm − fn�p =
�����

m�

k=n+1

akgk

�����
p

≤
m�

k=n+1

�akgk�p

and since �αh�p = |α|�h�p for any real α and any h ∈ Lp, we therefore have for n < m that

�fm − fn�p ≤
m�

k=n+1

|ak|�gk�p = �f�p
m�

k=n+1

|ak| ≤ �f�p
∞�

k=n+1

|ak|

which tends to zero as n → ∞ since it is the tail of a convergent series. This shows that fn is a
Cauchy sequence in Lp, so by the Riesz-Fischer theorem fn converges in Lp to a limit function in
Lp.

56. Suppose (an)n≥1 and (bn)n≥1 are sequences of nonnegative numbers, such that A :=
�∞

n=1 a
4/3
n < ∞

and B :=
�∞

n=1 b
4
n < ∞. Show that

�∞
n=1 anbn ≤ A3/4B1/4. (you may use results from lectures

without proof).

We apply Hölder’s inequality on the measure space (N,P(N), µ), where µ is the counting measure
on (N,P(N)), with p = 4/3 and q = 4 so 1/p + 1/q = 1. Setting f(n) = an and g(n) = bn for
n ∈ N, using Question 38 we have

�
fgdµ =

�
n anbn, and

�
f pdµ = A and

�
gqdµ = B. Hence

by Hölder’s inequality

∞�

n=1

anbn =

�
fgdµ ≤

��
f pdµ

�1/p ��
gqdµ

�1/q

= A1/pB1/q.

57. Suppose that (X,M, µ) is a measure space, and 1 ≤ p < q < ∞.

(a) Show that if µ is a probability measure and f ∈ Lq(µ), then �f�p ≤ �f�q.
[Hint: note that f = f · 1, and apply Hölder’s inequality]

(b) Show that if µ(X) < ∞ then Lq(µ) ⊂ Lp(µ).

(c) Give an example to show that if µ(X) = ∞, then we might not have Lq(µ) ⊂ Lp(µ).
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(a) Following the hint, set g(x) = 1 for all x ∈ X. Assume f ∈ Lq(µ). Then f p = f p · g, so by
Hölder’s inequality

�f�pp =
�

|f |pdµ = �f p · g�1 ≤ �(f p)�q/p�g�r

where r is the conjugate exponent to q/p. Since g ≡ 1 and µ is a probability measure, �g�r =
(
�
1dµ)1/r = 1, so

�f�pp ≤
��

(|f |p)q/p
�p/q

=

��
|f |q

�p/q

= �f�pq

so the result follows.

(b) If µ(X) is finite (but now not equal to 1), we can still take g ≡ 1 as above; with r as above
we now have that �g�r = µ(X)1/r < ∞. Therefore repeating the argument above shows that if
f ∈ Lq(µ) then

�f�pp ≤ �f�pq × �g�r < ∞
so that f ∈ Lp(µ) as required.

(c) We can use part (b) of Question 54. Take X = [1,∞) with Lebesgue measure and f(x) = x−β

with q−1 < β ≤ p−1, so that pβ ≤ 1 < qβ. Then f ∈ Lq \ Lp, so here we do not have Lq ⊂ Lp.

58. Let (X,M, µ) be a σ-finite measure space. Let p ∈ (1,∞). Suppose f : X → R and (for all
n ∈ N) fn : X → R are measurable functions, and assume

�∞
n=1 �fn�p < ∞. For all n ∈ N and

x ∈ X, set

gn(x) =
n�

k=1

|fk(x)| and g∞(x) =
∞�

k=1

|fk(x)|.

(i) Show that �gn�p → �g∞�p as n → ∞, and deduce that �g∞�p < ∞.

(ii) Show that the function h(x) :=
�∞

n=1 fn(x) is well-defined and finite µ-a.e., that is, the sum
converges for µ-a.e. x ∈ X.

(i) By using Minkowski’s inequality repeatedly we have

�gn�p ≤
n�

k=1

�|fk|�p =
n�

k=1

�fk�p ≤
∞�

k=1

�fk�p,

which is finite by assumption. Also for each x ∈ X we have that (
�n

k=1 |fk(x)|)
p
is nonnega-

tive and nondecreasing in k. Therefore by definition and by MON,

�gn�pp =
�

X

�
n�

k=1

|fk|
�p

dµ →
�

X

� ∞�

k=1

|fk|
�p

dµ, as n → ∞.

Therefore this limit is finite (being the limit of a bounded sequence). The limit in the display
above is equal to �g∞�pp. Taking pth roots gives us the required result that �gn�p → �g∞�p
and �g∞�p < ∞.
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(ii) Clearly g∞(x) ≥ 0 for all x ∈ X, and the previous part we have
�
(g∞(x))pµ(dx) < ∞, so by

Lemma 10.5(b), g(x) < ∞ for µ-almost all x ∈ X.

Therefore for µ-almost all x ∈ X, we have
�∞

n=1 |fn(x)| is convergent so that the sum�∞
n=1 fn(x) converges (absolutely).

[In case you need reminding about absolute convergence: Fix x such that
�∞

n=1 |fn(x)| < ∞.
Given ε > 0 we can choose N so that

�∞
n=N |fn(x)| < ε. Taking sn :=

�n
k=1 fk(x), for

m > n ≥ N we have |sm − sn| = |�m
k=n+1 fk(x)| ≤

�m
k=n+1 |fk(x)| < ε. Hence (sn)n∈N is a

Cauchy sequence so converges to a finite limit, i.e. the series
�∞

n=1 fn(x) is convergent.]

59. Let W ∈ B, and for f, g ∈ L2(W ), write �f, g� =
�
W
f(x)g(x)dx. Show that if also h ∈ L2(W )

and a, b ∈ R then �f, ag + bh� = a�f, g�+ b�f, h�.
By linearity of the integral (Theorem 11.5), we have

�f, ag + bh� =
�

W

f(x)(ag(x) + bh(x))dx

= a

�

W

f(x)g(x)dx+ b

�

W

f(x)h(x)dx = a�f, g�+ b�f, h�.

Theorem 11.5 is applicable here because by Hölder’s inequality (Theorem 14.9) the function fg
satisfies �fg�1 ≤ �f�2�g�2 < ∞, so fg ∈ L1(W ) and likewise fh ∈ L1(W ).

60. For n ∈ N, let fn(x) = sin(nx).

(a) Show that for n,m ∈ N with n �= m we have
� 2π

0
fn(x)fm(x)dx = 0, while

� 2π

0
(fn(x))

2dx = π.
[Hint: recall that cos(a+ b) = cos a cos b− sin a sin b].

(b) Now set gn(x) =
�n

k=1 k
−1fk(x). Show that in L2([0, 2π]) we have �gn�22 = π

�n
k=1 k

−2.

(c) Show there exists a function g ∈ L2[0, 2π] such that gn → g in L2([0, 2π]) as n → ∞.

(a) Note that for any integer k �= 0,
� 2π

0
cos(kx)dx = k−1[sin(kx)]2π0 = 0. Also for n,m ∈ N, by

the hint, sin(nx) sin(mx) = (1/2)(cos(nx−mx)− cos(nx+mx)), and hence

� 2π

0

fn(x)fm(x)dx = (1/2)

� 2π

0

[cos((n−m)x)− cos((n+m)x)]dx =

�
π if n = m

0 otherwise

(b) For f, h ∈ L2([0, 2π]), write �f, h� for
� 2π

0
f(x)h(x)dx. Then

�gn�22 = �gn, gn� = �
n�

i=1

i−1fi,
n�

j=1

j−1fj�.

By Question 59, �f, h� is linear in h, and since it is symmetric in h and f , also �f, h� is linear
in f . That is, �f, h� is bilinear in f and h. Using this bilinearity and Part (a), we have

�gn�22 =
n�

i=1

n�

j=1

i−1j−1�fi, fj� =
n�

i=1

i−2π,

as required.
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(c) For m,n ∈ N with m < n, similarly to Part (b) we have

�gn − gm�22 = �
n�

i=m+1

i−1fi,
n�

j=m+1

j−1fi, � =
n�

i=m+1

n�

j=m+1

i−1j−1�fi, fj� =
n�

i=m+1

i−2π

which tends to zero as m,n → ∞, since
�∞

i=1 i
−2 < ∞.

Therefore (gn)n≥1 is a Cauchy sequence in L2 so there exists g ∈ L2([0, 2π]) with gn → g in
L2 as n → ∞, i.e. with �gn − g�2 → 0 as n → ∞.


